
Embedded Software Verification
Challenges and Solutions

Shuvendu Lahiri, Microsoft, RedmondShuvendu Lahiri, Microsoft, Redmond

Chao Wang, NEC Labs, PrincetonChao Wang, NEC Labs, Princeton

102

Chao Wang, NEC Labs, PrincetonChao Wang, NEC Labs, Princeton

Daniel Kroening, Oxford UniversityDaniel Kroening, Oxford University

ICCAD Tutorial

November 11, 2008

Outline

� What programs?

� The Formal Basics of Program Verification

� Static Program Analysis

� Predicate Abstraction

103

� Predicate Abstraction

� Bounded Model Checking (BMC)

Motivation

� Software has too many state variables

) State Space Explosion

� Graf/Saïdi 97: Predicate Abstraction

� Idea: Only keep track of predicates on data

104

� Abstraction function:

Predicate Abstraction

Concrete States:

105

Predicates:

Abstract transitions?

Under- vs. Overapproximation

� How to abstract the transitions?

�Depends on the property we want to show

�Typically done in a conservative manner

� Existential abstraction:

106

) Preserves safety properties

Predicate Abstraction

Abstract Transitions:

�������� ��������

107

Property:

��������

Property holds. Ok.

Predicate Abstraction

Abstract Transitions:

�������� ��������

108

Property:
��������

This trace is
spurious!

Predicate Abstraction

Abstract Transitions:

109

New Predicates:Property:

��������

Predicate Abstraction for Software

� Let’s take existential abstraction
seriously

� Basic idea: with n predicates, there are
2n £ 2n possible abstract transitions

110

2 £ 2 possible abstract transitions

� Let’s just check them!

Existential Abstraction

Predicates

i++;

Basic Block Formula

p p p p’ p’ p’ Query

111

Current Abstract State Next Abstract State

p1 p2 p3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

p’1 p’2 p’3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

????
Query

��

Existential Abstraction

Predicates

i++;

Basic Block Formula

p p p p’ p’ p’ Query

112

Current Abstract State Next Abstract State

p1 p2 p3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

p’1 p’2 p’3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Query

????��

… and so on …… and so on …

Predicate Abstraction for Software

� A precise existential abstraction can be
way too slow

� Use an over-approximation instead

� Fast to compute

113

� Fast to compute

� But has additional transitions

� E.g.:

� SLAM (FastAbs)

� Predicate partitioning

Example for Predicate Abstraction

int main() {

int i;

i=0;

while(even(i)) + p1 ⇔ i=0

p2 ⇔ even(i) =

void main() {

bool p1, p2;

p1=TRUE;

p2=TRUE;

while(p2)

{

114

i++;

}

+ p2 ⇔ even(i) = {

p1=

p2=

}

}

PredicatesC program Boolean program

[Ball, Rajamani ’00]

[Graf, Saidi ’97]

p1?FALSE:*;

!p2;

Predicate Abstraction for Software

� How do we get the predicates?

� Automatic abstraction refinement!

[Kurshan et al. ’93]

[Ball, Rajamani ’00]

115

[Clarke et al. ’00]

[Ball, Rajamani ’00]

Abstraction Refinement Loop

Actual
Program

Concurrent

Boolean

Program

Model

Checker

Verification
Initial

Abstraction
No error

or bug found

Property

116

Abstraction refinement

Spurious counterexample

Simulator

Property

holds

Simulation

successful

Bug found

Refinement

Counterexample

[Kurshan et al. ’93]

[Clarke et al. ’00]
[Ball, Rajamani ’00]

Checking the Boolean Program

� No more integers!

� But:

� function calls

� non-determinism

� Concurrency if original program is concurrent

117

� BDD-based model checking now scales

� For sequential programs

� Bebop (MSR)

� Even SMV!

SMV for the Boolean Program

GOTO Program

118

� Function calls can be inlined

� Be careful with side-effects!

SMV for the Boolean Program

VAR b0_argc_ge_1: boolean; -- argc >= 1

VAR b1_argc_le_2147483646: boolean; -- argc <= 2147483646

VAR b2: boolean; -- argv[argc] == NULL

VAR b3_nmemb_ge_r: boolean; -- nmemb >= r

Program Variables��

119

VAR b4: boolean; -- p1 == &array[0]

VAR b5_i_ge_8: boolean; -- i >= 8

VAR b6_i_ge_s: boolean; -- i >= s

VAR b7: boolean; -- 1 + i >= 8

VAR b8: boolean; -- 1 + i >= s

VAR b9_s_gt_0: boolean; -- s > 0

VAR b10_s_gt_1: boolean; -- s > 1

...

SMV for the Boolean Program

-- program counter: 56 is the "terminating" PC

VAR PC: 0..56;

ASSIGN init(PC):=0; -- initial PC

Control Flow��

120

ASSIGN next(PC):=case

PC=0: 1; -- other

PC=1: 2; -- other

. . .

PC=19: case -- goto (with guard)

guard19: 26;

1: 20;

esac;

. . .

SMV for the Boolean Program

TRANS (PC=0) -> next(b0_argc_ge_1)=b0_argc_ge_1

& next(b1_argc_le_213646)=b1_argc_le_21646 & next(b2)=b2

& (!b30 | b36)

& (!b17 | !b30 | b42)

& (!b30 | !b42 | b48)

Data��

121

& (!b30 | !b42 | b48)

& (!b17 | !b30 | !b42 | b54)

& (!b54 | b60)

TRANS (PC=1) -> next(b0_argc_ge_1)=b0_argc_ge_1

& next(b1_argc_le_214646)=b1_argc_le_214746 & next(b2)=b2

& next(b3_nmemb_ge_r)=b3_nmemb_ge_r & next(b4)=b4

& next(b5_i_ge_8)=b5_i_ge_8 & next(b6_i_ge_s)=b6_i_ge_s

. . .

SMV for the Boolean Program

-- the specification

-- file main.c line 20 column 12 function c::very_buggy_function

SPEC AG ((PC=51) -> !b23)

Property��

122

SLAM

� Microsoft blames most Windows crashes on third
party device drivers

� The Windows device driver API is quite complicated

� Low level C code

� SLAM: Tool to automatically check device drivers for

123

� SLAM: Tool to automatically check device drivers for
certain errors

� To be shipped with Device Driver Development Kit

� Full detail (and all the slides) available at
http://research.microsoft.com/slam/

SLIC

� Finite state language for stating rules

�monitors behavior of C code

�temporal safety properties (security
automata) – similar to what SPIN does

�familiar C syntax

124

�familiar C syntax

� Suitable for expressing control-dominated
properties

�e.g., proper sequence of events

�can encode data values inside state

State Machine for
Locking

Acq

Rel

state {

enum {Locked,Unlocked}

s = Unlocked;

}

KeAcquireSpinLock.entry {

Locking Rule in SLIC

125

Unlocked Locked

Error

Rel Acq

Acq KeAcquireSpinLock.entry {

if (s==Locked) abort;

else s = Locked;

}

KeReleaseSpinLock.entry {

if (s==Unlocked) abort;

else s = Unlocked;

}

Too hard for programmers,

and therefore:

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

Example
Does this code

obey the

locking rule?

126

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

do {

KeAcquireSpinLock();

if(*){

Model checking

boolean program

(bebop)

U

L

L

Example

127

if(*){

KeReleaseSpinLock();

}

} while (*);

KeReleaseSpinLock();

L

L

L

U

L

U

U

U

E

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

Example
Is error path feasible

in C program?

(newton)

U

L

L

128

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

L

L

L

U

L

U

U

U

E

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

Example
Add new predicate

to boolean program

(c2bp)

b : (nPacketsOld == nPackets)

U

L

L

b = true;

129

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

L

L

L

U

L

U

U

U

E

b = b ? false : *;

!b

do {

KeAcquireSpinLock();

b = true;

if(*){
b

Example Model checking

refined

boolean program

(bebop)

b : (nPacketsOld == nPackets)

U

L

L

130

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

b

b

b

b

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {

KeAcquireSpinLock();

b = true;

if(*){

b : (nPacketsOld == nPackets)

b

U

L

L

Model checking

refined

boolean program

(bebop)

131

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

b

b

b

b

L

L

L

U

L

U

U

b

b

!b

Abstraction Refinement Loop

Actual
Program

Concurrent

Boolean

Program

Model

Checker

Verification
Initial

Abstraction
No error

or bug found

Property

132

Abstraction refinement

Spurious counterexample

Simulator

Property

holds

Simulation

successful

Bug found

Refinement

Simulation

� Given an abstract counterexample,
check if there exists corresponding
concrete counterexample

� Transform path into SSA

133

� Add if/while guards as constraints

� Q: What about threads?

Example

αααα

134

Predicate:
y>x

Example: Simulation

SSA

��

135

Spurious trace!

Abstraction Refinement Loop

Actual
Program

Concurrent

Boolean

Program

Model

Checker

Verification
Initial

Abstraction
No error

or bug found

Property

136

Abstraction refinement

Spurious counterexample

Simulator

Property

holds

Simulation

successful

Bug found

Refinement

Manual Proof!

We are using
strongest post-conditions

137

strongest post-conditions
here

Another Manual Proof

We are using
weakest pre-conditions

here

138

The proof for the “true” branch
is missing

Refinement Algorithm

� Using WP:

1. Start with failed guard P

2. Compute WP(P) along the path

� Using SP:

Start at beginning

139

1. Start at beginning

2. Compute SP(P) along the path

� Both methods eliminate the trace

� Advantages/Disadvantages?

Refinement

� Need to distinguish two sources
of spurious behavior

1. Too few predicates

2. Laziness during abstraction

� SLAM:

140

� SLAM:

� First tries to find new predicates (NEWTON)
using strongest post-conditions

� If this fails, second case is assumed.
Transitions are refined (CONSTRAIN)

SLAM: CONSTRAIN

� The abstraction by FASTABS is often too
coarse

� If no new predicates are found, the
transitions in the abstract counterexample

141

transitions in the abstract counterexample
are checked

� The spurious transition is eliminated by
adding a constraint

Bounded Model Checking

1. Unwinding ANSI-C Programs

2. Supported Language Features

3. How to make it look nice

4. Case Studies

142

4. Case Studies

5. Recent Results

BMC Overview

� Problem: Fixpoint computation is too
expensive for Software

� Idea:

� Unwind program into equation

� Check equation using SAT

� Advantages:

143

� Advantages:

� Completely automated

� Allows full set of ANSI-C,
including full treatment of pointers
and dynamic memory

� Properties:

� Simple assertions

� Security (Pointers/Arrays)

� Run time guarantees (WCET)

ANSI-C Transformation

1. Preparation

� Side effect removal

� continue, break replaced by goto

� for, do while replaced by while

2. Unwinding

144

2. Unwinding

� Loops are unwound: to guarantee that
enough unwinding is done,
unwinding assertions are added

� Same for backward goto jumps and
recursive functions

Bounded Model-Checking

� while() loops are
unwound iteratively

� Break / continue
replaced by goto

void f(...) {void f(...) {

...

while(condcond) {

Body;Body;

}

Remainder;

}

145

}

Bounded Model-Checking

� while() loops are
unwound iteratively

� Break / continue
replaced by goto

void f(...) {void f(...) {

...

if(condcond) {

Body;Body;

while(condcond) {

Body;Body;

}

146

}

}

Remainder;

}

Bounded Model-Checking

� while() loops are
unwound iteratively

� Break / continue
replaced by goto

void f(...) {void f(...) {

...

if(condcond) {

Body;Body;

if(condcond) {

Body;Body;

while(condcond) {

147

while(condcond) {

Body;Body;

}

}

}

Remainder;

}

Bounded Model-Checking

� while() loops are
unwound iteratively

� Break / continue
replaced by goto

� Assertion inserted
after last iteration:
violated if program

void f(...) {void f(...) {

...

if(condcond) {

Body;Body;

if(condcond) {

Body;Body;

if(condcond) {

148

violated if program
runs longer than
bound permits

if(condcond) {

Body;Body;

while(condcond) {

Body;Body;

}

}

}

}

Remainder;

}

Bounded Model-Checking

� while() loops are
unwound iteratively

� Break / continue
replaced by goto

� Assertion inserted
after last iteration:
violated if program

void f(...) {void f(...) {

...

if(condcond) {

Body;Body;

if(condcond) {

Body;Body;

if(condcond) {

149

violated if program
runs longer than
bound permits

� Positive correctness
result!

if(condcond) {

Body;Body;

assert(!condcond);

}

}

}

}

Remainder;

}

Unwinding
assertion

Example Unwinding Assertion

With
Bound 1

150 A

Bound 1

Implementation

3. Transformation into Equation
� After unwinding: Transform into SSA

Example:

151

� Generate constraints by simply conjoining
equations resulting from assignments

� For arrays, use simple lambda notation

Example

152

Supported Language Features

� ANSI-C is a low level language, not meant for
verification but for efficiency

� Complex language features, such as

� Bit vector operators (shifting, and, or,…)

� Pointers, pointer arithmetic

153

� Pointers, pointer arithmetic

� Dynamic memory allocation: malloc/free

� Dynamic data types: char s[n]

� Side effects

� float / double

� Non-determinism

� Timing properties

Pointers

� While unwinding, record right hand side of
assignments to pointers

� This results in very precise points-to information

� Separate for each pointer

� Separate for each instance of each program location

154

� Dereferencing operations are expanded into
case-split on pointer object (not: offset)

� Generate assertions on offset and on type

� Pointer data type assumed to be part of bit-vector
logic

� Consists of pair <object, offset>

Pointer Typecast Example

155 A

Dynamic Objects

� Dynamic Objects:

� malloc / free

� Local variables of functions

� Auxiliary variables for each dynamically allocated
object:

156

� Size (number of elements)

� Active bit

� Type

� malloc sets size (from parameter) and sets active bit

� free asserts that active bit is set and clears bit

� Same for local variables: active bit is cleared upon
leaving the function

Dynamic Objects

157 A

Deciding Bit-Vector Logic with SAT

� Pro: all operators modeled with their precise
semantics

� Arithmetic operators are flattened into circuits

� Not efficient for multiplication, division

� Fixed-point for float/double

158

� Unbounded arrays

� Use uninterpreted functions to reduce to equality logic

� Similar implementation in UCLID

� But: Contents of array are interpreted

� Problem: SAT solver happy with first satisfying
assignment that is found. Might not look nice.

Example

void f (int a, int b, int c)

{

int temp;

if (a > b) {

temp = a; a = b; b = temp;

}

State 1-3

a=-8193 (11111111111111111101111111111111)

b=-402 (11111111111111111111111001101110)

c=-2080380800 (10000011111111111110100010…)

temp=0 (00000000000000000000000000000000)

State 4 file sort.c line 10

159

CBMCif (b > c) {

temp = b; b = c; c = temp;

}

if (a < b) {

temp = a; a = b; b = temp;

}

assert (a<=b && b<=c);

}

temp=-402 (11111111111111111111111001101110)

State 5 file sort.c line 11

b=-2080380800 (10000011111111111110100010…)

State 6 file sort.c line 12

c=-402 (11111111111111111111111001101110)

Failed assertion: assertion file

sort.c line 19

Problem (I)

� Reason: SAT solver performs DPLL
backtracking search

� Very first satisfying assignment that is found
is reported

160

� Strange values artifact from bit-level
encoding

� Hard to read

� Would like nicer values

Problem (II)

� Might not get shortest counterexample!

� Not all statements that are in the formula
actually get executed

� There is a variable for each statement that

161

� There is a variable for each statement that
decides if it is executed or not (conjunction
of if-guards)

� Counterexample trace only contains
assignments that are actually executed

� The SAT solver picks some…

Example

void f (int a, int b,

int c)

{

if(a)

{

CBMC

{-1} b_1#2 == (a_1#0?b_1#1:b_1#0)

{-2} a_1#2 == (a_1#0?a_1#1:a_1#0)

{-3} b_1#1 == 1

from
SSA

162

a=0;

b=1;

}

assert(c);

}

CBMC {-4} a_1#1 == 0

{-5} \guard#1 == a_1#0

{-6} \guard#0 == TRUE

|--------------------------

{1} c_1#0

assign-
ments

Example

void f (int a, int b,

int c)

{

if(a)

{

State 1-3

a=1 (00000000000000000000000000000001)

b=0 (00000000000000000000000000000000)

c=0 (00000000000000000000000000000000)

State 4 file length.c line 5CBMC

163

a=0;

b=1;

}

assert(c);

}

State 4 file length.c line 5

a=0 (00000000000000000000000000000000)

State 5 file length.c line 6

b=1 (00000000000000000000000000000001)

Failed assertion: assertion

file length.c line 11

CBMC

Basic Solution

� Counterexample length typically considered to be
most important

� E.g., SPIN iteratively searches for shorter
counterexamples

� Phase one: Minimize length

164

� lg: Truth value (0/1) of guard,
lw: Weight = number of assignments

� Phase two: Minimize values

Example

void f (int a, int b, int c)

{

int temp;

if (a > b) {

temp = a; a = b; b = temp;

}

State 1-3

a=0 (00000000000000000000000000000000)

b=0 (00000000000000000000000000000000)

c=-1 (11111111111111111111111111111111)

temp=0 (00000000000000000000000000000000)

State 4 file sort.c line 10

CBMC

165

if (b > c) {

temp = b; b = c; c = temp;

}

if (a < b) {

temp = a; a = b; b = temp;

}

assert (a<=b && b<=c);

}

temp=0 (00000000000000000000000000000000)

State 5 file sort.c line 11

b=-1 (11111111111111111111111111111111)

State 6 file sort.c line 12

c=0 (00000000000000000000000000000000)

Failed assertion: assertion file

sort.c line 19

CBMC

++
Mini-

mization

Experiment: Train Controller

� Actually runs on trains

� Part provided to us: braking profiles

� ANSI-C plus assumptions on arithmetic

� Size: about 30.000 lines

166

� Size: about 30.000 lines

� Software computes all values twice (two
channels) – the second time with inverted
values or with offset

� Properties: WCET, Equivalence of channels,
pointers/arrays

Current Status

� Added support for C++, IEEE Floating-Point

� Industrial users:

� Automotive

� Avionics

167

� Avionics

� Embedded/medical

� Didn’t talk about: HW/SW co-verification

Future Work

� CBMC for concurrent programs

� Better decision procedures for
complex bit-vector arithmetic

� Build counterexample quality measure
(length, values) into SAT solver

168

(length, values) into SAT solver

� Splitting heuristic

Questions?

169

