Rational connectivity and \mathbb{A}^1-connectivity
or geometric applications of the Milnor conjectures
(joint with F. Morel)

Aravind Asok (UCLA)

May 8, 2009
The goal

“No doubt topologists will welcome a version which can be read by those not familiar with modern algebraic geometry.”

-J.F. Adams
from Math Reviews
1 Conventions, definitions and basic examples
Outline

1. Conventions, definitions and basic examples
2. An elementary example
1 Conventions, definitions and basic examples

2 An elementary example

3 A proposed generalization
Outline

1 Conventions, definitions and basic examples
2 An elementary example
3 A proposed generalization
4 The geometric/topological mechanism
Conventions

- Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.
Throughout the talk we consider algebraic varieties over a field \(L \) (or \(F \)) having characteristic 0.

- E.g., take \(L = \mathbb{C} \), or
Conventions

- Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.
 - E.g., take $L = \mathbb{C}$, or
 - take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.
Conventions

Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.

- E.g., take $L = \mathbb{C}$, or
- take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and often proper (read: compact).
Conventions

Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.

- E.g., take $L = \mathbb{C}$, or
- take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and often proper (read: compact).

Given an algebraic variety X over L, we write $L(X)$ for its field of rational functions.
Basic definitions: rationality

Definition

An algebraic variety X over L is *L-rational* if $L(X) \cong L(t_1, \ldots, t_n)$.

Write \mathbb{P}^n for n-dimensional projective space (over L), which is the basic example of a rational variety. Think: “most,” i.e., a (Zariski) open set, of the solutions to the equations defining X can be rationally parameterized.
Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if $L(X) \cong L(t_1, \ldots, t_n)$.

- Write \mathbb{P}^n for n-dimensional projective space (over L), which is the basic example of a rational variety.
Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if $L(X) \cong L(t_1, \ldots, t_n)$.

- Write \mathbb{P}^n for n-dimensional projective space (over L), which is the basic example of a rational variety.
- Think: “most,” i.e., a (Zariski) open set, of the solutions to the equations defining X can be rationally parameterized.
Basic question

Question

If \(X_d \subset \mathbb{P}^n_{\mathbb{C}} \) *is a smooth degree* \(d \) *complex hypersurface, (when) is* \(X_d \) *rational?*
Basic example

Example

If $X_2 \subset \mathbb{P}^n_C$, i.e., a quadric, then X_2 is rational.
Conventions, definitions and basic examples
An elementary example
A proposed generalization
The geometric/topological mechanism

Basic example

Example

If $X_2 \subset \mathbb{P}^n_C$, i.e., a quadric, then X_2 is rational.
Why? Stereographic projection.
Basic example

Example

If $X_2 \subset \mathbb{P}^n_{\mathbb{C}}$, i.e., a quadric, then X_2 is rational.

Why? Stereographic projection.

- Same argument shows any quadric over a field F having an F-rational point is actually F-rational.
One degree up

What about the case $d = 3$, $n = 2$?
What about the case $d = 3$, $n = 2$?

- This argument fails for smooth cubic curves in $\mathbb{P}^2_{\mathbb{C}}$.

One degree up

What about the case $d = 3, \ n = 2$?

- This argument fails for smooth cubic curves in $\mathbb{P}_\mathbb{C}^2$.
- Of course, there are many ways to prove that smooth cubic curves are not rational, but let us give another (elementary) argument.
What about the case $d = 3$, $n = 2$?

- This argument fails for smooth cubic curves in \mathbb{P}^2_C.
- Of course, there are many ways to prove that smooth cubic curves are not rational, but let us give another (elementary) argument.
- Begin by defining another invariant.
Fields and valuations

Let L/\mathbb{C} be a finitely generated extension, and let L^\ast denote the multiplicative group of non-zero elements. A discrete valuation is a group homomorphism $\nu: L^\ast \to \mathbb{Z}$ satisfying a "metric" property. Write $V(L)$ for the set of inequivalent discrete valuations of L. Any discrete valuation ν gives rise to a homomorphism $\partial \nu: L^\ast / (L^\ast)^2 \to \mathbb{Z} / 2\mathbb{Z}$.

Aravind Asok (UCLA)
Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
Let L/\mathbb{C} be a finitely generated extension, and let L^* denote the multiplicative group of non-zero elements.
Let L/\mathbb{C} be a finitely generated extension, and

- let L^* denote the multiplicative group of non-zero elements.
- A discrete valuation is a group homomorphism $\nu : L^* \to \mathbb{Z}$ satisfying a “metric” property.
Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
- let L^* denote the multiplicative group of non-zero elements.
- A discrete valuation is a group homomorphism $\nu : L^* \to \mathbb{Z}$ satisfying a “metric” property.
- Write $\mathcal{V}(L)$ for the set of inequivalent discrete valuations of L.
Let L/\mathbb{C} be a finitely generated extension, and

- let L^* denote the multiplicative group of non-zero elements.

- A discrete valuation is a group homomorphism $\nu : L^* \to \mathbb{Z}$ satisfying a “metric” property.

- Write $\mathcal{V}(L)$ for the set of inequivalent discrete valuations of L.

- Any discrete valuation ν gives rise to a homomorphism

$$\partial_\nu : L^*/(L^*)^2 \to \mathbb{Z}/2\mathbb{Z}.$$
Unramified square classes

Definition

\[\kappa_{ur}^1(\mathbb{L}/\mathbb{C}) := \bigcap_{\nu \in V(\mathbb{L})} \ker(\partial_{\nu} : \mathbb{L}^* / (\mathbb{L}^*)^2 \to \mathbb{Z}/2) \].

Elements of \(\kappa_{ur}^1(\mathbb{L}/\mathbb{C}) \) will be referred to as unramified (square) classes, or simply unramified elements, and \(\kappa_{ur}^1(\mathbb{L}/\mathbb{C}) \) will be called the group of unramified square classes.
Unramified square classes

Definition

Set

\[k_1^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in V(L)} \ker(\partial_\nu : L^*/(L^*)^2 \to \mathbb{Z}/2). \]
Unramified square classes

Definition

Set

\[k_1^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} \ker(\partial_{\nu} : L^*/(L^*)^2 \to \mathbb{Z}/2). \]

- Elements of \(k_1^{ur}(L/\mathbb{C}) \) will be referred to as unramified (square) classes, or simply unramified elements, and
Unramified square classes

Definition

Set

\[k_1^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} \text{Ker}(\partial_\nu : L^*/(L^*)^2 \to \mathbb{Z}/2). \]

- Elements of \(k_1^{ur}(L/\mathbb{C}) \) will be referred to as unramified (square) classes, or simply unramified elements, and
- \(k_1^{ur}(L/\mathbb{C}) \) will be called the group of unramified square classes.
Basic properties of unramified square classes

Formal properties
Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an invariant of L/\mathbb{C}
Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an invariant of L/\mathbb{C}
- and a covariant functor on field extensions.
Basic properties of unramified square classes

Formal properties

- The group $k_{1}^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations
Basic properties of unramified square classes

Formal properties

- The group $k_{1}^{ur}(L/\mathbb{C})$ is an invariant of L/\mathbb{C}
- and a covariant functor on field extensions.

Basic computations

- If $L = \mathbb{C}(t)$, then $k_{1}^{ur}(L/\mathbb{C}) = 0$.
Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations

- If $L = \mathbb{C}(t)$, then $k_1^{ur}(L/\mathbb{C}) = 0$.
 - Why? Every class in $\mathbb{C}(t)^*/(\mathbb{C}(t)^*)^2$ admits a representative lying in $\mathbb{C}[t]$; use the fundamental theorem of algebra.
Basic properties of unramified square classes

Formal properties
- The group $k_1^{ur}(L/\mathbb{C})$ is an invariant of L/\mathbb{C} and a covariant functor on field extensions.

Basic computations
- If $L = \mathbb{C}(t)$, then $k_1^{ur}(L/\mathbb{C}) = 0$.
 - Why? Every class in $\mathbb{C}(t)^*/(\mathbb{C}(t)^*)^2$ admits a representative lying in $\mathbb{C}[t]$; use the fundamental theorem of algebra.
- In fact, $k_1^{ur}(\mathbb{C}(t_1, \ldots, t_n)/\mathbb{C}) = 0$.
Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.
Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take $f(x) = x(x + 1)(x - 1)$. Let $L = \mathbb{C}(x)(\sqrt{f})$.
Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take $f(x) = x(x + 1)(x - 1)$. Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to
Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take $f(x) = x(x + 1)(x - 1)$. Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to a map

$$\mathbb{C}(x)^* / (\mathbb{C}(x)^*)^2 \longrightarrow L^* / (L^*)^2$$

whose kernel is generated by f.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take $f(x) = x(x + 1)(x - 1)$. Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to an exact sequence

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2 \longrightarrow L^*/(L^*)^2$$

sending $1 \in \mathbb{Z}/2\mathbb{Z}$ to the image of f in $\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2$.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
An example

Example

The cubic curve \(y^2 = x(x + 1)(x - 1) \) is not rational.
An example

Example

The cubic curve $y^2 = x(x + 1)(x - 1)$ is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.
An example

Example

The cubic curve $y^2 = x(x + 1)(x - 1)$ is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

- Idea: use the exact sequence; guess “x” determines a non-trivial element of $L^*/(L^*)^2$.
An example

Example

The cubic curve $y^2 = x(x + 1)(x - 1)$ is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

- Idea: use the exact sequence; guess “x” determines a non-trivial element of $L^*/(L^*)^2$.
- If x were 0 in $L^*/(L^*)^2$, either
Example

The cubic curve \(y^2 = x(x + 1)(x - 1) \) is not rational.

Proof.

Step 1. Construct a non-trivial square class in \(L^*/(L^*)^2 \).

- Idea: use the exact sequence; guess \(x \) determines a non-trivial element of \(L^*/(L^*)^2 \).
- If \(x \) were 0 in \(L^*/(L^*)^2 \), either
 - \(x \) is 0 in \(\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2 \), or
An example

Example

The cubic curve \(y^2 = x(x + 1)(x - 1) \) is not rational.

Proof.

Step 1. Construct a non-trivial square class in \(L^*/(L^*)^2 \).

- Idea: use the exact sequence; guess “\(x \)” determines a non-trivial element of \(L^*/(L^*)^2 \).
- If \(x \) were 0 in \(L^*/(L^*)^2 \), either
 - \(x \) is 0 in \(\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2 \), or
 - \(f_x = (x + 1)(x - 1) \) is a square.
An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).
Proof (continued).

Step 2. Construct a non-trivial element in $k^ur_1(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed “x” was a non-trivial square class, so let’s guess that it is also unramified.
An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more ad hoc argument).

- We guessed “x” was a non-trivial square class, so let’s guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
Proof (continued).

Step 2. Construct a non-trivial element in $k_1^\text{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed “x” was a non-trivial square class, so let’s guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed “x” was a non-trivial square class, so let’s guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$.

Exc: Using the equation $y^2 = x(x+1)(x-1)$, show that $2\nu(y) = \nu(x)$.

Case 3. $\nu(x) < 0$.

Exc: Using the equation, show that $2\nu(y) = 3\nu(x)$.

Aravind Asok (UCLA)
An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more \textit{ad hoc} argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$. Exc: Using the equation $y^2 = x(x + 1)(x - 1)$, show that $2\nu(y) = \nu(x)$.
Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed “x” was a non-trivial square class, so let’s guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$. Exc: Using the equation $y^2 = x(x + 1)(x - 1)$, show that $2\nu(y) = \nu(x)$.
 - Case 3. $\nu(x) < 0$.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more ad hoc argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of L. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$. Exc: Using the equation $y^2 = x(x+1)(x-1)$, show that $2\nu(y) = \nu(x)$.
 - Case 3. $\nu(x) < 0$. Exc: Using the equation, show that $2\nu(y) = 3\nu(x)$.
To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we...
Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
- constructed an exact sequence, and then
Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
- constructed an exact sequence, and then
- constructed a non-zero unramified element.
Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations.
- constructed an exact sequence, and then
- constructed a non-zero unramified element.

Note: with more work, one can actually determine the group $k_1^{ur}(L/\mathbb{C})$.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- Case $d = 3, n = 3$.
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- Case $d = 3$, $n = 3$. Classical geometric arguments demonstrate rationality.
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- Case $d = 3$, $n = 3$. Classical geometric arguments demonstrate rationality.
- Case $d = 3$, $n = 4$.
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- Case $d = 3$, $n = 3$. Classical geometric arguments demonstrate rationality.
- Case $d = 3$, $n = 4$. (Clemens-Griffiths ’71) famously showed that none are rational!
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- Case $d = 3$, $n = 3$. Classical geometric arguments demonstrate rationality.
- Case $d = 3$, $n = 4$. (Clemens-Griffiths ’71) famously showed that none are rational!
- Case $d = 3$, $n > 4$.
We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n.

- **Case** $d = 3$, $n = 3$. Classical geometric arguments demonstrate rationality.
- **Case** $d = 3$, $n = 4$. (Clemens-Griffiths ’71) famously showed that none are rational!
- **Case** $d = 3$, $n > 4$. No known irrational examples, though some rational examples *are* known (Hassett ’99)!
A reformulation

- Assume $n > 3$.

Remark If the cubic hypersurface is “more special,” i.e., it possesses a linear subspace of higher dimension, then one can equip it with the structure of a higher dimensional quadric bundle.
A reformulation

- Assume $n > 3$.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
A reformulation

- Assume $n > 3$.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1-connectivity
A reformulation

- Assume $n > 3$.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up L, one gets a map

 $$\text{Bl}_L X_3 \to \mathbb{P}^{n-2}$$
A reformulation

- Assume $n > 3$.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up L, one gets a map

$$\text{Bl}_L X_3 \to \mathbb{P}^{n-2}$$

whose fibers are conics.
A reformulation

- Assume $n > 3$.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up L, one gets a map $\text{Bl}_L X_3 \to \mathbb{P}^{n-2}$

whose fibers are conics.

Remark

If the cubic hypersurface is “more special,” i.e., it possesses a linear subspace of higher dimension, then one can equip it with the structure of a higher dimensional quadric bundle.
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

All “elementary” birational invariants of these higher dimensional quadric bundles are trivial. These varieties are rationally connected in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1. This implies their topological fundamental group is trivial, and, e.g., these varieties have no non-zero holomorphic m-forms. The group $\text{kur}^1(L/\mathbb{C})$ is trivial for any of these varieties. What prevents these varieties from being rational? The quadric bundle need not admit a (rational) section!
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over \(\mathbb{C}(t_1, \ldots, t_n) \).

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.

Aravind Asok (UCLA)
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.

- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.

 - This implies their topological fundamental group is trivial, and, e.g.,
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic m-forms.
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic m-forms.
- The group $k_1^{ur}(L/\mathbb{C})$ is trivial for any of these varieties.
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.

- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic m-forms.

- The group $k^u_1(L/\mathbb{C})$ is trivial for any of these varieties.

What prevents these varieties from being rational?
First observations

We’ll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All “elementary” birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two \mathbb{C}-points can be connected by a \mathbb{P}^1.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic m-forms.
- The group $k_1^{ur}(L/\mathbb{C})$ is trivial for any of these varieties.

What prevents these varieties from being rational? The quadric bundle need not admit a (rational) section!
We will define "higher" versions of k_{ur} that have a better chance of being non-trivial.

Observe:

$L^*: = K^1(L)$, and $L^*/(L^*)^2 = K^1(L)/2$.

One possible generalization of the group of square classes goes by way of higher Milnor K-theory.

The maps induced by discrete valuations can be thought of as "residue" maps in Milnor K-theory.
Higher unramified invariants

We will define “higher” versions of k_1^{ur} that have a better chance of being non-trivial.
Higher unramified invariants

We will define “higher” versions of k_{1}^{ur} that have a better chance of being non-trivial.

- Observe: $L^* := K_1^M(L)$, and $L^*/(L^*)^2 = K_1^M(L)/2$.
Higher unramified invariants

We will define “higher” versions of k_1^{ur} that have a better chance of being non-trivial.

- Observe: $L^* := K_1^M(L)$, and $L^*/(L^*)^2 = K_1^M(L)/2$.
- One possible generalization of the group of square classes goes by way of higher Milnor K-theory.
Higher unramified invariants

We will define “higher” versions of k_{1}^{ur} that have a better chance of being non-trivial.

- Observe: $L^{*} := K_{1}^{M}(L)$, and $L^{*}/(L^{*})^{2} = K_{1}^{M}(L)/2$.
- One possible generalization of the group of square classes goes by way of higher Milnor K-theory.
- The maps induced by discrete valuations can be thought of as “residue” maps in Milnor K-theory.
Definition

Given a field L, set

$$K_*(L) := T_\mathbb{Z}(L^*)/J,$$

where $T_\mathbb{Z}(L^*)$ denotes the tensor algebra on L^*.

Milnor K-theory
Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := T_\mathbb{Z}(L^*)/J,$$

where $T_\mathbb{Z}(L^*)$ denotes the tensor algebra on L^*, and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1 - a)$ for $a \neq 0, 1$.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
Definition

Given a field L, set

$$K_*^M(L) := T\mathbb{Z}(L^*)/J,$$

where $T\mathbb{Z}(L^*)$ denotes the tensor algebra on L^*, and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1 - a)$ for $a \neq 0, 1$.

- Let $K_n^M(L)$ denote the n-th graded piece of this ring.
Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := \frac{T_\mathbb{Z}(L^*)}{J},$$

where $T_\mathbb{Z}(L^*)$ denotes the tensor algebra on L^*, and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1 - a)$ for $a \neq 0, 1$.

- Let $K^M_n(L)$ denote the n-th graded piece of this ring.
- Set $k_n(L) := \text{coker}(K^M_n(L) \xrightarrow{\times 2} K^M_n(L))$; we call this mod 2 Milnor K-theory.
Residue maps

Given L/\mathbb{C}, and a discrete valuation $\nu : L^* \rightarrow \mathbb{Z}$ on L with residue field κ_{ν},
Residue maps

Given \(L/\mathbb{C} \), and a discrete valuation \(\nu : L^* \to \mathbb{Z} \) on \(L \) with residue field \(\kappa_\nu \), we can define residue maps \(K^M_n(L) \longrightarrow K^M_{n-1}(\kappa_\nu) \).
Residue maps

Given L/\mathbb{C}, and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_ν, we can define residue maps $K_n^M(L) \to K_{n-1}^M(\kappa_\nu)$ and

$$\partial_\nu : k_n(L) \to k_{n-1}(\kappa_\nu).$$
Residue maps

Given L/\mathbb{C}, and a discrete valuation $\nu : L^* \rightarrow \mathbb{Z}$ on L with residue field κ_ν, we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_\nu)$ and

$$\partial_\nu : k_n(L) \longrightarrow k_{n-1}(\kappa_\nu).$$

Example

- When $n = 1$, these maps are the maps already constructed.
Residue maps

Given L/\mathbb{C}, and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_ν, we can define residue maps $K^M_n(L) \to K^M_{n-1}(\kappa_\nu)$ and

$$\partial_\nu : k_n(L) \to k_{n-1}(\kappa_\nu).$$

Example

- When $n = 1$, these maps are the maps already constructed.
- When $n = 2$, these maps are related to the so-called *tame symbols* $L^* \otimes_{\mathbb{Z}} L^* \to L^*$ associated with a valuation ν.
Residue maps

Given L/\mathbb{C}, and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_ν, we can define residue maps $K_n^M(L) \to K_{n-1}^M(\kappa_\nu)$ and

$$\partial_\nu : k_n(L) \to k_{n-1}(\kappa_\nu).$$

Example

- When $n = 1$, these maps are the maps already constructed.
- When $n = 2$, these maps are related to the so-called tame symbols $L^* \otimes_{\mathbb{Z}} L^* \to L^*$ associated with a valuation ν defined by

 $$(f, g) \mapsto (-1)^{\nu(f)\nu(g)}[g^{\nu(f)}/f^{\nu(g)}].$$

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
Unramified mod 2 Milnor K-theory

Definition

\[k_{\text{ur}}(L/C) := \bigcap_{\nu \in V}(L) (\ker(\partial_\nu : k_n(L) \to k_n-1(\kappa_\nu)), \text{and call this group the unramified mod 2 Milnor K-theory of } L. \]

One can check \(k_{\text{ur}}(L/C) \) is an invariant of \(L/C \), \(k_{\text{ur}}(L/C) \) is a covariant functor on field extensions, and \(k_{\text{ur}}(\mathbb{C}(t_1, \ldots, t_n)/\mathbb{C}) = 0 \).

Goal: apply this invariant to study rationality of quadric bundles.
Unramified mod 2 Milnor K-theory

Definition

Set

\[k^ur_n(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\ker(\partial_\nu : k_n(L) \longrightarrow k_{n-1}(\kappa_\nu)), \]

where \(\mathcal{V}(L) \) is the set of valuations of \(L \).
Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\ker(\partial_{\nu} : k_n(L) \to k_{n-1}(\kappa_{\nu}))),$$

and call this group the unramified mod 2 Milnor K-theory of L.
Unramified mod 2 Milnor K-theory

Definition

Set

\[k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} \ker(\partial_{\nu} : k_n(L) \to k_{n-1}(\kappa_{\nu})) , \]

and call this group the *unramified mod 2 Milnor K-theory of* \(L \).

One can check
Unramified mod 2 Milnor K-theory

Definition

Set

\[k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\text{Ker}(\partial_\nu : k_n(L) \to k_{n-1}(\kappa_\nu))), \]

and call this group the *unramified mod 2 Milnor K-theory of L*.

One can check

- \(k_n^{ur}(L/\mathbb{C}) \) is an **invariant** of \(L/\mathbb{C} \),
Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} \ker(\partial_{\nu} : k_n(L) \to k_{n-1}(k_{\nu})),$$

and call this group the **unramified mod 2 Milnor K-theory of L**.

One can check

- $k_n^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C},
- $k_n^{ur}(L/\mathbb{C})$ is a covariant **functor** on field extensions, and
Unramified mod 2 Milnor K-theory

Definition

Set

\[k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in V(L)} \ker(\partial_\nu : k_n(L) \to k_{n-1}(\kappa_\nu)), \]

and call this group the *unramified mod 2 Milnor K-theory of L*.

One can check

- \(k_n^{ur}(L/\mathbb{C}) \) is an **invariant** of \(L/\mathbb{C} \),
- \(k_n^{ur}(L/\mathbb{C}) \) is a covariant **functor** on field extensions, and
- \(k_n^{ur}(\mathbb{C}(t_1, \ldots, t_n)/\mathbb{C}) = 0 \).
Unramified mod 2 Milnor K-theory

Definition

Set

\[k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\ker(\partial_\nu : k_n(L) \to k_{n-1}(k_\nu))), \]

and call this group the *unramified mod 2 Milnor K-theory of L*.

One can check

- \(k_n^{ur}(L/\mathbb{C}) \) is an **invariant** of \(L/\mathbb{C} \),
- \(k_n^{ur}(L/\mathbb{C}) \) is a covariant **functor** on field extensions, and
- \(k_n^{ur}(\mathbb{C}(t_1, \ldots, t_n)/\mathbb{C}) = 0 \).

Goal: apply this invariant to study rationality of quadric bundles.
An exact sequence

Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.
An exact sequence

- Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

 $$0 \rightarrow \mathbb{Z}/2 \rightarrow k_1(\mathbb{C}(x)) \rightarrow k_1(L),$$

 where the kernel is generated by f.

- If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q(f,g)$.
Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q_{(f,g)}$. Functoriality gives a map:

$$k_i(F) \rightarrow k_i(F(Q_{(f,g)})).$$
Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q_{(f,g)}$. Functoriality gives a map:

$$k_i(F) \rightarrow k_i(F(Q_{(f,g)})).$$

Question: Can one describe the kernel of this map?
An exact sequence (continued)

The pair \((f, g)\) determines an element of \(k_2(F)\), which we refer to as the symbol \((f, g)\).
The pair \((f, g)\) determines an element of \(k_2(F)\), which we refer to as the symbol \((f, g)\).

Theorem (Amitsur ’55 + (many authors) + Merkurjev ’81)

The kernel of

\[
k_2(F) \to k_2(F(Q_{(f,g)}))
\]

is generated by the symbol \((f, g)\).
An exact sequence (continued)

The pair (f, g) determines an element of $k_2(F)$, which we refer to as the symbol (f, g).

Theorem (Amitsur '55 + (many authors) + Merkurjev '81)

The kernel of

$$k_2(F) \rightarrow k_2(F(Q_{f,g}))$$

is generated by the symbol (f, g).

- Use this to study rationality problems.
The pair \((f, g)\) determines an element of \(k_2(F)\), which we refer to as the symbol \((f, g)\).

Theorem (Amitsur '55 + (many authors) + Merkurjev '81)

The kernel of

\[
k_2(F) \rightarrow k_2(F(Q_{(f,g)}))
\]

is generated by the symbol \((f, g)\).

- Use this to study rationality problems.
- Generalize this result.
The Milnor conjecture
The Milnor conjecture

“So you’re telling me that two groups, both of which are really hard to understand, are isomorphic?”

- Anonymous
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^\ast$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle\langle a_1, \ldots, a_n \rangle\rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.
- Write $Q(a_1, \ldots, a_n)$ for the (small Pfister) quadric defined by the equation $\langle\langle a_1, \ldots, a_n - 1 \rangle\rangle = \langle a_n \rangle$.

Example: When $n = 1$, such quadrics are given by the equation $y^2 = f$. When $n = 2$, such quadrics reduce to the conics from before.
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1x_1^2 + \cdots + a_nx_n^2$.
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.

Example

When $n = 1$, such quadrics are given by the equation $y^2 = f$. When $n = 2$, such quadrics reduce to the conics from before.
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1x_1^2 + \cdots + a_nx_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.
- Write $Q_{(a_1, \ldots, a_n)}$ for the (small Pfister) quadric defined by the equation
 $$\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle.$$
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.
- Write $Q_{(a_1, \ldots, a_n)}$ for the (small Pfister) quadric defined by the equation
 $\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle$.

Example

When $n = 1$, such quadrics are given by the equation $y^2 = f$.
Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1x_1^2 + \cdots + a_nx_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.
- Write $Q(a_1, \ldots, a_n)$ for the (small Pfister) quadric defined by the equation
 \[\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle. \]

Example

When $n = 1$, such quadrics are given by the equation $y^2 = f$.
When $n = 2$, such quadrics reduce to the conics from before.
Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \to k_n(F(Q(a_1,\ldots,a_n)))$.
Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \to k_n(F(Q(a_1,...,a_n)))$.

Note: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.
Some quick (revisionist) history

Goal: study the kernel of the map \(k_n(F) \to k_n(F(Q(a_1,...,a_n))) \).

Note: \((a_1, \ldots, a_n)\) determines an element of \(k_n(F) \), which we call the associated symbol; easy to show that \((a_1, \ldots, a_n)\) is contained in the kernel.

Example

- \(n = 1 \), this was our basic example.
Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q(a_1,\ldots,a_n)))$.

Note: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

- $n = 1$, this was our basic example.
- $n = 2$, we stated this above (Amitsur + ⋅⋅⋅ + Merkurjev).
Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \to k_n(F(Q(a_1,\ldots,a_n)))$.

Note: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

- $n = 1$, this was our basic example.
- $n = 2$, we stated this above (Amitsur + ··· + Merkurjev).
- $n = 3$, (Arason ’75 + Rost ’86/Merkurjev-Suslin ’91) proved that the kernel is generated by the symbol.
Some quick (revisionist) history

Goal: study the kernel of the map \(k_n(F) \to k_n(F(Q(a_1,\ldots,a_n))) \).

Note: \((a_1,\ldots,a_n)\) determines an element of \(k_n(F) \), which we call the associated symbol; easy to show that \((a_1,\ldots,a_n)\) is contained in the kernel.

Example

- \(n = 1 \), this was our basic example.
- \(n = 2 \), we stated this above (Amitsur + ⋅⋅⋅ + Merkurjev).
- \(n = 3 \), (Arason ’75 + Rost ’86/Merkurjev-Suslin ’91) proved that the kernel is generated by the symbol.
- \(n = 4 \), (Jacob-Rost ’89 + ⋅⋅⋅) proved that the kernel is generated by the symbol.
A consequence of the Milnor conjecture

The kernel of the map $k_n(F) \to k_n(F(Q(a_1,...,a_n)))$ is generated by $(a_1,...,a_n)$.

Some key points in the proof.

"Topological" part: Voevodsky's construction and study of properties of Steenrod operations on an appropriately defined cohomology theory for algebraic varieties.

"Geometric" part: Rost's study of small Pfister quadrics.
Conventions, definitions and basic examples
An elementary example
A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky ’07)

The kernel of the map $k_n(F) \to k_n(F(Q(a_1,\ldots,a_n)))$ *is generated by the symbol* (a_1,\ldots,a_n).
A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky ’07)

The kernel of the map $k_n(F) \to k_n(F(Q(a_1,\ldots,a_n)))$ is generated by the symbol (a_1,\ldots,a_n).

Some key points in the proof.

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky ’07)

The kernel of the map \(k_n(F) \rightarrow k_n(F(Q(a_1,...,a_n))) \) *is generated by the symbol* \((a_1,\ldots,a_n)\).

Some key points in the proof.

- “Topological” part: Voevodsky’s construction and study of properties of Steenrod operations on an appropriately defined cohomology theory for algebraic varieties
A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky ’07)

The kernel of the map $k_n(F) \to k_n(F(Q(a_1,\ldots,a_n)))$ is generated by the symbol (a_1,\ldots,a_n).

Some key points in the proof.

- “Topological” part: Voevodsky’s construction and study of properties of Steenrod operations on an appropriately defined cohomology theory for algebraic varieties.
- “Geometric” part: Rost’s study of small Pfister quadrics.
Application to rationality problems I

Example (Non-rational conic bundles)

Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2)$. Take f, g_1, g_2 in L^*, and consider the conic $Q(f, g_1 g_2)$. For appropriate choice of f, g_1 and g_2, the symbol (f, g_1) is a non-zero element of $\text{kur}^2 (L(Q(f, g_1 g_2)))/\mathbb{C}) = 0$.

Aravind Asok (UCLA)
Example (Non-rational conic bundles)

- Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2)$
Application to rationality problems I

Example (Non-rational conic bundles)

- Artin-Mumford ’71, Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2)$
- Take f, g_1, g_2 in L^*, and consider the conic $Q(f, g_1 g_2)$.
Example (Non-rational conic bundles)

- Artin-Mumford ’71, Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2)$
- Take f, g_1, g_2 in L^*, and consider the conic $Q(f, g_1g_2)$.
- For appropriate choice of f, g_1 and g_2, the symbol (f, g_1) is a non-zero element of $k^u_2(L(Q(f, g_1g_2))/\mathbb{C})$.
Application to rationality problems I

Example (Non-rational conic bundles)

- Artin-Mumford ’71, Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2)$
- Take f, g_1, g_2 in L^*, and consider the conic $Q(f, g_1 g_2)$.
- For appropriate choice of f, g_1 and g_2, the symbol (f, g_1) is a non-zero element of $k^u_r(L(Q(f, g_1 g_2))/\mathbb{C})$.
- Recall $k^u_r(L(Q(f, g_1 g_2))/\mathbb{C}) = 0$.

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1-connectivity
Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2, x_3)$.

Let f_1, f_2, g_1, g_2 in L^*, and consider the quadric $Q(f_1, f_2, g_1 g_2)$. For appropriate choice of f_1, f_2, g_1 and g_2, the symbol (f_1, f_2, g_1) is a non-zero element of $\text{ker}_3(L(Q(f_1, f_2, g_1 g_2)) / \mathbb{C})$.

Furthermore $\text{ker}_i(L(Q(f_1, f_2, g_1 g_2)) / \mathbb{C}) = 0$ for $i = 1, 2$.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified elements and non-rational quadrics using ker_4.

Aravind Asok (UCLA)
Application to rationality problems II

Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^*, and consider the quadric $Q(f_1, f_2, g_1 g_2)$.
Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^*, and consider the quadric $Q(f_1, f_2, g_1 g_2)$.
- For appropriate choice of f_1, f_2, g_1 and g_2, the symbol (f_1, f_2, g_1) is a non-zero element of $k_3^{ur}(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C})$.

Furthermore $k_4^{ur}(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C}) = 0$ for $i = 1, 2$.
Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^*, and consider the quadric $Q(f_1, f_2, g_1 g_2)$.
- For appropriate choice of f_1, f_2, g_1 and g_2, the symbol (f_1, f_2, g_1) is a non-zero element of $k_3^{ur}(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C})$.
- Furthermore $k_i^{ur}(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C}) = 0$ for $i = 1, 2$.
Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren ’89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^*, and consider the quadric $Q(f_1, f_2, g_1 g_2)$.
- For appropriate choice of f_1, f_2, g_1 and g_2, the symbol (f_1, f_2, g_1) is a non-zero element of $k^u_3(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C})$.
- Furthermore $k^u_i(L(Q(f_1, f_2, g_1 g_2))/\mathbb{C}) = 0$ for $i = 1, 2$.

Example (Non-rational quadric bundles II)

- Peyre ’93: generalized these constructions of unramified elements and non-rational quadrics using k^u_4.

Application to rationality problems II
Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, ..., x_n)$. For every integer $n > 0$, there exist elements $(f_1, ..., f_n)$ in L^* such that the quadric $Q(f_1, ..., f_n)$ is non-rational, and where non-rationality is detected by existence of a non-trivial element of $k_{ur}(L(Q(f_1, ..., f_n)) / \mathbb{C})$. Furthermore $k_{ur}(L(Q(f_1, ..., f_n)) / \mathbb{C}) = 0$ for $1 \leq i < n$.

Aravind Asok (UCLA)
Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, \ldots, x_n)$.
Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set \(L = \mathbb{C}(x_1, \ldots, x_n) \). For every integer \(n > 0 \), there exist elements \((f_1, \ldots, f_n) \) in \(L^* \) such that the quadric

\[
Q(f_1, \ldots, f_n)
\]

is non-rational,
Theorem (More non-rational quadric bundles)

Set \(L = \mathbb{C}(x_1, \ldots, x_n) \). For every integer \(n > 0 \), there exist elements \((f_1, \ldots, f_n)\) in \(L^* \) such that the quadric

\[
Q(f_1, \ldots, f_n)
\]

is non-rational, and where non-rationality is detected by existence of a non-trivial element of \(k_n^{ur}(L(Q_{f_1, \ldots, f_n})/\mathbb{C}) \).
Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, \ldots, x_n)$. For every integer $n > 0$, there exist elements (f_1, \ldots, f_n) in L^* such that the quadric

$$Q(f_1, \ldots, f_n)$$

is non-rational, and where non-rationality is detected by existence of a non-trivial element of $k_n^{ur}(L(Q(f_1, \ldots, f_n))/\mathbb{C})$. Furthermore $k_i^{ur}(L(Q(f_1, \ldots, f_n))/\mathbb{C}) = 0$ for $1 \leq i < n$.

Aravind Asok (UCLA)
Rational connectivity and \mathbb{A}^1-connectivity
What lessons have we learned?

All the quadric bundles in question are rationally connected. As \(n \) increases, intuitively one imagines the examples we have constructed as being "closer and closer" to rational varieties. One might imagine heirarchies of "higher rational connectivity" to make these notions precise (cf. A.J. de Jong-J. Starr). Concretely, as \(n \) increases, "some kind of mod 2 cohomology" vanishes in higher and higher degrees.
What lessons have we learned?

- All the quadric bundles in question are rationally connected.
What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being “closer and closer” to rational varieties.
What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being “closer and closer” to rational varieties.
- One might imagine hierarchies of “higher rational connectivity” to make these notions precise (cf. A.J. de Jong-J. Starr).
What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being “closer and closer” to rational varieties.
- One might imagine hierarchies of “higher rational connectivity” to make these notions precise (cf. A.J. de Jong-J. Starr).
- Concretely, as n increases, “some kind of mod 2 cohomology” vanishes in higher and higher degrees.
Connectedness in \mathbb{A}^1-homotopy theory

An analog of chain-connectedness in algebraic geometry:
An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1-chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.
Connectedness in \mathbb{A}^1-homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1-chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1-chain connected.
An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1-chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1-chain connected.

More generally, there is a notion of π^A_0 that underlies this notion of connectedness (defined using the \mathbb{A}^1-homotopy category).
An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1-chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1-chain connected.

More generally, there is a notion of $\pi_0^{\mathbb{A}^1}$ that underlies this notion of connectedness (defined using the \mathbb{A}^1-homotopy category). For smooth proper X: think of chain-connected components.
Any time one has an (abelian) group-valued functor on field extensions,
Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations.
Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties,
Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of “unramified invariant.” (cf. Rost, Morel, etc...)
Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of “unramified invariant.” (cf. Rost, Morel, etc...)

Theorem

If X/F is \mathbb{A}^1-chain connected, then all “unramified invariants” of X are “trivial” (i.e., isomorphic to the value of the unramified invariant on the base-field).
Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of “unramified invariant.” (cf. Rost, Morel, etc...)

Theorem

If X/F is \mathbb{A}^1-chain connected, then all “unramified invariants” of X are “trivial” (i.e., isomorphic to the value of the unramified invariant on the base-field).

Corollary

If X/F has a “non-trivial” unramified invariant, then F is not stably rational.
Basic principle: $\pi^{A^1}_0(X)$ controls all unramified invariants of X.
Homological interpretation

Basic principle: $\pi^A_0(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.

Aravind Asok (UCLA)
Homological interpretation

Basic principle: $\pi^\mathbb{A}^1_0(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.

- Analogous to $\pi^\mathbb{A}^1_0$, one can define a notion of $H^\mathbb{A}^1_0$, which is a universal unramified invariant.
Homological interpretation

Basic principle: $\pi_0^{A^1}(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.
- Analogous to $\pi_0^{A^1}$, one can define a notion of $H_0^{A^1}$, which is a universal unramified invariant.
- Let A be an unramified invariant (thought of as a functor on field extensions).
Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.
- Analogous to $\pi_0^{\mathbb{A}^1}$, one can define a notion of $H_0^{\mathbb{A}^1}$, which is a universal unramified invariant.
- Let A be an unramified invariant (thought of as a functor on field extensions).
- Concrete incarnation (Morel): Unramified invariants on X correspond bijectively with morphisms of functors $H_0^{\mathbb{A}^1}(X) \to A$.
The upshot

Rost's study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms $\text{HA}_1^0(\mathbb{Q}(f_1,...,f_n)) \rightarrow k_{\text{ur}}$. For the rationality problem: Completely understand $\text{HA}_1^0(X)$ (even in the case of conics or small Pfister quadrics, this is open as far as I know).

There are many natural generalizations: e.g., so-called norm varieties can be used construct other examples of "bundles" that are rationally connected yet not A_1-connected.

Aravind Asok (UCLA)
Rost’s study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H^\mathbb{A}^1_0(Q_{(f_1,\ldots,f_n)}) \rightarrow k_n^{ur}.$$
The upshot

- Rost’s study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H_0^{\mathbb{A}^1}(Q(f_1,\ldots,f_n)) \rightarrow k_n^{ur}.$$

- For the rationality problem: Completely understand $H_0^{\mathbb{A}^1}(X)$.
The upshot

- Rost’s study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

\[H_0^{\mathbb{A}^1}(Q(f_1,\ldots,f_n)) \rightarrow k_n^{ur}. \]

- For the rationality problem: Completely understand \(H_0^{\mathbb{A}^1}(X) \) (even in the case of conics or small Pfister quadrics, this is open as far as I know).
Rost’s study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

\[H^1_0(Q(f_1,\ldots,f_n)) \rightarrow k_n^{ur}. \]

For the rationality problem: Completely understand \(H^1_0(X) \) (even in the case of conics or small Pfister quadrics, this is open as far as I know).

There are many natural generalizations: e.g., so-called norm varieties can be used construct other examples of “bundles” that are rationally connected yet not \(\mathbb{A}^1 \)-connected.
Thank you!

See http://www.math.ucla.edu/~asok for more information