Consider the one-dimensional wave equation
\[u_{tt}(x, t) = c^2 u_{xx}(x, t); 0 < x < L, \ 0 < t \leq T; u(0, t) = u(L, t) = 0; \]
\[u(x, 0) = f(x), \ u_t(x, 0) = g(x). \]

Denote by \(\Delta t = \tau \) the step size in time, and by \(\Delta x = h \), in space; set \(m^2 = \frac{\tau^2 c^2}{h^2}, \: x_i = (i - 1)h, \: i = 1, \ldots, M + 1; \: t_j = (j - 1)\tau, \: j = 1, \ldots, N + 1. \) Note that \(L = Mh = x_{M+1}, T = N\tau = t_{N+1}. \) Write \(u_{i,j} \) for the approximation of \(u(x_i, t_j). \)

We approximate \(u_{tt}(x_i, t_j) \) by the central difference at \(x_i: \)
\[u_{tt}(x_i, t_j) \approx \frac{1}{\tau^2} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1}) \]
and \(u_{xx}(i\Delta x, j\Delta t), \) by the average of the corresponding central differences at \(t_{j+1} \) and \(t_{j-1}: \)
\[u_{xx}(i\Delta x, j\Delta t) \approx \frac{1}{h^2} \left(\frac{1}{2} (u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) + \frac{1}{2} (u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1}) \right) \]
The result is
\[u_{i,j+1} - 2u_{i,j} + u_{i,j-1} = \frac{1}{2} m^2 \left((u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) + (u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1}) \right) \]
or
\[-m^2 u_{i+1,j+1} + 2(1 + m^2)u_{i,j+1} - m^2 u_{i-1,j+1} = 4u_{i,j} + m^2 u_{i+1,j-1} - 2(1 + m^2)u_{i,j-1} + m^2 u_{i-1,j-1}. \] \(1 \)

With zero boundary conditions, you get \(u_{1,j} = u_{M+1,j} = 0. \) For \(i = 2, \ldots, M, \) use the initial conditions to get \(u_{i,1} = u(x_i, 0) = f((i - 1)h), \: u_{i,2} \approx u_{i,1} + \tau g((i - 1)h) + \frac{\tau^2}{2} u_{tt}(x_i, 0); \) from the equation, \(u_{tt}(x_i, 0) = c^2 u_{xx}(x_i, 0) = c^2 f''(x_i) \approx c^2 (f'(ih) - 2f((i - 1)h) + f((i - 2)h))/h^2. \)

Then, for each \(j+1 = 3, \ldots, N, \) \(1 \) is a linear system for the unknown vector \((u_{2,j+1}, \ldots, u_{M,j+1}), \) and all you need is to solve this system. The matrix \(A \) of this system is of size \((M-1) \times (M-1), \) with \(2(1 + m^2) \) on the main diagonal, \(-m^2 \) just above and below the main diagonal, and 0 elsewhere. If you write \(U(j) \) for the vector-column \((u_{2,j}, \ldots, u_{M-1,j}), \) then the system to solve is
\[AU(j + 1) = 4U(j) - AU(j - 1). \]