Lecture 3: Limit theorems

Admin: Homework 1 due Thursday

Outline: (each item roughly corresponds to one week’s material)
1. Overview of probability: Probability spaces, random variables, distribution functions, moment generating functions, expectation, conditional probability and expectation, probability inequalities, examples
2. Stochastic processes: Examples, notions of convergence, definition of a stochastic process, independence, zero-one laws, laws of large numbers, central limit theorems, stable laws

Moment Generating Functions

Def.: Moment generating function \(\mathbb{E}[e^{\lambda X}] \) as a function of \(\lambda \)

- does not always exist

\[P(X = i) = \frac{e^{\lambda i}}{i!} \quad \text{Idea: Probabilities don't drop fast enough.} \]

\[\mathbb{E}[e^{\lambda X}] = \sum_{i=0}^{\infty} \frac{e^{\lambda i} \frac{1}{i!}}{i!} = \infty \text{ for any } \lambda > 0 \]

Characteristic function \(\mathbb{E}[e^{i\lambda X}] \)
- always exists (for real \(\lambda, X \)) since \(|e^{i\lambda X}| = 1 \)

Joint moment generating function \(\mathbb{E}[e^{\lambda X + \mu Y}] = \psi(\lambda, \mu) \)

Fact: The (joint) moment generating function, when it exists, uniquely determines the (joint) distribution.

The (joint) characteristic function uniquely determines the (joint) distribution.

For examples, all the moments \(\mathbb{E}[X^n] \) can be read off \(\mathbb{E}[e^{\lambda X}] \):

\[\mathbb{E}[X^n] = \left. \frac{d^n}{d\lambda^n} \mathbb{E}[e^{\lambda X}] \right|_{\lambda = 0} \]

\[= \left. \frac{d^n}{d\lambda^n} \left(\mathbb{E}[e^{\lambda X}] \right) \right|_{\lambda = 0} \text{ provided you can interchange } \frac{d^n}{d\lambda^n} \text{ and } \mathbb{E} \]

Examples:
Examples:

<table>
<thead>
<tr>
<th>Discrete Probability Distribution</th>
<th>Probability Mass Function, (p(x))</th>
<th>Moment Generating Function, (\phi(t))</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial with parameters (n, p), (0 \leq p \leq 1)</td>
<td>(\binom{n}{x} p^x (1-p)^{n-x})</td>
<td>((pe^t + (1-p))^n)</td>
<td>(np)</td>
<td>(np(1-p))</td>
</tr>
<tr>
<td>(x = 0, 1, \ldots, n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson with parameter (\lambda > 0)</td>
<td>(\frac{e^{-\lambda} \lambda^x}{x!})</td>
<td>(\exp{\lambda(e^t - 1)})</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>(x = 0, 1, 2, \ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric with parameter (0 \leq p \leq 1)</td>
<td>(p(1-p)^{x-1})</td>
<td>(\frac{pe^t}{1 - (1-p)e^t})</td>
<td>(\frac{1}{p})</td>
<td>(\frac{1-p}{p^2})</td>
</tr>
<tr>
<td>(x = 1, 2, \ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative binomial with parameters (r, p)</td>
<td>(\binom{x-1}{r-1} p^r (1-p)^{x-r})</td>
<td>(\frac{pe^t}{1 - (1-p)e^t})</td>
<td>(\frac{r}{p})</td>
<td>(\frac{r(1-p)}{p^2})</td>
</tr>
<tr>
<td>(x = r, r+1, \ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 1.4a:

\(X \sim \text{Normal}(\mu, \sigma^2) \)

\[
\mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} dx \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \cdot e^{tx}
\]

\[
= \frac{1}{\sqrt{2\pi} \sigma^2} \int_{-\infty}^{\infty} dx \cdot e^{-\frac{1}{2\sigma^2} (x-\mu + \frac{1}{\sigma^2} t x)^2 - \frac{1}{2} \sigma^2 t x}
\]

\[
= e^{\mu t + \frac{1}{2} \sigma^2 t^2}
\]
<table>
<thead>
<tr>
<th>Continuous Probability Distribution</th>
<th>Probability Density Function, (f(x))</th>
<th>Moment Generating Function, (\phi(t))</th>
<th>Mean (\mu)</th>
<th>Variance (\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform over ((a, b)) (a < x < b)</td>
<td>(\frac{1}{b - a})</td>
<td>(e^b - e^a)</td>
<td>(a + b)</td>
<td>((b - a)^2)</td>
</tr>
<tr>
<td>Exponential with parameter (\lambda > 0) (\lambda e^{-\lambda x}, x \geq 0)</td>
<td>(\frac{\lambda}{\lambda - t})</td>
<td>(\frac{1}{\lambda})</td>
<td>(1)</td>
<td>(\lambda^2)</td>
</tr>
<tr>
<td>Gamma with parameters ((n, \lambda), \lambda > 0) (\lambda e^{-\lambda x}(\lambda x)^{n-1} \frac{1}{(n-1)!}, x \geq 0)</td>
<td>(\frac{\lambda}{\lambda - t})</td>
<td>(n)</td>
<td>(\frac{n}{\lambda})</td>
<td>(\frac{n}{\lambda^2})</td>
</tr>
<tr>
<td>Normal with parameters ((\mu, \sigma^2)) (\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty)</td>
<td>(\exp\left(\frac{\mu t}{\lambda} + \frac{\sigma^2 t^2}{2}\right))</td>
<td>(\mu)</td>
<td>(\sigma^2)</td>
<td></td>
</tr>
<tr>
<td>Beta with parameters (a, b, a > 0, b > 0) (cx^{a-1}(1-x)^{b-1}, 0 < x < 1)</td>
<td>(\frac{\Gamma(a+b)}{a \Gamma(a) \Gamma(b)})</td>
<td>(\frac{a}{a + b})</td>
<td>(\frac{ab}{(a + b)^2(a + b + 1)})</td>
<td></td>
</tr>
</tbody>
</table>

\(X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2) \) independent

\[
\begin{align*}
\mathbb{E}[e^{t(X+Y)}] &= \mathbb{E}[e^{tX}] \cdot \mathbb{E}[e^{tY}] \\
&= \exp((\mu_X+\mu_Y)t + \frac{1}{2}t^2(\sigma_X^2+\sigma_Y^2))
\end{align*}
\]

\(\Rightarrow \) by uniqueness,

\(X + Y \sim N(\mu_X+\mu_Y, \sigma_X^2+\sigma_Y^2) \).

Example 1.5b: Trapped miner's random walk

\[\begin{array}{c}
\text{safety} \\
\text{3} \\
\text{2} \\
\text{1} \\
\text{0} \\
\end{array}\]

\(X = \text{time he reaches safety} \)

Q: What is \(\mathbb{E}[X] \)? \(\text{Var}(X) \)?

Answer:

\(Y = 1^{st} \text{ door chosen} \)

\[
\begin{align*}
\mathbb{E}[e^{tX}] &= \frac{1}{3} \mathbb{E}[e^{tX} | Y = 1] + \frac{1}{3} \mathbb{E}[e^{tX} | Y = 2] + \frac{1}{3} \mathbb{E}[e^{tX} | Y = 3] \\
&= \frac{1}{3} \left(e^{2t} + (e^{3t} + e^{5t}) \mathbb{E}[e^{tX}] \right) - \frac{1}{3} e^{2t}
\end{align*}
\]
\[E[X] = \frac{d}{dt} E[1] \bigg|_{t=0} = 0 \]

\[E[X^2] = \frac{d^2}{dt^2} E[1] \bigg|_{t=0} = 198 \quad \Rightarrow \text{Var}(X) = 98 \]

\[
D\left[\frac{1}{3} e^{2t} \right] \bigg|_{t=0} \quad \text{and} \quad D\left[\frac{1}{3} e^{2t} \right] \bigg|_{t=0} \]

LIMIT THEOREMS

Recall:

- **Chebyshev's inequality:**
 \[
P\left[|X - \mu_X| \geq k \sigma_X \right] \leq \frac{1}{k^2}
 \]
 where \(\mu_X = E[X] \), \(\sigma_X^2 = E[(X - \mu_X)^2] \)

- **Chernoff/Hoeffding Lemma:**
 For \(X_1, X_2, \ldots, X_n \) independent, \(a_i \leq X_i \leq b_i \),
 let \(X = \sum X_i \) and \(\mu = E[X] \). Then,
 \[
P\left[|X - \mu| \geq \delta \right] \leq 2 \exp \left(-\frac{2\delta^2}{\sum (b_i - a_i) \cdot \sigma_X^2} \right)
 \]

Example: \(n \) independent, fair coin flips

\[
X_i = \begin{cases} 0 & \text{w/ prob. } \frac{1}{2} \\ 1 & \text{w/ prob. } \frac{1}{2} \end{cases}
\]

\[
X = \sum X_i
\]

\[
\Rightarrow E[X] = \frac{1}{2} = \mu \quad \text{and} \quad \sigma = \sqrt{n \cdot \frac{1}{2} \cdot \frac{1}{2}} = \frac{1}{\sqrt{n}}
\]

- \(P[X > 3n/4] \) ?
 \[
 \frac{4}{n} \leq \frac{3n}{4} \Rightarrow \frac{2}{n} = \frac{2}{n} \quad \text{(Markov)}
 \]
\[
\begin{align*}
\frac{n}{2} & \leq \frac{n/2}{3n/4} = \frac{2}{3} \quad \text{(Markov)} \\
\frac{4}{n} & \leq \frac{4}{n} \quad \text{(Chebyshev, } k = \frac{1}{2} \sqrt{n}) \\
2e^{-2n/8} & \leq 2e^{-2n/8} = 2e^{-2} \quad \text{(Chernoff, } f = \frac{n}{4})
\end{align*}
\]

\[\Pr[X > n/2 + \sqrt{n}] \leq \frac{n/2}{n/2 + \sqrt{n}} \approx 1 - \frac{2}{\sqrt{n}} \quad \text{(Markov)} \]

\[\leq \frac{1}{4} \quad \text{(Chebyshev, } k = 2) \]

\[\leq 2e^{-2n/8} = 2e^{-2} \approx 0.27 \quad \text{(Chernoff)}\]

The tails of the CDF have exponentially small probability outside \((1 \pm \frac{n}{2})\).

But what is the correct asymptotic behavior near \(n/2\), e.g., at \(n/2 \pm k\sqrt{n}\)?

Theorem: Central limit theorem

\[X_1, X_2, \ldots \text{ i.i.d. w/ mean } \mu, \text{ variance } \sigma^2,\]

\[\lim_{n \to \infty} \Pr\left[\frac{X_1 + \cdots + X_n - n\mu}{\sqrt{n} \cdot \sigma} \leq a \right] = \int_{-\infty}^{\infty} dx \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \]

\(\text{CDF for normal distribution}\)

\[\Rightarrow \text{In the previous example,} \]

\[\Pr[X > n/2 + \sqrt{n}] = 1 - \Pr[\frac{X - n/2}{\sqrt{n}} \leq 2] \]

\[\approx 1 - \int_{-\infty}^{2} dx \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \]

\[\approx 0.023\]
\[1 - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx \approx N \]

Matlab:

```matlab
>> help normcdf

normcdf Normal cumulative distribution function (cdf).
    P = normcdf(X,MU,SIGMA) returns the cdf of the normal distribution with
    mean MU and standard deviation SIGMA, evaluated at the values in X.
    The size of P is the common size of X, MU and SIGMA. A scalar input
    functions as a constant matrix of the same size as the other inputs.

Default values for MU and SIGMA are 0 and 1, respectively.

[P,PLO,PUP] = normcdf(X,MU,SIGMA,PCOV,ALPHA) produces confidence bounds
for P when the input parameters MU and SIGMA are estimates. PCOV is a
2-by-2 matrix containing the covariance matrix of the estimated parameters.
ALPHA has a default value of 0.05, and specifies 100*(1-ALPHA)% confidence
bounds. PLO and PUP are arrays of the same size as P containing the lower
and upper confidence bounds.

See also erf, erfc, normfit, norminv, normlike, normpdf, normrnd, normstat.

Reference page in Help browser
    help normcdf
```

```matlab
>> [normcdf(0) normcdf(1) normcdf(2) normcdf(3)]

ans =

    0.5000    0.8413    0.9772    0.9987
```

Mathematica:
Remark: How fast is the convergence?

Berry-Esseen theorem:

\[
\left| P \left[\frac{X_1 + \cdots + X_n - n \mu}{\sigma \sqrt{n}} < a \right] - \Phi(a) \right| \leq \frac{E |X - \mu|^3}{2 \sigma^3 \sqrt{n}}
\]

if this exists

Remark: Central limit theorem: sum of independent increments \(\Rightarrow \) Gaussian

\(\Rightarrow \) Gaussians are everywhere!

More limit theorems:

Theorem: Weak law of large numbers
For X_1, X_2, \ldots i.i.d. with mean μ, $\forall \varepsilon > 0$,

$$\mathbb{P}\left[\lim_{n \to \infty} \frac{1}{n} (X_1 + \cdots + X_n) - \mu \right] = 0$$

Theorem \textbf{Strong law of large numbers:}

For X_1, X_2, \ldots i.i.d. w/ mean μ,

$$\mathbb{P}\left[\lim_{n \to \infty} \frac{1}{n} (X_1 + \cdots + X_n) = \mu \right] = 1.$$

(“almost surely,” $\lim_{n \to \infty} \frac{1}{n} (X_1 + \cdots + X_n) = \mu$)

Remark: These theorems hold under more general conditions than the Chernoff bounds or CLT, e.g., for the strong law $\operatorname{Var}(X)$ could be ∞, but they do not guarantee the speed of convergence.

Easy exercise:

- Give an example of a random variable X with $\mathbb{E}[X] = \infty$.
- Give an example with $\mathbb{E}[X] = 0$, $\operatorname{Var}(X) = \mathbb{E}[X^2] = \infty$.

Answer: For example,

$$\mathbb{P}[X = \pm j] = \frac{1/2^j}{\sum_{j=1}^{\infty} 1/2^j} \quad \text{for } j = 1, 2, \ldots$$

$$\mathbb{E}[X] = \frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{j} = \infty.$$

Or, $\mathbb{P}[X = \pm j] = \frac{1/2^j}{2 \sum_{j=1}^{\infty} 1/2^j} \quad \text{for } j = \pm 1, \pm 2, \pm 3, \ldots$

$$\mathbb{E}[X] = 0 \quad \text{and} \quad \mathbb{E}[X^2] = \frac{1}{2} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{j} = \infty.$$

Example:
Figure 1.5: The CDF $F_{S_n}(s)$ of $S_n = X_1 + \cdots + X_n$ where X_1, \ldots, X_n are typical IID rv's and n takes the values 4, 20, and 50. The particular rv X in the figure is binary with $p_X(1) = 1/4$, $p_X(0) = 3/4$. Note that the mean of S_n is proportional to n and the standard deviation to \sqrt{n}. [Gallager, Ch. 1]

Figure 1.9: The same CDF as Figure 1.5, scaled differently to give the CDF of the sample average Z_n. It can be visualized that as n increases, the CDF of Z_n becomes increasingly close to a unit step at the mean, 0.25, of the variables X being summed.
Figure 1.11: The same CDF’s as Figure 1.5 normalized to 0 mean and unit standard deviation, i.e., the CDF’s of $Z_n = \frac{S_n - n\bar{X}}{\sigma\sqrt{n}}$ for $n = 4, 20, 50$. Note that as n increases, the CDF of Z_n slowly starts to resemble the normal CDF.

Proofs of the limit theorems:

Markov ✓ Chebyshev ✓ Chernoff ✓

Weak law of large numbers

For X_1, X_2, \ldots i.i.d. with mean μ and $\mathbb{E}[X_i^2] < \infty$,

$$\mathbb{P}\left[\left| \frac{1}{n}(X_1 + \cdots + X_n) - \mu \right| > \varepsilon \right] \xrightarrow{n \to \infty} 0$$

Proof: $\text{Var}\left(\frac{1}{n}(X_1 + \cdots + X_n) \right) = \frac{\sigma^2}{n}$
Chebyshev \[\Rightarrow \Pr \left[\frac{1}{n}(X_1 + \cdots + X_n) - \mu \geq \frac{\sigma^2}{\varepsilon} \right] \leq \frac{\varepsilon^2}{\sigma^2/n} \rightarrow 0 \]

Remark: To prove this theorem without assuming \(\mathbb{E}[X_i^2] < \infty \), use a truncation argument: Apply the above theorem to the variables

\[Y_i = \begin{cases} X_i & \text{if } \mu - b < X_i < \mu + b \\ \mu - b & \text{if } X_i \leq \mu - b \\ \mu + b & \text{if } X_i \geq \mu + b \end{cases} \]

Then let \(b \to \infty \) carefully with \(n \), using a Markov inequality (and union bound) to bound \(\Pr[\text{any } Y_i \neq X_i] \).

Strong law of large numbers

For \(X_1, X_2, \ldots \) i.i.d. with mean \(\mu \) and \(\mathbb{E}[X_i^2] < \infty \)

\[\Pr \left[\lim_{n \to \infty} \frac{1}{n}(X_1 + \cdots + X_n) = \mu \right] = 1. \]

Proof:

Assume that \(\mu = 0 \)!

(If \(\mu \neq 0 \), replace each \(X_i \) with \(X_i - \mu \).)

Let \(S_n = X_1 + \cdots + X_n \).

\[\mathbb{E}[S_n^4] = \mathbb{E}[(X_1 + \cdots + X_n)(X_1 + \cdots + X_n)(X_1 + \cdots + X_n)(X_1 + \cdots + X_n)] \]

\[= \sum_{i,j,k,l} \mathbb{E}[X_i X_j X_k X_l] \]

This sum has terms

\[\mathbb{E}[X_i^4], \mathbb{E}[X_i^3 X_j], \mathbb{E}[X_i^2 X_j^2], \mathbb{E}[X_i X_j X_k X_l] \]

with \(i, j, k, l \) all different.
with \(i, j, k, l \) all different

\[
= n \cdot \mathbb{E}[X_i^4] + \binom{n}{2} \cdot \binom{4}{2} \cdot \mathbb{E}[X_i^2 X_i^2] \\
= n \cdot K + 3n(n-1) \cdot \sigma^4
\]

\[
\Rightarrow E \left[\sum_{n=1}^{\infty} \frac{S_n^4}{n^4} \right] < \infty \quad \checkmark
\]

The proof now follows by

Lemma: \(Z_1, Z_2, Z_3, \ldots \)

If \(\sum_{n=1}^{\infty} \mathbb{E}[|Z_n|] < \infty \), then \(\mathbb{P} [\lim_{n \to \infty} Z_n = 0] = 1 \).

Because \(\lim_{n \to \infty} (\frac{S_n}{n})^4 = 0 \Rightarrow \lim_{n \to \infty} \frac{S_n}{n} = 0 \), as desired.

Proof of the lemma:

Consider

\[
\sum_{n} \mathbb{P}(|Z_n| > \varepsilon) \leq \sum_{n} \frac{\mathbb{E}[|Z_n|]}{\varepsilon} < \infty
\]

\[
\Rightarrow \text{ for only finitely many } n, \ |Z_n| > \varepsilon
\]

Borel-Cantelli Lemma (w/ prob. 1)

ie., \(\lim_{n \to \infty} Z_n = 0 \quad \checkmark \)

Remark: Why did we need the 4th power?

- \(\mathbb{E}[S_n^4] \) doesn't work. We can't apply Markov's inequality in the lemma since \(S_n^4 \) can be negative.
- \(\mathbb{E}[S_n^2] = n \cdot \mathbb{E}[X_i^2] = n \sigma^2 \),
 so \(\sum_{n=1}^{\infty} (\frac{S_n}{n})^2 = \infty \); Borel-Cantelli does not apply.