Definition: A stochastic process $\{X(t) : t \geq 0\}$ is a Gaussian process if for every $n \geq 1$ and all times t_1, \ldots, t_n, the variables $(X(t_1), X(t_2), \ldots, X(t_n))$ have a multivariate Gaussian distribution.

Observe: A Gaussian process is characterized by the means $E[X(t)]$, & the covariances $\text{Cov}(X(s), X(t))$.

Definition: Standard Brownian motion is a Gaussian process with

$$E[X(t)] = 0 \quad \text{and} \quad \text{Cov}(X(s), X(t)) = \min\{s, t\}.$$

$$\Downarrow$$ $\text{Var}(X(t)) = E[X(t)^2] = t$

Diffusion equations

Remark: The probability density
Remark: The probability density
\[f(x(t) = y \mid X(s) = x) = \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{(y-x)^2}{2(t-s)}} \]
satisfies
\[\frac{df}{dt} = \frac{1}{2} \frac{\partial^2 f}{\partial y^2} \]
forward diffusion equation
\[\frac{df}{dt} = -\frac{1}{2} \frac{\partial^2 f}{\partial x^2} \]
backward diffusion equation
and is their unique solution.

These equations are easy to verify, or can be derived, following Einstein, by conditioning on \(X(t-h) \) or \(X(s+h) \), respectively, and letting \(h \to 0 \).

Example: Brownian bridge

Problem: For \(X(t) \) standard Brownian motion, what is the distribution of \(X(s) \) conditioned on \(X(t) = B \)?

Answer:
For \(s > t \), \(X(s) \) is a Gaussian process with mean \(B \),
\[\text{Cov}(X(s), X(s_2)) = \min(s_1 - t, s_2 - t). \]
the same distribution as \(B + X(s-t) \).

For \(0 \leq s \leq t \), \(X(s) \) is still a Gaussian process (starting with a multivariate Gaussian and conditioning on one of the variables, \(X(t) \), still leaves a Gaussian distribution).
The conditional density is
\[f(x(s) = x \mid X(t) = B) = f_s(x) f_{t-s}(B-x) \]
\[\propto \exp \left[\frac{-x^2}{2s} - \frac{(B-x)^2}{2(t-s)} \right] \]
\[\propto \exp \left[\frac{-1}{2s(t-s)}(tx^2 - 2Bs) \right] \]
\[\propto \exp \left[-\frac{t}{2s(t-s)} (x - \frac{Bs}{t})^2 \right] \]
\[\Rightarrow \mathbb{E}\left[X(s) \mid X(t) = B \right] = \frac{Bs}{t} \]

\[
\text{Var}(X(s) \mid X(t) = B) = \frac{s(t-s)}{t} = t \cdot \frac{s}{t}(1 - \frac{s}{t})
\]

\[\Rightarrow \text{Cov}(X(s_1), X(s_2) \mid X(t) = 0) \text{ for } s_1 < s_2 \]

\[= \mathbb{E}\left[X(s_1)(X(s_1) + (X(s_2) - X(s_1))) \mid X(t) = 0 \right] \]

\[= \frac{s_1(t-s_1)}{t} + \mathbb{E}\left[X(s_1)(X(s_2) - X(s_1)) \mid X(t) = 0 \right] \]

\[= \frac{s_1(t-s_1)}{t} \left[1 - \frac{s_2-s_1}{t-s_1} \right] \]

\[= \frac{s_1}{t}(t - s_2) \checkmark \]

Observe: Consider \(Y(t) = X(t) - t \cdot X(1) \).
For \(0 \leq t \leq 1 \), \(Y(t) \) has the same dist as \(X(t) \mid X(1) = 0 \).

Indeed,
\[\mathbb{E}[Y(t)] = 0 \]

and for \(0 \leq s \leq t \leq 1 \),
\[\text{Cov}(Y(s), Y(t)) = \mathbb{E}[\left(X(s) - s \cdot X(1) \right) \left(X(t) - t \cdot X(1) \right)] \]

\[= \mathbb{E}\left[X(s)X(t) - s \cdot X(t) \cdot X(1) - t \cdot X(s) \cdot X(1) + s \cdot t \cdot X(1)^2 \right] \]

\[= s - s \cdot t - t \cdot s + s \cdot t \]

\[= s(1 - s) \checkmark \]

Exercise: Verify that \(Z(t) = (1-t) \cdot X\left(\frac{t}{1-t} \right) \), \(Z(1) = 0 \), has the same dist as a Brownian bridge on \([0,1] \).
Brownian motion with drift

\[Y(t) = X(t) + \mu t \]

is a Gaussian process with \(\mathbb{E}[Y(t)] = \mu t \)

\(\text{Cov}(Y(s), Y(t)) = \min(s, t) \).
Hitting times for BM with drift

Just as for random walks, we can study the hitting times using martingales:

Claim: If \(X(t) \) is standard BM, then

\[
\begin{align*}
\cdot X(t) & \\
\cdot X(t)^2 - t & \\
\cdot e^{cX(t) - \frac{c^2}{2} t} & \\
\end{align*}
\]

are all martingales.

Proof for \(\exp[cX(t) - \frac{c^2}{2} t] \):

Recall: If \(X \sim N(\mu, \sigma^2) \), the mgf. is \(\mathbb{E}[e^{cX}] = e^{c\mu + \frac{c^2\sigma^2}{2}} \).

\[
\begin{align*}
\mathbb{E}[\exp(cX(t) - \frac{c^2}{2} t) | X(s)] \\
= e^{cX(s) - \frac{c^2}{2} t} \cdot \mathbb{E}[\exp(cX(t-s)) | X(s)] \\
= e^{cX(s) - \frac{c^2}{2} s} \cdot \mathbb{E}[\exp(cX(s)) | X(s)] \\
&= e^{cX(s) - \frac{c^2}{2} s} \cdot e^{rac{c^2}{2} s} \\
&= 1
\end{align*}
\]

\(Y(t) = X(t) + ut \)

\(T = \min\{t : Y(t) \in \mathcal{F} - A_1 + B_2\} \).

Martingale stopping

\[
\Rightarrow 0 = \mathbb{E}[X(0)] = \mathbb{E}[X(T)]
\]

\[
= p \mathbb{E}[B - \mu T | Y(T) = B] + (1-p) \mathbb{E}[-A - \mu T | Y(T) = -A]
\]

where

\[
\begin{align*}
p &= \mathbb{P}[Y(T) = B] \\
1-p &= \mathbb{P}[Y(T) = -A]
\end{align*}
\]

\[
= -\mu \mathbb{E}[T] - A + p(A + B)
\]
\[E[T] = \frac{1}{\mu}(p(A+B)-A) \]

To find \(p \), use the third MG:

MG stopping

\[1 = E[\exp(cX(0) - \frac{c^2}{2}0)] \]
\[= E[\exp(cX(T) - \frac{c^2}{2}T)] \]
\[= c(Y(T) - \mu T) - \frac{c^2}{2}T \]
\[= -2\mu Y(T) \text{ for } c = -2\mu \]
\[= p \cdot e^{-2\mu B} + (1-p) e^{+2\mu A} \]

\[\Rightarrow p = \frac{1-e^{+2\mu A}}{e^{-2\mu B} - e^{+2\mu A}} \]

Observe: If \(\mu < 0 \), letting \(A \to \infty \) we get

\(\Pr[Y(t) \text{ ever reaches } B] = e^{2\mu B} \)

If \(\mu > 0 \), \(\Pr[Y(t) \text{ ever reaches } B] = 1 \), and

\[E[\text{time to reach } B] = \frac{1}{\mu}(p(A+B)-A) = \frac{B}{\mu} \]

Geometric Brownian motion

\[Y(t) = e^{\sigma X(t)} \]

\[E[Y(t)] = e^{\sigma^2 t/2}, \ Var(Y(t)) = E(Y(t)^2) - (EY(t))^2 = e^{2\sigma^2 t} - e^{\sigma^2 t} \]

Example 1: Value of a European call option:

Suppose a stock's price is given by

\[S(t) = S_0 \cdot e^{\sigma X(t) + \mu t} \]
At time T in the future, you have the option of buying the stock for price K.

What is the expected worth of the option?

$$
\mathbb{E}
\left[
\max
\left(\frac{1}{T}
\int_0^T S(t) \, dt - K, 0
\right)
\right]
= \int_{-\infty}^\infty \mathbb{E} \left[e^{-x^2/2T} \cdot \max(0, S_0 e^{rt+\sigma T} - K) \right] \, dx
$$

for $x \geq \frac{1}{T} (\log \frac{K}{S_0} - \mu T)$

Example 2: Value of an Asian call option

$$
\max \left(0, \frac{1}{T} \sum_{n=1}^T S(n) \right)
$$

To simulate this, use

$$
S(n+1) = S(n) \cdot e^{\mu + \sigma (X(n+1) - X(n))}.
$$

Example 3: A stock portfolio

What if you have two stocks?

$$
S_1(t) = S_1(0) \cdot e^{\sigma_1 X_1(t) + \mu_1 t}
$$

$$
S_2(t) = S_2(0) \cdot e^{\sigma_2 X_2(t) + \mu_2 t}
$$

$X_1(t)$ & $X_2(t)$ can be independent std. BM.

But what if changes in stock prices are correlated?

Observe: If $X, Y \sim N(0,1)$, $X \perp Y$, then $Z = \cos \Theta X + \sin \Theta Y \sim N(0,1)$

with $\text{cov}(X, Z) = \cos \Theta$.

\Rightarrow If $X(t) \perp Y(t)$ are standard BM processes,

$Z(t) = \cos \Theta X(t) + \sin \Theta Y(t)$ is std BM,

with $\text{cov} \left(X(s), Z(t) \right) = \cos \Theta \cdot \text{cov}(X(s), X(t)) = \cos \Theta \cdot \min(s,t)$.

Example: If \(\mu_1 = .01 \), \(\sigma_1^2 = 1 \), \(\mu_2 = .02 \), \(\sigma_2^2 = 2 \),
\[
\text{Cov}(X_1(t), X_2(t)) = \sqrt{2} \cdot t,
\]
\(S_1(0) = 1 \), \(S_2(0) = 2 \),
what is
\[
\mathbb{P} \left[S_1(10) + S_2(10) > 1.1 (S_1(0) + S_2(0)) \right]?
\]

Answer: While we can get a closed form involving a double integral, it is more practical just to simulate it:

\[
t = 10;
\mu_1 = .01; \sigma_1 = 1;
\mu_2 = .02; \sigma_2 = \sqrt{2};
S_1 = 1;
S_2 = 2;
\]
\[
\text{numtrials} = 10^6;
wins = 0;
\text{For} [\text{trial} = 1, \text{trial} \leq \text{numtrials}, \text{trial}++,
\{
\{x, y\} = \text{RandomVariate}[\text{NormalDistribution}[0, \sqrt{t}], 2];
\]
\[
z = \frac{1}{\sqrt{2}} (x + y);
\]
\[
\text{If} [S_1 e^{\sigma_1 \cdot x + \mu_1 \cdot t} + S_2 e^{\sigma_2 \cdot x + \mu_2 \cdot t} > 1.1 (S_1 + S_2), \text{wins}++];
\]
\]
\[
\text{wins} / \text{numtrials} \quad // \quad \text{N}
\]
\[
0.570815
\]

Remark: To simulate standard BM at times \(0 = t_0 < t_1 < t_2 < \cdots < t_k \),
generate \(Z_1, Z_2, \ldots, Z_k \sim \text{N}(0, 1) \) iid.
and let
\[
X(t_j) = \sum_{i=1}^{j} \sqrt{t_i - t_{i-1}} Z_i
= X(t_{j-1}) + \sqrt{t_i - t_{i-1}} Z_i \quad \checkmark
\]

Example: Value of a perpetual American call option
Suppose the price of a stock is given by
\[S(t) = S_0 \cdot \exp(\sigma \cdot X(t) - \mu t) \]

where \(X \) is standard BM and \(\mu > 0 \).

We are given the option of buying the stock at price \(P \), at any time in the future.

When should we exercise the option?, and

What is our expected return?

Answer:

The profit from using the option is \(S(t) - P \).

Obviously, we shouldn't use the option if \(S(t) < P \).

But when should we use it?

Consider the policy: use the option if \(S(t) = Q \).

\[
E[\text{profit}] = (Q - P) \cdot \mathbb{P}[S(t) \text{ ever reaches } Q]
\]

\[
= \exp \left(\frac{\mu t}{\sigma} \cdot \log Q \right)
\]

\[
= \exp \left(\frac{2\mu}{\sigma^2} \cdot \log Q \right) = Q^{-2\mu/\sigma^2}
\]

\[
E[\text{profit}] = (Q - P) \cdot Q^{-2\mu/\sigma^2}
\]

Now maximize over \(Q \):

\[
D \left[(Q - P) \cdot Q^{-2\mu/\sigma^2}, Q \right] \quad \text{// FullSimplify}
\]

\[
\text{Solve}[\% = 0, Q]
\]

\[
Q^{-\frac{2\mu}{\sigma^2}} \left(2P \mu + Q \left(-2 \mu + \sigma^2 \right) \right) = 0
\]

\[
\left\{ Q \rightarrow \frac{2P \mu}{\sigma^2} \right\} = P \cdot \frac{1}{1 - \frac{\sigma^2}{2\mu}}
\]
observe \(G \) increases with volatility \(\sigma \)
decreases with drift \(\mu \).

Brownian motion reflected at the origin

\[
Z(t) = |X(t)|
\]

\(t \) standard BM

\[
f_{Z(t)}(z) = 2f_{X(t)}(z)
\quad \text{for } z \geq 0
\]

\[
= \frac{2}{\sqrt{2\pi t}} e^{-z^2/(2t)}
\]

\[
\Rightarrow \mathbb{E}[Z(t)] = \int_0^\infty z f_{Z(t)}(z) \, dz = \sqrt{\frac{2t}{\pi}}
\]

\[
\text{Var}(Z(t)) = (1-\frac{2}{\pi})t.
\]

Claim: \(|X(t)|\) and \(\max_{0 \leq s \leq t} X(s) \) have the same distribution.

Proof:

\[
P\left(\max_{0 \leq s \leq t} X(s) \geq z \right) = P\left[T_z \leq t \right]
\quad \text{(by continuity)}
\]

\[
= 2P\left[X(t) \geq z \right]
\]

\[
= 2 \frac{1}{\sqrt{2\pi t}} \int_z^\infty e^{-x^2/(2t)} \, dx
\]

\[
P\left(\max_{0 \leq s \leq t} X(s) \leq z \right) = 2 \frac{1}{\sqrt{2\pi t}} \int_0^z e^{-x^2/(2t)} \, dx
\]

Zeros of Brownian motion, and arc-sin laws \[\text{[Ross §8.2]}\]

Theorem: The probability that a standard BM process \(X \)
has a zero in the time interval \((t_0, t_1) \) is

\[
\frac{2}{\pi} \cos^{-1}\left(\sqrt{\frac{t_0}{t_1}}\right)
\]

(The probability there's no zero is \(\frac{2}{\pi} \sin^{-1}\left(\sqrt{\frac{t_0}{t_1}}\right) \).)
Consequences:

- $P\left[\text{there exists a } 0 \text{ in } (0, t)\right] = 1$ for all $t > 0$
- $\inf \{ t > 0 : X(t) = 0 \} = 0$ almost surely.
- There are infinitely many zeros in $[0, t]$ almost surely.

Proof of the theorem:

Let E be the event that there's a zero in (t_0, t).

Conditioning on $X(t_0)$

$$P[E] = \int_{-\infty}^{\infty} P[E|X(t_0) = x] dx$$

$$= \int_{-\infty}^{\infty} P[T_x \leq t_1 - t_0]$$

$$= P[T_x \leq t_1 - t_0]$$

$$= 2P[X(t_1 - t_0) > |x|]$$

$$= \frac{2}{\sqrt{\pi t_0}} \int_0^\infty \frac{x^2}{(2(\pi t_0)^{3/2})} \int_0^\infty dz e^{-\frac{z^2}{2(t_1 - t_0)}}$$
\[
\frac{2}{\sqrt{2\pi t_0}} \int_0^\infty \left(\frac{2}{\sqrt{2\pi (t_1 - t_0)}} \right) \int_x^\infty e^{-\frac{z^2}{2(t_1 - t_0)}} \, dz \, dx \quad \text{// Simplify[#, \{0 < t_0 < t_1\}] &
\]

\[
2 \tan^{-1} \left(\frac{\xi}{\nu} \right)
\]

and \(\tan^{-1} \sqrt{-1 + \frac{1}{x}} = \cos^{-1} \sqrt{x} \), since

\[
\tan \cos^{-1} \sqrt{x} = \frac{\sin(\cos^{-1} \sqrt{x})}{\cos(\cos^{-1} \sqrt{x})} = \sqrt{\frac{1-x}{x}} = \sqrt{-1 + \frac{1}{x}}
\]

\qed