Toward a meta-stable range
in \(A^1\)-homotopy theory of punctured affine spaces
Oberwolfach Report: June 2013

Aravind Asok, Jean Fasel

Suppose \(k\) is a perfect field having characteristic unequal to 2. Write \(S_k\) for the category of schemes that are separated, smooth and of finite type over \(k\). Write \(H^\cdot(k)\) for the Morel-Voevodsky unstable pointed \(A^1\)-homotopy category \([MoVo99]\). A (pointed) \(k\)-space \(X\) (resp. \((X,x)\)) is a (pointed) simplicial Nisnevich sheaf on \(S_k\). Given two pointed \(k\)-spaces \((X,x)\) and \((Y,y)\), we write \([X,Y]\) for \(\text{Hom}_{H^\cdot(k)}(X,Y)\). If \((X,x)\) is a pointed \(k\)-space, write \(\pi_{A^1}^\cdot(X,x)\) for the Nisnevich sheaf associated with the presheaf \(U \mapsto S_k^\wedge U_+ \rightarrow (X,x)\).

Point \(A^n\) by \((1,0,\ldots,0)\), and suppress this base-point from notation. Results of Morel yield a description of \(\pi_{A^1}^{n-1}(A^n \setminus 0), n \geq 2,\) as the sheaf \(K_n^{MW}\) of “unramified Milnor-Witt K-theory.” In previous work, the authors provided a description of \(\pi_{A^1}^1(A^2 \setminus 0)\) and \(\pi_{A^1}^2(A^3 \setminus 0)\) \([AsFa12a, AsFa12b]\). The goal of the talk was to provide a conjectural description of \(\pi_{A^1}^n(A^n \setminus 0)\) for \(n \geq 4\). The proposed description is in two parts.

Suslin matrices and the degree map

Schlichting and Tripathi constructed an orthogonal Grassmannian \(OGr\) and showed that \(Z \times OGr\) represents Hermitian K-theory in the unstable \(A^1\)-homotopy category \([ScTr12]\). They also establish a geometric form of Bott periodicity in Hermitian K-theory that identifies various loop spaces of \(Z \times OGr\) in terms of other natural spaces; we summarize this result as follows.

Proposition 1. There are weak equivalences of the form

\[
\Omega^1_{\ast}O_{Z \times OGr} \xrightarrow{\sim} \begin{cases}
O & \text{if } i \equiv 0 \pmod{4} \\
GL/Sp & \text{if } i \equiv 1 \pmod{4} \\
Sp & \text{if } i \equiv 2 \pmod{4}, \text{ and} \\
GL/O & \text{if } i \equiv 3 \pmod{4};
\end{cases}
\]

Here \(O := \text{colim}_n O(q_{2n})\), where \(q_{2n}\) is the standard hyperbolic form, \(Sp := \text{colim}_n Sp_{2n}\), \(GL/Sp := \text{colim}_n GL_{2n}/Sp_{2n}\), and \(GL/O := \text{colim}_n GL_{2n}/O(q_{2n})\).

The class of \(\langle 1 \rangle \in GW(k)\) yields a distinguished element in \(GW(k) = [\text{Spec } k_+, Z \times OGr]_{A^1}\). An adjunction argument can be used to show that this element corresponds to a distinguished class in \([A^n \setminus 0, P_n]_{A^1}\), where \(P_n\) is either \(O, GL/O, Sp\) or \(GL/Sp\) depending on whether \(n\) is congruent to 0, 1, 2 or 3 modulo 4.
Let Q_{2n-1} be the smooth affine quadric defined as a hypersurface in \mathbb{A}^{2n} given by the equation $\sum_{i} x_{i}z_{n+i} = 1$. There is an \mathbb{A}^1-weak equivalence $Q_{2n-1} \to \mathbb{A}^n \setminus 0$ defined by projecting onto the first n variables. Each variety P_n is an ind-algebraic variety, and Suslin inductively defined certain matrices S_n that correspond to morphisms $s_n : Q_{2n-1} \to P_n$.

Proposition 2. The distinguished homotopy classes $[\mathbb{A}^n \setminus 0, P_n]_{\mathbb{A}^1}$ described in the previous paragraph is represented by the morphism $s_n : Q_{2n-1} \to P_n$ given by the matrix S_n.

The \mathbb{A}^1-homotopy sheaves of $O, GL/O, Sp$ and GL/Sp can be identified in terms of the Nisnevich sheafification of Schlichting’s higher Grothendieck-Witt groups. Indeed, $\pi_{i}^{A^1}(O) \cong GW_{i+1}^0$, $\pi_{i}^{A^1}(GL/O) \cong GW_{i+1}^1$, $\pi_{i}^{A^1}(Sp) \cong GW_{i+1}^2$ and $\pi_{i}^{A^1}(GL/Sp) \cong GW_{i+1}^3$. In general, the sheaves GW_j^i are viewed as 4 periodic in j. Therefore, the morphism s_n yields, upon applying the functor $\pi_{n}^{A^1}(\cdot)$, a morphism

$$s_{n*} : \pi_{n}^{A^1}(\mathbb{A}^n \setminus 0) \longrightarrow GW^n_{n+1}.$$

This morphism is not surjective for $n \geq 4$, but it does coincide with a corresponding morphism constructed in the computations of $\pi_{2}^{A^1}(\mathbb{A}^2 \setminus 0)$ and $\pi_{3}^{A^1}(\mathbb{A}^3 \setminus 0)$.

Recall the contraction of a sheaf \mathcal{F} is defined by the formula $\mathcal{F}_{-1}(U) := \ker((id \times e)^* : \mathcal{F}(G_m \times U) \to \mathcal{F}(U))$, where $e : Spec \, k \to G_m$ is the unit section. One defines \mathcal{F}_{-i} inductively as $(\mathcal{F}_{-(i-1)})_{-1}$.

Theorem 3. The morphism s_{n*} becomes surjective after $(n-3)$-fold contraction and split surjective after n-fold contraction.

Motivic Hopf maps and the kernel of the degree map

In [AsFa12], we introduced the geometric Hopf map $\nu : \mathbb{A}^4 \setminus 0 \to \mathbb{P}^1\wedge 2$ and showed that it was \mathbb{P}^1-stably essential (i.e., is not null \mathbb{A}^1-homotopic after repeated \mathbb{P}^1-suspension). For any integer $n \geq 2$, set

$$\nu_n := \sum_{d|n} \nu : \mathbb{A}^{n+2} \setminus 0 \longrightarrow \mathbb{P}^1\wedge n.$$

Applying $\pi_{n}^{A^1}(\cdot)$ to the above morphism yields a map

$$(\nu_n)_* : K_{n+2}^{MW} \longrightarrow \pi_{n+1}^{A^1}(\mathbb{P}^1\wedge n).$$

For $n \geq 4$, Morel’s Freudenthal suspension theorem yields isomorphisms

$$\pi_{n}^{A^1}(\mathbb{A}^n \setminus 0) \sim \pi_{n+1}^{A^1}(\mathbb{P}^1\wedge n),$$

so in this range, we can view $(\nu_n)_*$ as giving a map $K_{n+2}^{MW} \to \pi_{n}^{A^1}(\mathbb{A}^n \setminus 0)$.

For $n = 3$, Morel’s Freudenthal suspension theorem only yields an epimorphism. We can refine this result to provide an analog of the beginning of the EHP sequence in \mathbb{A}^1-homotopy theory. A particular case of the general result we can establish can be stated as follows.
Theorem 4. There is an exact sequence of the form
\[\pi_{A^1}(\mathbb{P}^{1^\wedge 3}) \xrightarrow{H} \pi_{A^1}(\Sigma^1_3(\mathbb{A}^{3^\wedge 0})) \xrightarrow{P} \pi_{A^1}(\mathbb{A}^{3^\wedge 0}) \xrightarrow{E} \pi_{A^1}(\mathbb{P}^{1^\wedge 3}) \rightarrow 0. \]

The morphism H in the above exact sequence conjecturally admits a description as a variant of the Hopf invariant in Chow-Witt theory. Assuming this, the results we have proven on $\pi_{A^1}(\mathbb{A}^{3^\wedge 0})$ show that ν_{3*} factors through an explicit quotient of K^{MW}_5. In turn, this (conjectural) computation suggests the following conjecture.

Conjecture 5. For any integer $n \geq 3$, the morphism ν_{n*} factors through a morphism $K^{MW}_{n+2}/24 \rightarrow \pi_{A^1}^{n}(\mathbb{P}^{1^\wedge n})$.

The structure of $\pi_{A^1}^{n}(\mathbb{A}^{n^\wedge 0})$

We now study the relationship between the two morphisms constructed above. Using an obstruction theory argument, one can demonstrate the following result.

Proposition 6. For any integer $n \geq 4$, the composite map
\[K^{MW}_{n+2} \rightarrow \pi_{A^1}^{n}(\mathbb{A}^{n^\wedge 0}) \rightarrow GW^{n}_{n+1} \]
is zero.

Combining everything discussed so far, one is led to the following conjecture.

Conjecture 7. For any integer $n \geq 4$, there is an exact sequence of sheaves of the form
\[K^{MW}_{n+2}/24 \rightarrow \pi_{A^1}^{n}(\mathbb{A}^{n^\wedge 0}) \rightarrow GW^{n}_{n+1}. \]
The sequence becomes short exact after n-fold contraction.

Remark 8. The conjecture above stabilizes to an unpublished conjecture of F. Morel on the stable motivic π_1 of the motivic sphere spectrum. Using the motivic Adams(-Novikov) spectral sequence, K. Ormsby and P.-A. Østvær have checked that after taking sections over fields having 2-cohomological dimension ≤ 2, the 2-primary part of the stable conjecture is true. Nevertheless, the stable conjecture does not imply the conjecture above (even for large n) because of a lack of a Freudenthal suspension theorem for P^1-suspension. On the other hand, the conjecture above for every n sufficiently large implies the stable conjecture.

Remark 9. By the results of [AsFa12b], the above conjecture immediately implies “Murthy’s conjecture:” if X is a smooth affine $(d + 1)$-fold over an algebraically closed field k, and E is a rank d vector bundle on X, then E splits off a free rank 1 summand if and only if $0 = c_d(E) \in CH^{d}(X)$. However, the conjecture is much stronger: it gives the complete secondary obstruction to splitting a free rank 1 summand of a vector bundle on a smooth affine scheme.
References

