Existential Consistency:
Measuring and Understanding Consistency at Facebook

Haoran Lu*^, Kaushik Veeraraghavan^, Philippe Ajoux^, Jim Hunt^, Yee June Song^, Wendy Tobagus^, Sanjeev Kumar^, Wyatt Lloyd *^
*University of Southern California, ^Facebook

Problem
- Benefits of stronger consistency unclear because the anomalies they prevent were not quantified
 - Anomalies are strange behavior that defies user expectations
- No prior work for a large production Web service

Motivation
- Helps answer the question whether adopted consistency model is “sufficient”
- Helps with system debugging
- Better understands the tradeoff between stronger consistency and higher performance

Methods
- Measure TAO, the write-through cache for the social graph
 - Eventually consistent
 - Single-master
- Two types of analysis
 - Principled: a log based offline checker; checks against linearizability, per-object sequential, and read-after-write
 - Practical: a real-time monitoring system; checks how well updates converge at replicas

Principled Analysis
- Log requests from web servers
 - Sample based on objects (rate: 1/1M objects)
 - Spreads over 12 days (8/20/2015-8/31/2015)
 - 2.76 B requests
 - 17 M data objects
- Trace pre-processing
 - 75% of objects only have reads in the trace
 - 20% of objects only have writes in the trace
 - Neither can exhibit anomalies
 - Remaining 5% of objects and 24% of requests

Takeaways
- First study of consistency in large-scale production system
- Facebook TAO is highly consistent
 - greater than 99.99%
- Stronger consistency has benefits
- Future research should include transactions to maximize benefits
- Φ-consistency is a good metric for real-time consistency monitoring

Practical Analysis
- Offline Checker (linearizability)
 - A directed graph captures state transition of the system
 - Vertices: write requests; Edges: real-time order
 - Merge: pair a read with write to capture the transition order seen by the user
 - Cycle after merge -> user seen order != state transition -> anomaly

Results (anomaly rate)
- Linearizability: 5 per million
- Per-Object Sequential: 1 per million
- Read-After-Write
 - Global: 4 per million
 - Per-region: 2 per million
 - Per-cluster: 1 per million

Practical Analysis
- Φ(P)-consistency
 - Measures the convergence of replica set P
 - Φ(P) = 100% if all replicas always return same results
- Real-time monitor
 - Simultaneously reads at each replica in P
 - Monitor Φ(P)-inconsistency
 - when responses of replicas are not identical

Results
- R_i : G -> region to global
- Spike -> increase of inconsistency

Diagram:
- Graph illustrating linearizability, per-object sequential, and read-after-write.
- bridges between web servers and data objects showing real-time order and state transition.

Figure:
- Graph showing Φ(Φ(Φ(P)-inconsistency)) over time.
- Comparing failure and non-failure regions.