
Round-Up: Runtime Checking Quasi Linearizability
of Concurrent Data Structures

Lu Zhang, Arijit Chattopadhyay, and Chao Wang
Department of ECE, Virginia Tech

Blacksburg, VA 24061, USA

{zhanglu, arijitvt, chaowang}@vt.edu

Abstract—We propose a new method for runtime checking
of a relaxed consistency property called quasi linearizability for
concurrent data structures. Quasi linearizability generalizes the
standard notion of linearizability by intentionally introducing
nondeterminism into the parallel computations and exploiting
such nondeterminism to improve the performance. However,
ensuring the quantitative aspects of this correctness condition
in the low level code is a difficult task. Our method is the
first fully automated method for checking quasi linearizability
in the unmodified C/C++ code of concurrent data structures. It
guarantees that all the reported quasi linearizability violations
are real violations. We have implemented our method in a
software tool based on LLVM and a concurrency testing tool
called Inspect. Our experimental evaluation shows that the new
method is effective in detecting quasi linearizability violations in
the source code of concurrent data structures.

I. INTRODUCTION

Concurrent data structures are the foundation of many multi-

core and high performance software systems. By providing a

cost effective way to reduce the memory contention and in-

crease the scalability, they have found increasingly widespread

applications ranging from embedded computing to distributed

systems such as the cloud. However, implementing concurrent

data structures is not an easy task due to the subtle interactions

of low level concurrent operations and often astronomically

many thread interleavings. In practice, even a few hundred

lines of highly concurrent low level C/C++ code can pose

severe challenges for testing and debugging.

Linearizability [1], [2] is the de facto correctness condition

for implementing concurrent data structures. It requires that

every interleaved execution of the methods of a concurrent

object to be equivalent, in some sense, to a sequential ex-

ecution. This is extremely useful as a correctness condition

for application developers because, as long as their program

is correct when using the standard (sequential) data structure,

switching to a concurrent version of the same data structure

would not change the program behavior. Although being lin-

earizable alone does not guarantee correctness of the program,

not satisfying the linearizability requirement often indicates

that the implementation is buggy.

In this paper, we propose the first fully automated method

for checking standard and quasi linearizability violations of

concurrent data structures. Quasi linearizability [3] is a quanti-

tative relaxation of linearizability, which has attracted a lot of

attention in recent years [4], [5], [6], [7], [8]. For many highly

parallel applications, the standard notion of linearizability im-

poses unnecessary restrictions on the implementation, thereby

leading to severe performance bottlenecks. Quasi linearizabil-

ity preserves the intuition of standard linearizability while

providing some additional flexibility in the implementation.

For example, the task queue used in the scheduler of a thread

pool does not need to follow the strict FIFO order. One can

use a relaxed queue that allows some tasks to be overtaken

occasionally if such relaxation leads to superior performance.

Similarly, concurrent data structures used for web cache need

not follow the strict semantics of the standard versions, since

occasionally getting the stale data is acceptable. In distributed

systems, the unique id generator does not need to be a perfect

counter; to avoid becoming a performance bottleneck, it is

often acceptable for the ids to be out of order occasionally,

as long as it happens within a bounded time frame. Quasi

linearizability allows the concurrent data structures to have

such occasional deviations from the standard semantics in

exchange of higher performance.

While quasi linearizable concurrent data structures have

tremendous performance advantages, ensuring the quantitative

aspects of this correctness condition in the actual implemen-

tation is not an easy task. To the best of our knowledge, there

does not yet exist any method for checking, for example,

the deq operation of a relaxed queue is not over-taken by

other deq operations for more than k times. Existing methods

for detecting concurrency bugs focus primarily on simple

bug patterns such as deadlocks, data-races, and atomicity

violations, but not this type of quantitative properties.

Broadly speaking, existing methods for checking lineariz-

ability fall into three groups. The first group consists of

methods based on constructing mechanical proofs [9], [10],

which require significant user intervention. The second group

consists of automated methods based on model checking [11],

[12], [13], which work on finite state models or abstractions

of the concurrent data structure. The third group consists of

runtime tools that can directly check the source code, but only

for standard linearizability.

Our method is the first runtime method for checking quasi

linearizability in the source code of concurrent data structures.

It does not require the user to provide specifications or

annotate linearization points. It takes the source code of a

concurrent object o, a test program P that uses o, and a quasi

factor K as input, and returns either true or false as output.

It guarantees to report only real linearizability violations.

We have implemented the method in a software tool called

Round-Up based on the LLVM compiler and Inspect [14]. It

can check C/C++ programs that use the POSIX threads and

Thread 1: Thread 2: Thread 3:

o.enq(3)

Timeline:

o.enq(1)

o.enq(1)

o.deq()

o.deq()

o.deq()

o.enq(4)

o.deq()

Fig. 1. A 3-threaded program that uses object o. Thread 1 starts by adding
values 1 and 2 to the queue before creating two child threads. Then it waits
for the child threads to terminate before removing another three data items.
Here enq(3) runs concurrently with enq(4) and deq() in Thread 3.

GNU built-in atomic functions. Our experiments on a large

set of concurrent data structure implementations show that the

new method is effective in detecting both quasi linearizability

violations. We have found several real implementation bugs

in the Scal suite [15], which is an open-source package that

implements some of the most recently published concurrent

data structures. The bugs that we found in the Scal benchmarks

have been confirmed by the Scal developers.

The remainder of this paper is organized as follows. We

provide a few motivating examples in Section II and explain

the main technical challenges in checking quasi linearizability.

We establish notation in Section III and then present the overall

algorithm in Section IV. We present the detailed algorithm for

checking quasi linearizability in Section V. Our experimental

results are presented in Sections VI. We review related work in

Section VII, and finally give our conclusions in Section VIII.

II. MOTIVATING EXAMPLES

In this section, we illustrate the standard and quasi lin-

earizability properties and outline the technical challenges

in checking such properties. Fig. 1 shows a multithreaded

program that invokes the enq/deq methods of a queue. If

Thread 2 executes enq(3) atomically, i.e., without interference

from Thread 3, there will be three interleaved executions, all of

which behave like a single-threaded execution. The sequential

histories, shown in Fig. 2, satisfy the standard semantics of the

queue. Therefore, we call them the legal sequential histories.

If the time interval of enq(3), which starts at its invocation

and ends at its response, overlaps with the time intervals

of enq(4) and deq(), the execution is no longer sequential.

In this case, the interleaved execution is called a concurrent

history. When the implementation of the queue is linearizable,

no matter how the instructions of enq(3) interleave with the

instructions of enq(4) and deq(), the external behavior of

the queue would remain the same. We say that the queue is

linearizable if the sequence of deq values of any concurrent

history matches one of the three legal sequential histories in

Fig. 2. On the other hand, if the sequence of deq values

is 3,2,1,4 in a concurrent history, we say that it has a

History 1: History 2: History 3: Timeline:

o.enq(3)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=3

o.deq()=4

o.enq(4)

o.deq()=1

o.enq(4)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=4

o.deq()=3

o.enq(3)

o.deq()=1 o.enq(3)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=4

o.deq()=3

o.enq(4)

o.deq()=1

Fig. 2. The set of legal sequential histories generated by the program in
Fig. 1. These legal sequential histories form the sequential specification.

TAIL

HEAD

1

2

3

4

7

1 2 3 4H1-a:

1 2 4 3H1-b:

2 1 3 4H1-c:

2 1 4 3H1-d:

Fig. 3. An example implementation of 1-quasi linearizable queue, where
each of the linked list item is a segment that holds two data items. The first
deq randomly returns a value from the set {1, 2} and the second deq returns
the remaining one. Then the third deq randomly returns a value from the set
{3, 4} and the fourth deq returns the remaining one.

linearizability violation, because the object no longer behaves

like a FIFO queue.

However, being linearizable often means that the imple-

mentation has significant performance overhead when it is

used by a large number of concurrent threads. For a quasi

linearizable queue, in contrast, it is acceptable to have the deq

values being out of order occasionally, if such relaxation of

the standard semantics can help improve the performance. For

example, instead of using a standard linked list to implement

the queue, one may use a linked list of 2-cell segments to

implement the 1-quasi linearizable queue (Fig. 3). The deq

operation may remove any of the two data items in the head

segment. By using randomization, it is possible for two threads

to remove different data items from the head simultaneously

without introducing memory contention.

Assume that the relaxed queue contains four values 1,2,3,4

initially. The first two deq operations would retrieve either 1,2

or 2,1, and the next two deq operations would retrieve either

3,4 or 4,3. Together, there are four possible combinations as

shown in Fig. 3. Among them, H1-a is linearizable. The

TAIL

HEAD

1 3 4

2

8

1 2 3 4H1-a:

1 2 4 3H1-b:

2 1 3 4H1-c:

2 1 4 3H1-d:

Fig. 4. An alternative implementation of 1-quasi linearizable queue, which
is based on the random-dequeued queue. The first deq randomly returns a
value from {1, 2} and the second deq returns the remaining one. Then the
third deq randomly returns a value from the new window {3, 4} and the
fourth deq returns the remaining one.

other three are not linearizable, but are considered as 1-

quasi linearizable, meaning that deq values in these concurrent

histories are out-of-order by at most one step.

However, implementing quasi linearizable data structures is

a difficult task. Subtle bugs can be introduced during both the

design phase and the implementation phase.

Consider an alternative way of implementing the 1-quasi

linearizable queue as illustrated in Fig. 4, where the first two

data items are grouped into a virtual window. A deq operation

may retrieve any of the first 2 data items from the head based

on randomization. Furthermore, only after both data items in

the current window are removed, will the deq operation move

on to retrieve data items in the next window. The resulting

behavior of this implementation should be identical to that of

the segmented queue.

However, a subtle bug would appear if one ignores the use

of the virtual window. For example, if deq always returns

one of the first two data items in the current queue, the

implementation would not be 1-quasi linearizable. In this case,

it is possible for some data item to be over-taken indefinitely,

thereby making the data structure unsuitable for applications

where a 1-quasi queue is desired. For example, if every time

the deq operation removes the second data item in the list, we

would get a sequence of deq values as follows: 2,3,4,..., where

value 1 is left in the queue indefinitely.

The last example demonstrates the need for a new method

that can help detect violations of such quantitative properties.

Existing concurrency bug checking tools focus primarily on

simple bug patterns such as deadlocks and data-races. They

are not well suited for checking quantitative properties in the

low level code that implements concurrent data structures. To

the best of our knowledge, the method proposed in this paper

is the first method for detecting quasi linearizability violations

in the code of concurrent data structures.

III. PRELIMINARIES

A. Linearizability

We follow the notation in [1], [2] to define history as a

sequence of events, denoted h = e1e2 . . . en, where each event

is either a method invocation or a response of an object. When

there are multiple objects, let ρ = h|o denote the projection

of history h to object o, which is the subsequence of events

related to that object. When there are multiple threads, let ρ|T
denote the projection of history ρ to thread T , which is the

subsequence of events of that thread. Two histories ρ and ρ′

are equivalent, denoted ρ ∼ ρ′, if and only if ρ|Ti = ρ′|Ti
for all thread Ti, where i = 1, . . . , k. Two equivalent histories

have the same set of events, but the events may be arranged

in different orders.

A sequential history is one that starts with a method invo-

cation, and each method invocation is followed immediately

by the matching response; in other words, no two method

call intervals are overlapping. Otherwise, the history is called

a concurrent history. Let <ρ be the precedence relation of

events in history ρ.

Definition 1: A linearization of a concurrent history ρ is a

sequential history ρ′ such that (1) ρ′ ∼ ρ, meaning that they

share the same set of events, and (2) ∀ei, ej : ei <ρ ej implies

ei <ρ′ ej . In other words, the non-overlapping method calls in

ρ retain their execution order in ρ′, whereas the overlapping

method calls may take effect in any order.

A sequential specification of object o, denoted spec(o), is

the set of all legal sequential histories – histories that conform

to the semantics of the object. For example, a legal sequential

history of a queue is one where all the enq/deq values follow

the FIFO order.

Definition 2: A concurrent history ρ is linearizable with

respect to a sequential specification spec(o) if and only if it

has a linearization ρ′ such that ρ′ ∈ spec(o). In other words,

as long as the concurrent history ρ can be mapped to at least

one ρ′ ∈ spec(o), it is considered as linearizable.

B. Quasi Linearizability

The notion of quasi linearizability relies on the permutation

distance between two sequential histories. Let ρ′ = e′1e
′
2 . . . e

′
n

be a permutation of ρ = e1e2 . . . en. Let ∆(ρ, ρ′) be the

distance between ρ and ρ′ defined as maxe∈ρ{ |ρ[e]−ρ′[e]| }.

We use ρ[e] and ρ′[e] to denote the index of event e in ρ and ρ′,

respectively. Therefore, ∆(ρ, ρ′) is the maximum distance

that some event in ρ has to travel to its new position in ρ′.

Quasi linearizability is often defined on a subset of the

object’s methods. Let Domain(o) be the set of all op-

erations of object o. Let d ⊂ Domain(o) be a subset.

Let Powerset(Domain(o)) be the set of all subsets of

Domain(o).
Definition 3: The quasi-linearization factor (or quasi factor)

for a concurrent object o is a function Qo : D → N , where

D ⊂ Powerset(Domain(o)) and N is the set of natural

numbers.

For example, a queue where enq operations follow the FIFO

order, but deq values may be out-of-order by at most K steps,

can be specified as follows:

Denq = { 〈o.enq(x), void〉 | x ∈ X }
Ddeq = { 〈o.deq(), x〉 | x ∈ X }
Qqueue(Denq) = 0
Qqueue(Ddeq) = K

Definition 4: A concurrent history ρ is quasi linearizable [3]

with respect to a sequential specification spec(o) and quasi

factor Qo iff ρ has a linearization ρ′ such that,

• either ρ′ ∈ spec(o), meaning that ρ is linearizable and

hence is also quasi linearizable, or

• there exists a permutation ρ′′ of ρ′ such that

– ρ′′ ∈ spec(o); and

– ∆(ρ′|d, ρ′′|d) ≤ Qo(d) for all subset d ∈ D.

In other words, ρ′ needs to be a legal sequential history,

or within a bounded distance from a legal sequential his-

tory. Linearizability is subsumed by quasi linearizability with

Qo : D → 0.

From now on, given a sequential history ρ′, we call Ψ =
{ ρ′′ | ∆(ρ′|d, ρ′′|d) ≤ Qo(d) for all d ∈ D } the set of

quasi-permutations of ρ′.

Quasi linearizability is compositional in that a history h
is quasi linearizable if and only if subhistory h|o, for each

object o, is quasi linearizable. This allows us to check quasi

linearizability on each individual object in isolation, which

reduces the computational overhead.

C. Checking (Quasi) Linearizability

There are at least three levels where one can check the

(quasi) linearizability property.

• L1: check if a concurrent history ρ is linearizable:

∃ linearization ρ′ of history ρ: ρ′ ∈ spec(o).

• L2: check if a concurrent program P is linearizable:

∀ concurrent history ρ of P : ρ is linearizable.

• L3: check if a concurrent object o is linearizable:

∀ program P that uses object o: P is linearizable.

L3 may be regarded as the full fledged verification of the

concurrent object, whereas L1 and L2 may be regarded as

runtime bug detection. In this paper, we focus primarily on

the L1 and L2 checks. That is, given a terminating program

P that uses the concurrent object o (called the test harness),

we systematically generate the set of concurrent histories of

P and then check if all of these concurrent histories are

(quasi) linearizable. Our main contribution is to propose a

new algorithm for deciding whether a concurrent history ρ

is is quasi linearizable.

IV. OVERALL ALGORITHM

The overall algorithm for checking quasi linearizability con-

sists of two phases (see Fig. 5). In Phase 1, we systematically

execute the test program P together with a standard data

structure to construct a sequential specification spec(o), which

consists of all the legal sequential histories. In Phase 2, we

systematically execute the test program P together with the

concurrent data structure, and for each concurrent history ρ,

check whether ρ is quasi linearizable.

For data structures such as queues, stacks, and priority

queues, a sequential version may serve as the golden model

in Phase 1. Alternatively, the user may use a specifically

configured concurrent data structure as the golden model, e.g.,

by setting the quasi factor of a relaxed queue to 0, which

effectively turns it into a normal queue.
In Phase 1, we use a CHESS-like systematic con-

currency testing tool called Inspect [14] to compute

all the legal sequential histories. We have modified In-

spect to automatically wrap up every method call in a

lock/unlock pair. For example, method call o.enq() becomes

lock(lk);o.enq();unlock(lk), where we assign a lock lk to

each object o to ensure that context switches happen only at

the method call boundary. In other words, all method calls

of object o are executed serially. Furthermore, Inspect can

guarantee that all the possible sequential histories of this

form are generated. Our new method leverages these legal

sequential histories to construct the sequential specification

spec(o).
In Phase 2, we use Inspect again to compute the set of

concurrent histories of the same test program. However, this

time, we allow the instructions within the method bodies

to interleave freely. This can be accomplished by invoking

Inspect in its default mode, without adding the aforementioned

lock/unlock pairs. In addition to handling the POSIX threads

functions, we have extended Inspect to support the set of GNU

built-in functions for atomic shared memory access, which are

frequently used in implementing concurrent data structures.
Our core algorithm for checking whether a concurrent

history ρ is quasi linearizable is invoked in Phase 2.

• For each concurrent history ρ, we compute the set Φ
of linearizations of ρ (see Definition 1). If any ρ′ ∈ Φ
matches a legal sequential history in spec(o), by defini-

tion, ρ is linearizable and also quasi linearizable.

• Otherwise, for each linearization ρ′ ∈ Φ, we compute

the set Ψ of quasi-permutations of ρ′ with respect to the

quasi factor (see Definition 4), which defines the distance

between ρ′ and each ρ′′ ∈ Ψ.

– If there exists a quasi permutation ρ′′ such that ρ′′ ∈
spec(o), then ρ is quasi linearizable.

– Otherwise, ρ is not quasi linearizable and hence is

not linearizable.

The pseudo code for checking quasi linearizability is shown

in Algorithm 1, which takes a concurrent history ρ and a quasi

factor K as input and returns either TRUE (quasi linearizable)

or FALSE (not quasi linearizable). The main challenge is to

generate the set Φ of linearizations of the given history ρ and

the set Ψ of quasi permutations of each ρ′ ∈ Φ. The first

step, which is straightforward, will be explained in this section.

The second step, which is significantly more involved, will be

explained in the next section.
We now explain the detailed algorithm for computing the set

Φ of linearizations for the given history ρ. The computation is

carried out by Subroutine compute_linearizations(ρ). Let

history ρ0 = ϕ inv1 inv2 φ resp1 ψ resp2 . . . where

ϕ, φ and ψ are arbitrary subsequences and inv1, inv2 are the

invocation events of the first two overlapping method calls.

We will replace ρ0 in Φ with the new histories ρ1 and ρ2.

In other words, for any two method call pairs (invi, respi)
and (invj , respj) in ρ, if they do not overlap, meaning that

either respi <ρ invj or respj <ρ invi, we will keep this

execution order. In they overlap, we will generate two new

Phase 1:
deterministic
FIFO queue
(golden model)

(under test)

Phase 2:

quasi−linearizable

queue

it belongs to spec(o)

{ρ}

sequential specification

concurrent histories

spec(o)

for each ρ, generate all
linearizations {ρ′} quasi permutations {ρ′′}

For each ρ
′, generate all

For each ρ
′′, check if

Fig. 5. The overall flow of our new quasi linearizability checking algorithm.

Algorithm 1 Checking the quasi linearizability of the concur-

rent history ρ with respect to the quasi factor K .

1: check_quasi_linearizability (ρ,K)
2: {
3: Φ← compute_linearizations(ρ);
4: for each (ρ′ ∈ Φ) {
5: if (ρ′ ∈ spec(o)) return TRUE;
6: Ψ← compute_quasi_permutations(ρ′,K);
7: for each (ρ′′ ∈ Ψ) {
8: if (ρ′′ ∈ spec(o)) return TRUE;
9: }

10: }
11: return FALSE;
12: }
13: compute_linearizations (ρ)
14: {
15: Φ← {ρ};
16: while (∃ a concurrent history ρ0 ∈ Φ) {
17: Let ρ0 = ϕ inv1 inv2 φ resp1

ψ resp
2
. . .;

18: ρ1 ← ϕ inv1 resp1
inv2 φ ψ resp

2
. . .;

19: ρ2 ← ϕ inv2 resp2
inv1 φ resp1

ψ . . .;
20: Φ← Φ ∪ {ρ1, ρ2} \ {ρ0};
21: }
22: return Φ;
23: }
24: compute_quasi_permutations (ρ′, K)
25: {
26: Ψ← { };
27: state stack ← first_run(ρ′,K);
28: while (TRUE) {
29: ρ′′ ← backtrack_run (state stack, ρ′);
30: if (ρ′′ = = null) break;
31: Ψ← Ψ ∪ {ρ′′};
32: }
33: return Ψ;
34: }

histories, where one has respi <ρ invj and the other has

respj <ρ invi.

Example. Consider the history in Fig. 6 (left). The first two

overlapping calls start with inv1 and inv2, respectively.

• First, we construct a new history where (inv1, resp1)
is moved ahead of (inv2, resp2). This is straightforward

because, by the time we identify inv1 and inv2, we can

continue to traverse the event sequence to find resp1 in ρ0
and then move it ahead of event inv2. Since the resulting

History 1 still has overlapping method calls, we repeat

the process in the next iteration.

• Second, we construct a new history by moving

(inv2, resp2) ahead of (inv1, resp1). This is a little more

involved because there can be many other method calls

of Thread T1 that are executed between inv2 and resp2.

inv1

resp1

inv2

resp2

inv3

resp3

History 0

inv3

resp3

History 1 History 2

resp1

inv1

inv2

resp2

inv1

resp1

inv3

resp3

inv2

resp2

Fig. 6. Example: Computing the linearizations of the given concurrent history
by repeatedly sequentializing the first two overlapping method calls denoted
by (inv1,resp1) and (inv2,resp2).

We take all these events between inv1 and resp2, and

move them after resp2. In this example, the new history

is History 2.

According to Definition 1, when at least one of the lineariza-

tions ρ′ ∈ Φ is a legal sequential history, ρ is linearizable,

which means that it is also quasi linearizable. Otherwise, ρ is

not linearizable (but may still be quasi linearizable).

V. CHECKING FOR QUASI LINEARIZABILITY

To check whether history ρ′ ∈ Φ is still

quasi linearizable, we need to invoke Subroutine

compute_quasi_permutations(ρ′,K). As shown in

Algorithm 1, the subroutine consists of two steps. In

the first step, first_run is invoked to construct a doubly

linked list to hold the sequence of states connected by events

in ρ′, denoted state_stack: s1
e1−→ s2

e2−→ . . . sn
en−→. Each

state si, where i = 1, . . . , n, represents an abstract state of

the object o. Subroutine first_run also fills up the fields

of each state with the information needed later to generate

the quasi permutations. In the second step, we generate

quasi permutations of ρ′ ∈ Ψ, one at a time, by calling

backtrack_run.

A. Example: Constructing Quasi Permutations

We generate the quasi permutations by reshuffling the events

in ρ′ to form new histories. More specifically, we compute

s2 s3s1
deq(1) deq(2) deq(3)

deq(3)

s3'

deq(2)

Original

history
�

Permutation 1�

deq(2)

s2''

deq(1)

s3''

deq(3)

Permutation 2�

Fig. 7. An example search tree for generating all 1-quasi permutations of the
input sequence deq(1);deq(2);deq(3).

all possible permutations of ρ′, denoted {ρ′′}, such that

the distance between ρ′ and ρ′′ are bounded by the quasi

factor K . Our method for constructing the quasi permutations

follows the strict out-of-order semantics as defined in [3], [4].

Consider queues as the example. A strict out-of-order k-quasi

permutation consists of two restrictions:

• Restriction 1: each deq is allowed to return a value that

is at most k steps away from the head node.

• Restriction 2: the first data element (in head node) must

be returned by one of the first k deq operations.

History 0: deq(1) --> deq(2) --> deq(3)
Res1 Res2

History 1: deq(2) --> deq(1) --> deq(3) ok ok
History 2: deq(1) --> deq(3) --> deq(2) ok ok
History 3: deq(3) --> deq(1) --> deq(2) NO ok
History 4: deq(2) --> deq(3) --> deq(1) ok NO
History 5: deq(3) --> deq(2) --> deq(1) NO NO

To illustrate the strict out-of-order definition, consider the

1-quasi queue above. Assume that the input history ρ′ is

deq()=1,deq()=2,deq()=3. The history can be arbitrarily re-

shuffled into five additional histories, of which only History 1

and History 2 satisfy the above two restrictions. They are the

desired quasi permutations of ρ′ whereas the others are not. In

particular, History 3 violates Restriction 1 because the first deq

returns the value that is two steps away from the head. History

4 violates Restriction 2 because the head value is returned by

the third deq operation, which is too late. History 5 violates

both restrictions.

We compute the quasi permutations using a depth-first

search (DFS) of the abstract states. For the above example,

this process is illustrated in Fig. 7, where the initial run is

assumed to be s1
deq(1)
−→ s2

deq(2)
−→ s3

deq(3)
−→ .

• In the first run, we construct the state stack that holds

the initial history. Then we find the last backtrack state,

which is state s2, and execute deq(3) instead of deq(2).

This leads to the second run s1
deq(1)
−→ s2

deq(3)
−→ s′3

deq(2)
−→ .

• In the second run, we again find the last backtrack state,

which is s1, and execute deq(2) instead of deq(1). This

leads to the third run s1
deq(2)
−→ s′′2

deq(1)
−→ s′′3

deq(3)
−→ .

• In the third run, we can no longer find any backtrack state.

Therefore, the procedure terminates. We cannot generate

a new run by choosing deq(3) in state s1, because it

would violate Restriction 1. We cannot generate a new

run by choosing deq(3) in state s′′2 either, because it

would violate Restriction 2.

B. Elementary Data Structures

To enforce the restrictions imposed by the strict out-of-

order semantics, we need to add some fields into each state.

In particular, we add an enabled field into each state to help

enforce Restriction 1, and we add a lateness attribute into each

enabled event to enforce Restriction 2.

state stack: We store the sequence of states of the current run

in a doubly linked list called state stack. Executing a method

call event moves the object from one state to another state.

Each state s has the following fields:

• s.enabled is the set of events that can be executed at s;
• s.select is the event executed by the current history;

• s.done is the set of events executed at s by some

previously explored permutations in the backtrack search;

• s.newly enabled is the set of events that become enabled

for the first time along the given history ρ′. The field is

initialized by the first run, and is used to compute the

s.enabled field in the subsequent runs.

Example 1: s.newly_enabled. The initial state has at most

(K + 1) events in its newly enabled field, where K

is the quasi factor. Every other state has at most one

event in this newly enabled field. For the given history

deq(1);deq(2);deq(3) and quasi factor 1, we have

s1.newly enabled={deq(1),deq(2)} ≥1 events in the initial state
s2.newly enabled={deq(3)} at most one event
s3.newly enabled={ } at most one event

In other words, each event will appear in the newly enabled

field of the state that is precisely K steps ahead of its original

state in ρ′. We will enforce Restriction 1 with the help of the

newly enabled field.

Example 2: s.enabled and s.done. For the above example,

s1.enabled={deq(1),deq(2)} s1.done={deq(1)}
s2.enabled={deq(2),deq(3)} s2.done={deq(2)}
s3.enabled={deq(3)} s3.done={deq(3)}

Both deq(1) and deq(2) are in s1.enabled, but only deq(1)

is in s1.done because it is executed in the current run.

Since the set (s.enabled\s.done) is not empty for both s1
and s2, we have two backtrack states. After backtrack-

ing to s2 and executing deq(3), we create a new permu-

tation deq(1);deq(3);deq(2). Similarly, after backtracking

to s1 and executing deq(2), we create a new permutation

deq(2);deq(1);deq(3).

For permutation deq(2);deq(1);deq(3), the enabled and done

fields will be changed to the following:

s1.enabled={deq(1),deq(2)} s1.done={deq(1),deq(2)}
s
′′

2
.enabled={deq(1),deq(3)} s

′′

2
.done={deq(1)}

s
′′

3
.enabled={deq(3)} s

′′

3
.done={deq3}

Although (s′′2 .enabled\s′′2 .done) is not empty, we cannot create

the new permutation deq(2);deq(3);deq(1) because deq(1)

would be out-of-order by two steps. We avoid generating such

permutations by leveraging the lateness attribute that is added

into every enabled event.

lateness attribute: Each event in s.enabled has a lateness

attribute, indicating how many steps this event is later than

its original occurrence in ρ′. It represents how many steps this

event can be postponed further in the current permutation.

s[i-k] lateness(e) = -k
...
s[i].select = e lateness(e) = 0
...
s[i+k] lateness(e) = k

Example 3: Consider the example above, where event e is

executed in state si of the given history. For k-quasi permuta-

tions, the earliest state where e may be executed is si−k, and

the latest state where e may be executed is si+k . The lateness

attribute of event e in state si−k is −k, meaning that it may

be postponed for at most k−(−k) = 2k steps. The lateness of

e in state si+k is k, meaning that e has reached the maximum

lateness and therefore must be executed in this state.
Must-select event: This brings us to the important notion of

must-select event. In s.enabled, if there does not exist any

event whose lateness reaches k, all the enabled events can be

postponed for at least one more step. In this case, we can

randomly choose an event from the set (s.enabled \s.done) to

execute. If there exists an event in s.enabled whose lateness

is k, then we must execute this event in state s.

Example 4: If we backtrack from the current history

deq(1),deq(2),deq(3) to state s1 and then execute deq(2),

event deq(1) will have a lateness of 1 in state s′′2 , meaning

that it has reached the maximum delay allowed. Therefore, it

has to be executed in state s2.

s1.lateness={deq(1):lateness=0, deq(2):lateness=-1}
s
′′

2
.lateness={deq(1):lateness=1, deq(3):lateness=-1}

s
′′

3
.lateness={deq(3):lateness=0}

The initial lateness is assigned to each enabled event when

the event is added to s.enabled by first_run. Every time an

event is not selected for execution in the current state, it will

be inherited by the enabled field of the subsequent state. The

lateness of this event is then increased by 1.
An important observation is that, in each state, there can be

at most one must-select event. This is because the first run ρ′

is a total order of events, which gives each event a different

lateness value – by definition, their expiration times are all

different.

C. Algorithm: Constructing K-Quasi Permutations

The pseudo code for generating quasi permutations of

history ρ′ is shown in Algorithm 2. Initializing the late-

ness attributes of enabled events is performed by Sub-

routine init_enabled_and_lateness, which is called by

first_run. The lateness attributes are then updated by

update_enabled_and_lateness.
Each call to backtrack_run will return a new quasi per-

mutation of ρ′. Inside this subroutine, we search for the last

backtrack state s in state stack. If such backtrack state s
exists, we prepare the generation of a new permutation by

resetting the fields of all subsequent states of s, while keeping

their newly enabled fields intact. Then we choose a previously

unexplored event in s.enabled to execute.

The previously unexplored event in s.enabled is chosen by

calling pick_an_enabled_event. If there exists a must-select

event in s.enabled whose lateness reaches k, then it must be

chosen. Otherwise, we choose an event from the set (s.enabled

\s.done) arbitrarily. We use update_enabled_and_lateness

to fill up the events in s.enabled. For events that are inherited

from the previous state’s enabled set, we increase their late-

ness’ by one. We iterate until the last state is reached. At this

time, we have computed a new quasi permutation of ρ′.

D. Discussions

Our method is geared toward bug hunting. Whenever we

find a concurrent history ρ that is not quasi linearizable, it

is guaranteed to be a real violation. However, recall that

our method implements the L1 and L2 checks but not the

L3 check as defined in Section III. Therefore, even if all

concurrent histories of the test program are quasi linearizable,

we cannot conclude that the concurrent data structure itself is

quasi linearizable.
Furthermore, when checking for quasi linearizability, our

runtime checking framework has the capability of generating

test programs (harness) that are well-formed; that is, the

number of enq operations is equal to the number of deq

operations. If the test program is provided by the user, then it

is the user’s responsibility to ensure this well-formedness. This

is important because, if the test program is not well-formed,

there may be out-of-thin-air events. Below is an example.

Thread 1 Thread 2 Hist1 Hist2 Hist3
-------- --------
enq(3) enq(5) enq(3) enq(5) enq(3)
enq(4) deq() enq(4)
... enq(5)
-------- -------- deq()=3 deq()=5 deq()=4

Here, the sequential specification is {Hist1,Hist2}. In both

histories, either deq()=3 or deq()=5. However, the deq value

can never be 4. This is unfortunate because Hist3 is 1-

quasi linearizable but cannot match any of the two legal

sequential histories (Hist1 or Hist2) because it has deq()=4.

This problem can be avoided by requiring the test program to

be well-formed. For example, by adding two more deq calls to

the end of the main thread, we can avoid the aforementioned

out-of-thin-air events.

VI. EXPERIMENTS

We have implemented our new quasi linearizability check-

ing method in a software tool based on the LLVM platform

for code instrumentation and based on Inspect for system-

atically generating interleaved executions. Our tool, called

Round-Up, can handle unmodified C/C++ code of concurrent

data structures on the Linux/PThreads platform. We have

improved Inspect by adding the support for GNU built-in

atomic functions for direct access of shared memory, since

they are frequently used in the low level code for implementing

concurrent data structures.

Algorithm 2 Generating K-quasi permutations for history ρ′.

1: first_run (ρ′,K) {
2: state stack ← empty list;
3: for each (event ev in the sequence ρ′) {
4: s← new state;
5: state stack.append(s);
6: s.select← ev;
7: s.done ← {ev};
8: init_enabled_and_lateness(s, ev, K);
9: }

10: return state stack;
11: }
12: init_enabled_and_lateness (s, ev, K) {
13: lateness← 0;
14: while(1) {
15: s.enabled.add(〈ev,lateness〉);
16: if(lateness == −k || s.prev == null) {
17: s.newly enabled.add(〈ev, lateness〉);
18: break;
19: }
20: lateness–;
21: s← s.prev in state stack;
22: }
23: }
24: backtrack_run (state stack, ρ) {
25: Let s be the last state in state stack such that
26: pick_an_enabled_event(s) 6= null;
27: if(such s does not exist)
28: return null;
29: for each(state after s in state stack) {
30: reset s.select, s.done, and s.enabled,
31: but keep s.newly enabled;
32: }
33: while(s 6= null) {
34: ev ←pick_an_enabled_event (s);
35: s.select← ev;
36: s.done ← {ev};
37: s← s.next;
38: update_enabled_and_lateness(s);
39: }
40: return (sequence of selected events in state stack);
41: }
42: pick_an_enabled_event (s) {
43: if(∃〈ev, lateness〉 ∈ s.enabled && lateness = k) {
44: if(ev 6∈ s.done) // must-select event
45: return ev;
46: else
47: return null;
48: }
49: if(∃〈ev, lateness〉 ∈ s.enabled && ev 6∈ s.done))
50: return ev;
51: else
52: return null;
53: }
54: update_enabled_and_lateness (s) {
55: p← s.prev;
56: if(s or p do not exist)
57: return;
58: s.enabled ← { };
59: for each(〈ev, lateness〉 ∈ p.enabled && ev 6∈ p.done) {
60: s.enabled.add(〈ev, lateness- - 〉);
61: }
62: for each(〈ev, lateness〉 ∈ s.newly enabled) {
63: s.enabled.add(〈ev, lateness〉);
64: }
65: }

We have conducted experiments on a set of concurrent data

structures [3], [6], [8], [5], [6], [4] including both standard

and quasi linearizable queues, stacks, and priority queues. For

some data structures, there are several variants, each of which

uses a different implementation scheme. The characteristics

of these benchmark programs are shown in Table I. The first

three columns list the name of the data structure, a short

description, and the number of lines of code. The next two

columns show whether it is linearizable and quasi linearizable.

The last column provides a list of the relevant methods.

Table II shows the experimental results for checking stan-

dard linearizability. The first four columns show the statistics

of the test program, including the name, the number of threads

(concurrent/total), the number of method calls, and whether

linearizability violations exist. The next two columns show the

statistics of Phase 1, consisting of the number of sequential

histories and the time for generating these sequential histo-

ries. The last three columns show the statistics of Phase 2,

consisting of the number of concurrent histories (buggy/total),

the total number of linearizations, and the time for checking

them. In all test cases, our method was able to correctly detect

the linearizability violations.

Table III shows the experimental results for checking quasi

linearizability. The first four columns show the statistics of

the test program. The next two columns show the statistics

of Phase 1, and the last three columns show the statistics

of Phase 2, consisting of the number of concurrent histories

(buggy/total), the total number of quasi permutations, and the

time for generating and checking them. In all test cases, we

have set the quasi factor to 2.

Our method was able to detect all real (quasi) linearizability

violations in fairly small test programs. This is consistent with

the experience of Burckhart et al. [16] in evaluating their Line-

Up tool for checking standard (but not quasi) linearizability.

This is due to the particular application of checking the

implementation of concurrent data structures. Although the

number of method calls in the test program is small, the

underlying low-level shared memory operations can still be

many. This leads to a rich set of very subtle interactions

between the low-level memory accessing instructions. In such

cases, the buggy execution can be uncovered by checking a

test program with only a relatively small number of threads,

method calls, and context switches.

We have also conducted experiments on a set of re-

cently released high-performance concurrent objects in the

Scal suite [15]. Table IV shows the characteristics of these

benchmark programs and Table V shows the experimental

results. We have successfully detected two real linearizability

violations in the Scal suite, one of which is a known violation

whereas the other is a previously unknown programming

error. In particular, sl-queue is a queue designed for high

performance applications, but it is not thread safe and therefore

is not linearizable. k-stack, on the other hand, is designed to

be quasi linearizable. However, due to an ABA bug, the data

structure is not quasi linearizable.

Our tool is able to quickly detect the linearizability violation

in sl-queue and the quasi linearizability violation in k-stack.

Furthermore, it generates detailed execution traces to illustrate

how the violations can be reproduced during debugging. In

terms of the ABA bug in k-stack, for example, our tool

shows that the bug occurs when one thread executes the

push operation while another thread is executing the pop

operation concurrently. Due to erroneous thread interleaving,

it is possible for the same data item to be added to the stack

twice, although the push operation is executed only once. We

have reported the bug in k-stack to the Scal developers, who

have confirmed that it is indeed a bug.

It is worth pointing out that existing concurrency bug finding

tools, such as data-race and atomicity violation detectors, are

TABLE I
THE STATISTICS OF THE BENCHMARK EXAMPLES.

Class Description LOC Linearizable Quasi-Lin Methods checked

IQueue buggy queue, deq may remove null even if not empty 154 No NO enq(int), deq()
Herlihy/Wing queue correct normal queue 109 YES YES enq(int), deq()
Quasi Queue correct quasi queue 464 NO YES enq(int), deq()
Quasi Queue b1 deq removes value more than k away from head 704 NO NO enq(int), deq()
Quasi Queue b2 deq removes values that have been removed before 401 NO NO enq(int), deq()
Quasi Queue b3 deq null even the queue is not empty 427 NO NO enq(int), deq()
Quasi Stack b1 pop null even if the stack is not empty 487 NO NO push(int), pop()
Quasi Stack b2 pop removes values move than k away from the tail 403 NO NO push(int), pop()
Quasi Stack linearizable, and hence quasi linearizable 403 YES YES push(int), pop()
Quasi Priority Queue implementation of quasi priority queue 508 NO YES enq(int, int), deqMin()
Quasi Priority Queue b2 deqMin removes value more than k away from head 537 NO NO enq(int, int), deqMin()

TABLE II
RESULTS OF CHECKING STANDARD LINEARIZABILITY ON CONCURRENT DATA STRUCTURES.

Test Program Phase 1 Phase 2

Class threads calls violation history time (seconds) history (buggy/total) linearization time (seconds)

IQueue 2/3 2*2+0 YES 3 0.1 2/6 13 0.3
Herlihy/Wing queue 2/3 2*2+0 NO 3 0.1 0/4 9 0.2
Quasi Queue 2/3 2*2+4 YES 6 0.2 16/16 61 2.5
Quasi Queue 2/3 3*3+4 YES 20 1.1 64/64 505 43.7
Quasi Queue 2/3 2*3+3 YES 10 0.4 24/32 169 8.3
Quasi Queue 2/3 3*3+2 YES 20 0.8 108/118 1033 1m23s
Quasi Queue 2/3 3*4+1 YES 35 1.6 149/198 2260 5m8s

Quasi Queue 2/3 4*4+0 YES 70 2.6 274/476 8484 37m34s
Quasi Queue b1 2/3 2*2+4 YES 6 0.3 91/91 409 17.8
Quasi Queue b2 2/3 2*2+4 YES 6 0.3 91/91 409 18.1
Quasi Queue b3 2/3 2*2+4 YES 6 0.3 141/141 653 26.9
Quasi Stack b1 2/3 2*2+4 YES 6 0.3 9/9 34 1.6
Quasi Stack b2 2/3 2*2+4 YES 6 0.3 16/16 61 2.5
Quasi Stack 2/3 2*2+4 NO 6 0.3 0/16 61 2.5
Quasi Priority Queue 2/3 2*2+4 YES 6 0.5 16/16 61 4.9
Quasi Priority Queue b2 2/3 2*2+4 YES 6 0.5 125/125 532 27.0

TABLE III
RESULTS OF CHECKING QUASI LINEARIZABILITY ON CONCURRENT DATA STRUCTURES.

Test Program Phase 1 Phase 2
Class threads calls violation history time (seconds) history (buggy/total) permutation time (seconds)

Quasi Queue 2/3 2*2+4 NO 6 0.2 0/16 1708 2.9
Quasi Queue 2/3 3*3+4 NO 20 1.1 0/64 73730 5m33s
Quasi Queue 2/3 2*3+3 NO 10 0.4 0/32 4732 9.6
Quasi Queue 2/3 3*3+2 NO 20 0.8 0/118 28924 1m34s
Quasi Queue 2/3 3*4+1 NO 35 1.6 0/198 63280 5m40s
Quasi Queue 2/3 4*4+0 NO 70 2.6 0/476 237552 40m56s
Quasi Queue (qfactor=3) 2/3 2*3+3 NO 10 0.4 0/32 8112 14.9
Quasi Queue (qfactor=3) 2/3 3*3+2 NO 20 0.8 0/118 49584 2m36s
Quasi Queue (qfactor=3) 2/3 3*4+1 NO 35 1.6 0/198 108480 10m15s
Quasi Queue (qfactor=3) 2/3 4*4+0 NO 70 2.6 0/476 407232 69m32s
Quasi Queue b1 2/3 2*2+4 YES 6 0.3 41/91 11452 20.1
Quasi Queue b2 2/3 2*2+4 YES 6 0.3 91/91 11452 20.2
Quasi Queue b3 2/3 2*2+4 YES 6 0.3 73/141 18284 31.0
Quasi Stack b1 2/3 2*2+4 YES 6 0.3 9/9 2108 3.5
Quasi Stack b2 2/3 2*2+4 YES 6 0.3 6/16 1708 2.8
Quasi Stack b3 2/3 2*2+4 NO 6 0.3 0/16 1708 2.8

Quasi Priority Queue 2/3 2*2+4 NO 6 0.5 0/16 1708 4.7
Quasi Priority Queue b2 2/3 2*2+4 YES 6 0.5 54/125 6384 20.0

TABLE IV
THE STATISTICS OF THE SCAL [15] BENCHMARK EXAMPLES (TOTAL LOC OF Scal IS 5,973).

Class Description LOC Linearizable Quasi-Lin Methods checked

sl-queue singly-linked list based single-threaded queue 73 NO NO enq, deq
t-stack concurrent stack by R. K. Treiber 109 YES YES push, pop

ms-queue concurrent queue by M. Michael and M. Scott 250 YES YES enq, deq
rd-queue random dequeued queue by Y. Afek, G. Korland, and E. Yanovsky 162 NO YES enq, deq
bk-queue bounded k-FIFO queue by Y. Afek, G. Korland, and E. Yanovsky 263 NO YES enq, deq
ubk-queue unbounded k-FIFO queue by C.M. Kirsch, M. Lippautz, and H. Payer 259 NO YES enq, deq
k-stack k-stack by T. A. Henzinger, C. M. Kirsch, H. Payer, and A. Sokolova 337 NO NO push, pop

TABLE V
RESULTS OF CHECKING QUASI LINEARIZABILITY FOR THE SCAL [15] BENCHMARK EXAMPLES.

Test Program Phase 1 Phase 2
Class threads calls violation history time (seconds) history (buggy/total) permutation time (seconds)

sl-queue (enq+deq) 2/3 1*1+10 NO 2 0.1 0/2 438 0.5
sl-queue (enq+enq) 2/3 1*1+10 YES 2 0.06 1/2 438 0.54
sl-queue (deq+deq) 2/3 1*1+10 YES 2 0.07 4/8 2190 2.29
t-stack (push+pop) 2/3 1*1+10 NO 2 0.16 0/8 2190 2.6
t-stack (push+push) 2/3 1*1+10 NO 2 0.1 0/8 2190 2.45
t-stack (pop+pop) 2/3 1*1+10 NO 2 0.12 0/8 2190 2.34
ms-queue (enq+deq) 2/3 1*1+10 NO 2 0.11 0/3 730 0.96
ms-queue (enq+enq) 2/3 1*1+10 NO 2 0.12 0/31 8906 10.78
ms-queue (deq+deq) 2/3 1*1+10 NO 2 0.13 0/12 3358 3.68
rd-queue (enq+deq) 2/3 1*1+10 NO 2 0.25 0/7 1898 2.63
rd-queue (enq+enq) 2/3 1*1+10 NO 2 0.2 0/31 8906 11.23
rd-queue (deq+deq) 2/3 1*1+10 NO 2 0.13 0/6 1606 2.04
bk-queue (enq+deq) 2/3 1*1+10 NO 2 0.23 0/1 146 0.22
bk-queue (enq+enq) 2/3 1*1+10 NO 2 0.18 0/12 3358 3.94
bk-queue (deq+deq) 2/3 1*1+10 NO 2 0.19 0/8 2190 2.74
ubk-queue (enq+deq) 2/3 1*1+10 NO 2 0.85 0/1 146 0.25

ubk-queue (enq+enq) 2/3 1*1+10 NO 2 0.65 0/12 3358 6.55
ubk-queue (deq+deq) 2/3 1*1+10 NO 2 0.28 0/8 2190 3.2
k-stack (push+pop) 2/3 1*1+10 YES 2 0.82 11/69 20002 27.35
k-stack (push+push) 2/3 1*1+10 NO 2 0.26 0/12 3358 4.86
k-stack (pop+pop) 2/3 1*1+10 NO 2 0.34 0/8 2190 3.85

not effective for checking low-level C/C++ code that imple-

ments most of the highly concurrent data structures. These

bug detectors are designed primarily for checking application

level code. Furthermore, they are often based on the lockset

analysis and condition variable analysis. Although locks and

condition variables are widely used in writing application level

code, they are rarely used in implementing concurrent data

structures. Synchronization in concurrent data structures may

be implemented using atomic memory accesses. To the best of

our knowledge, no prior method can directly check quantitative

properties in such low level C/C++ code.

VII. RELATED WORK

Our new method can detect quasi linearizability violations

in the code of concurrent data structures. A closely related

work is a model checking based approach for formally ver-

ifying quantitative relaxations of linearizability in models of

concurrent systems, which we have published recently [17].

However, the method is not designed for checking the C/C++

code. Another closely related work is Line-Up [16], which can

check the code of concurrent data structures for deterministic

linearizability but cannot check for quasi linearizability.

There exists a large body of work on verifying standard

linearizability. For example, Liu et al. [11] verify standard

linearizability by proving that an implementation model re-

fines a specification model. Vechev et al. [12] use the SPIN

model checker to verify linearizability in a Promela model.

Cerný et al. [13] use automated abstractions together with

model checking to verify linearizability properties in Java

programs. There also exists work on proving linearizability by

constructing mechanical proofs, often with significant manual

intervention [9], [10]. However, none of these methods can

check quantitative relaxations of linearizability.

There also exist runtime checking methods for other types

of consistency conditions such as sequential consistency [18],

quiescent consistency [19], and eventual consistency [20].

Some of these consistency conditions, in principle, may be

used to ensure the correctness of concurrent data structures.

However, none of these correctness conditions is as widely

used as linearizability. Furthermore, they do not involve any

quantitative properties.
For checking application level code, which has significantly

different characteristics from the low level code that imple-

ments concurrent data structures, serializability and atomicity

are the two frequently used correctness properties. There also

exists a large body of work on detecting violations of these

properties (e.g. [21], [22], [23] and [24], [25], [26], [27],

[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],

[39], [40], [41], [42], [43]). These bug finding methods differ

from our new method in that they are checking for different

types of properties. In practice, atomicity and serializability

have been used primarily at the shared memory read/write

level. Whereas linearizability has been used primarily at the

method API level. Furthermore, existing tools for detecting

serializability violations and atomicity violations do not check

for quantitative properties.

VIII. CONCLUSIONS

We have presented a new algorithm for runtime checking of

standard and quasi linearizability in concurrent data structures.

Our method works directly on the C/C++ code and is fully

automated, without requiring the user to write specifications

or annotate linearization points. It guarantees that all the

reported violations are real violations. We have implemented

the new algorithm in a software tool called Round-Up. Our

experimental evaluation shows that Round-Up is effective

in detecting quasi linearizability violations and generating

information for error diagnosis.

ACKNOWLEDGMENT

The authors would like to thank Christoph Kirsch and

Michael Lippautz of University of Salzburg for making the

Scal benchmarks available and for promptly answering our

questions. Our work is supported in part by the NSF grant

CCF-1149454 and the ONR grant N00014-13-1-0527.

REFERENCES

[1] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, 1990.

[2] M. Herlihy and N. Shavit, The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[3] Y. Afek, G. Korland, and E. Yanovsky, “Quasi-Linearizability: Relaxed
consistency for improved concurrency,” in International Conference on
Principles of Distributed Systems, 2010, pp. 395–410.

[4] T. A. Henzinger, A. Sezgin, C. M. Kirsch, H. Payer, and A. Sokolova,
“Quantitative relaxation of concurrent data structures,” in ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, 2013.

[5] A. Haas, M. Lippautz, T. A. Henzinger, H. Payer, A. Sokolova, C. M.
Kirsch, and A. Sezgin, “Distributed queues in shared memory: multicore
performance and scalability through quantitative relaxation,” in Conf.
Computing Frontiers, 2013, p. 17.

[6] C. M. Kirsch, H. Payer, H. Röck, and A. Sokolova, “Performance,
scalability, and semantics of concurrent fifo queues,” in International
Conference on Algorithms and Architectures for Parallel Processing,
2012, pp. 273–287.

[7] C. M. Kirsch and H. Payer, “Incorrect systems: it’s not the problem,
it’s the solution,” in Proceedings of the Design Automation Conference,
2012, pp. 913–917.

[8] H. Payer, H. Röck, C. M. Kirsch, and A. Sokolova, “Scalability versus
semantics of concurrent fifo queues,” in ACM Symposium on Principles
of Distributed Computing, 2011, pp. 331–332.

[9] V. Vafeiadis, “Shape-value abstraction for verifying linearizability,” in
International Conference on Verification, Model Checking, and Abstract
Interpretation. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 335–348.

[10] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro, “Proving correctness
of highly-concurrent linearisable objects,” in ACM SIGPLAN symposium
on Principles and practice of parallel programming. New York, NY,
USA: ACM, 2006, pp. 129–136.

[11] Y. Liu, W. Chen, Y. A. Liu, and J. Sun, “Model checking linearizability
via refinement,” in Proceedings of the 2nd World Congress on Formal
Methods. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 321–337.

[12] M. T. Vechev, E. Yahav, and G. Yorsh, “Experience with model checking
linearizability,” in International SPIN Workshop on Model Checking
Software, 2009, pp. 261–278.

[13] P. Cerný, A. Radhakrishna, D. Zufferey, S. Chaudhuri, and R. Alur,
“Model checking of linearizability of concurrent list implementations,”
in International Conference on Computer Aided Verification, 2010, pp.
465–479.

[14] Y. Yang, X. Chen, and G. Gopalakrishnan, “Inspect: A runtime model
checker for multithreaded C programs,” University of Utah, Tech. Rep.
UUCS-08-004, 2008.

[15] U. Salzburg, “Scal: High-performance multicore-scalable data structures.
URL: http://scal.cs.uni-salzburg.at/.”

[16] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan, “Line-up: a complete
and automatic linearizability checker,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2010, pp. 330–
340.

[17] K. Adhikari, J. Street, C. Wang, Y. Liu, and S. Zhang, “Verifying a
quantitative relaxation of linearizability via refinement,” in International
SPIN Symposium on Model Checking of Software. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 24–42.

[18] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Computers, vol. 28, no. 9,
pp. 690–691, 1979.

[19] J. Aspnes, M. Herlihy, and N. Shavit, “Counting networks,” J. ACM,
vol. 41, no. 5, pp. 1020–1048, 1994.

[20] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, pp.
40–44, 2009.

[21] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2003, pp. 338–349.

[22] A. Farzan and P. Madhusudan, “Causal atomicity,” in International
Conference on Computer Aided Verification, 2006, pp. 315–328.

[23] A. Sinha, S. Malik, C. Wang, and A. Gupta, “Predictive analysis
for detecting serializability violations through trace segmentation,” in
Formal Methods and Models for Codesign, 2011, pp. 99–108.

[24] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity checker
for multithreaded programs,” in Parallel and Distributed Processing
Symposium, 2004.

[25] M. Xu, R. Bodı́k, and M. D. Hill, “A serializability violation detector
for shared-memory server programs,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2005, pp. 1–14.

[26] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: detecting atomicity
violations via access interleaving invariants,” in Architectural Support
for Programming Languages and Operating Systems, 2006, pp. 37–48.

[27] L. Wang and S. D. Stoller, “Runtime analysis of atomicity for mul-
tithreaded programs,” IEEE Trans. Software Eng., vol. 32, no. 2, pp.
93–110, 2006.

[28] F. Chen and G. Rosu, “Parametric and sliced causality,” in International
Conference on Computer Aided Verification. Springer, 2007, pp. 240–
253.

[29] A. Farzan and P. Madhusudan, “Monitoring atomicity in concurrent
programs,” in International Conference on Computer Aided Verification,
2008, pp. 52–65.

[30] C. Flanagan, S. N. Freund, and J. Yi, “Velodrome: a sound and
complete dynamic atomicity checker for multithreaded programs,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2008, pp. 293–303.

[31] C. Wang, S. Kundu, M. Ganai, and A. Gupta, “Symbolic predictive anal-
ysis for concurrent programs,” in International Symposium on Formal
Methods, 2009, pp. 256–272.

[32] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang, “Automatic dis-
covery of transition symmetry in multithreaded programs using dynamic
analysis,” in SPIN workshop on Software Model Checking, 2009.

[33] C. Wang, R. Limaye, M. Ganai, and A. Gupta, “Trace-based symbolic
analysis for atomicity violations,” in International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 2010, pp.
328–342.

[34] C. Wang, M. Said, and A. Gupta, “Coverage guided systematic con-
currency testing,” in International Conference on Software Engineering,
2011, pp. 221–230.

[35] A. Sinha and S. Malik, “Using concurrency to check concurrency:
Checking serializability in software transactional memory,” in Parallel
and Distributed Processing Symposium, 2010.

[36] N. Sinha and C. Wang, “On interference abstractions,” in ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, 2011,
pp. 423–434.

[37] M. Said, C. Wang, Z. Yang, and K. Sakallah, “Generating data race
witnesses by an SMT-based analysis,” in NASA Formal Methods, 2011,
pp. 313–327.

[38] C. Wang and M. Ganai, “Predicting concurrency failures in generalized
traces of x86 executables,” in International Conference on Runtime
Verification, Sep. 2011.

[39] V. Kahlon and C. Wang, “Universal Causality Graphs: A precise
happens-before model for detecting bugs in concurrent programs,” in
International Conference on Computer Aided Verification, 2010, pp.
434–449.

[40] J. Huang and C. Zhang, “Persuasive prediction of concurrency access
anomalies,” in International Symposium on Software Testing and Anal-
ysis, 2011, pp. 144–154.

[41] V. Kahlon and C. Wang, “Lock removal for concurrent trace programs,”
in International Conference on Computer Aided Verification, 2012, pp.
227–242.

[42] T.-F. Serbanuta, F. Chen, and G. Rosu, “Maximal causal models for
sequentially consistent systems,” in International Conference on Runtime
Verification, 2012, pp. 136–150.

[43] J. Huang, J. Zhou, and C. Zhang, “Scaling predictive analysis of
concurrent programs by removing trace redundancy,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 1, p. 8, 2013.

