Predicting Concurrency Failures in the Generalized
Execution Traces of x86 Executables

Chao Wang and Malay Ganéi

1 Virginia Tech, Blacksburg, VA 24061, USA
2 NEC Laboratories America, Princeton, NJ 08540, USA

Abstract. In this tutorial, we first provide a brief overview of the latelevelop-
mentin SMT based symbolic predictive analysis techniguegfaeir applications
to runtime verification. We then present a unified runtimelysis platform for
detecting concurrency related program failures in the @@ @atables of shared-
memory multithreaded applications. Our platform suppeffieient monitoring
and easy customization of a wide rangeeg&cution trace generalizaticech-
nigues. Many of these techniques have been successfutiypoiated into our
in-house verification tools, including BEST (Binary instrentation based Error-
directed Symbolic Testing), which can detect concurreretgted errors such as
deadlocks and race conditions, generate failure-triggettiread schedules, and
provide the visual mapping between runtime events and gregram code to
help debugging.

1 Introduction

Parallel and concurrent programming is rapidly becomingainsiream topic in to-
day’s corporate world, propelled primarily by the use of timalre processors in all
application domains. As the CPU clock speed remains lamgmhgtant, developers in-
creasingly need to write concurrent software to harnessdahguting power of what
soon will be the tens, hundreds, and thousands of cores fijeMer, manually ana-
lyzing the behavior of a concurrent program is often difficllue to the scheduling
nondeterminism, multiple runs of the same program may extifferent behaviors,
even for the same program input. Furthermore, the numbepsdiple interleavings
in a realistic application is often astronomically largeeB after a failure is detected,
deterministically replaying the erroneous behavior reradiifficult. Therefore, devel-
opers need more powerful analysis and verification tools tizat they currently have,
in order to deal with concurrency problems such as deadlac#isace conditions.
Although static and dynamic methods for detecting conauayebugs have made
remarkable progress over the years, in practice they clregibrt too many false
alarms or miss too many real bugs. Furthermore, most of tisimx bug detection
tools targetapplication-levelsoftware written in languages such as Java or C#. Tools
that can directly check the x86 executables of slgstem-levesoftware are lagging
behind. Software in the latter category are often morecatitio the reliability of the
entire system. They may be developed using a wide range gfamoming languages,
including C/C++, and may use external libraries whose smuozle are not available.
This is one reason why we need tools to directly verify x86cexables. Another reason
is that x86 executables more accurately reflect the instmthat are executed by the

multicore hardware. Almost all microprocessors today aged on the multicore ar-
chitecture and employ some form of relaxed memory modelgaraming languages
such as Java and C++ are also in the process of incorporatiggége-level relaxed
memory models [2, 3]. In this case, the behavior of the x8&&table may be drasti-
cally different from the source code due to compiler optatians, especially when the
program has concurrency bugs. Therefore, analyzing oelgdluirce code is no longer
adequate.

We present a runtime analysis and verification platform taat work directly on
the x86 executables of Linux applications. We use PIN [4h&trument both the ex-
ecutables and all the dynamically linked libraries uponalitthe applications depend.
The additional code injected during this instrumentatioocpss are used to moni-
tor and control the synchronization operations such agimbtck, wait/notify, thread
create/join, as well as the shared memory accesses. We $ieea logical constraint
based symbolic predictive analysis [5—8] to detect runtiaileres by generalizing the
recorded execution trace. Our trace generalization madedpable of capturing all
the possible interleavings of events of the given trace. Wéck whether any of the
interleaving can fail, by first encoding these interleagiagd the error condition as a
set of quantifier-free first-order logic formulas, and thewiding the formulas with an
off-the-self SMT solver.

Our trace generalization model can be viewed as a kind ofpeagram slice, cap-
turing a subset of the behaviors of the original program.d&ysing on this trace gener-
alization model rather than the whole program, many rigstmu previously expensive
techniques, such as symbolic execution [9, 10], becomalsieaior practical uses.

The remainder of this paper is organized as follows. We giveed overview of the
existing predictive analysis methods in Section 2. We bhiie our symbolic predic-
tive analysis in Section 3. The major analysis steps of o8 BEbol are presented in
Section 4, followed by a discussion of the implementatiod evaluation. We review
related work in Section 6, and give our conclusions in Secfio

2 A Brief Overview of Predictive Analysis Methods

Concurrency control related programming errors are duedoriectly constrained in-
teractions of the concurrentthreads or processes. Débkpitevide range of symptoms,
these bugs can all be classified into two categories. Bugseifist category are due
to under-constrainingwhere the threads have more freedom in interacting witkroth
threads than they should have, leadingdoe conditionswhich broadly refer to data
races, atomicity violations, and order violations. Bugshea second category are due
to over-constrainingwhere the threads are more restricted than they shouleaeé; |
ing to either deadlocks or performance bugs. Since thessedmagscheduling sensitive,
and the number of possible thread interleavings is oftemaginically large, they are
often rare events during the program execution. Furthezmio@ runtime environment
where the scheduling is controlled by the underlying ofpegatystem, merely running
the same test again and again does not necessarily incheasleance of detecting the
bug.
Fig. 1 shows an example of two concurrent threads sharingirggue. Due to

under-constraining, an atomicity violation may be trigggein some interleaved exe-
cutions. More specifically, the statementses; in Threadl; are meant to be executed

Threadry ThreadT o] cwrpl o nog) N

e :p = &a; es: RD(p) ey RD(p) e1: WR(p)
ez 1 b =p;
es : |f.(.l.7 #0){ o RD() PN T
€4 g =D; |
es: xq=10; | o : WR(%I er: RD(p) o WR(%I
} es 1 p=0; o

(a) original (b) feasible (c) infeasible

Fig. 1. The given trace1 e5 . . . eg in (a) is not buggy, but the alternative interleaving in (Bskan atomicity violation,
leading to the null pointer dereference failureegt Assuming thap=0 initially, the interleaving in (c) is bogus sinae,
cannot be executed whén= 0.

atomically. Note that sucaitomicityproperty (between the cheekes; and the use,es)
always holds in sequential programs, but may be broken imawroent program un-
less it is enforced explicitly using synchronizations sashocks. For example, assume
thatp = 0 initially in Fig. 1, then executingg in betweere,, e, would lead to a null
pointer dereference ag. Atomicity violations are different from data races, i.si@a-
tion where two threads can access the same memory locatibawisynchronization.
In Fig. 1, for example, even if we add a lock-unlock pair totpob each access to(in

e1, €9, €4, €g), the failure aks due to atomicity violation will remain.

Runtime concurrency bug detection and prediction haverbean active research
topic in recent years [11-18]. Broadly speaking, thesetiexisechniques come in two
flavors. When the goal is to detect runtime errors exposetidgiven execution, it is
called themonitoringproblem (e.g. [12, 13, 18]). When the goal is to detect emaotts
only in the given execution, but also in other possible ietarings of the events of that
execution, it is called thpredictionproblem. For example, in Fig. 1, the given trace in
(a) does not fail. However, from this trace we can infer the alternative interleavings
in (b) and (c). Both interleavings, if feasible, would lea@dat runtime failure at;. A
more careful analysis shows that the trace in (b) is feasibdaning that it can happen
during the actual program execution, whereas the trace)irs (ofeasible, i.e. it is a
false alarm.

Depending on how they infer new interleavings from the git@te, predictive
analysis methods in the literature can be classified intodvomups. Methods in the
first group (e.g. [19, 11, 20, 21, 15, 22]) detect must-violad, i.e. the reported viola-
tion must be a real violation. Methods in the second group (83, 24, 16, 14, 25, 26])
detect may-violations, i.e. the reported violation may bead violation. Conceptually,
methods in the first group start by regarding the given tyaae a totally ordered set of
events (ordered by the execution sequence),jrand then removing the ordering con-
straints imposed solely by the nondeterministic schedulifowever, since the type of
inferred interleavings are limited, these methods oftessmiany real bugs. In contrast,
methods in the second category start by regarding the greeep as an unordered
set of events, meaning that any permutatiop & initially allowed, and then filtering
out the obviously bogus ones using the semantics of the sgniation primitives.
For example, if two consecutive evenrts:s in one thread ands in another thread are
both protected by lock-unlock pair over the same lock, tienpgermutatior;eses is
forbidden based on the mutual exclusion semantics of locks.

The entire spectrum of predictive analysis methods istiitied in Fig. 2. Given
an execution trace, the left-most point represents the singleton set comtgitriace
p itself, whereas the right-most point represents the sell gfogsible permutations
of tracep, regardless of whether the permutations are feasible orTiarefore, the
left-most point denotes the coarsest under-approximatatigiive model, whereas the
right-most point denotes the coarsest over-approximatedigtive model. The left-
to-middle horizontal line represents the evolution of tineler-approximated analysis
methods in the first group — they all report must-violaticars] they have been able to
cover more and more real bugs over the years. This line oareB®riginated from the
happens-before causality relationship introduced by Latr|9]. The right-to-middle
horizontal line represents the evolution of the over-agpnated analysis methods in
the second group — they all report may-violations, and tteetbeen able to steadily
reduce the number of false alarms over the years. Some earBiapments of this
line of research include the Eraser-style lockset ana[2§Fand the lock acquisition
history analysis [27]. Although significant progress hasrbmade over the years, it is
still the case that these existing methods may either miss/meal bugs or generate
many false alarms. For example, if an over-approximatedhatktelies solely on the
control flow analysis while ignoring data, it may report Figc) as a violation although
the interleaving is actually infeasible. If an under-apg@mated method strives to avoid
false alarms, but in the process significantly restrictdype of inferred traces, it may
miss the real violation in Fig. 1 (b).

Trace (total ordered set) CTP [5-7] Trace (un-ordered set)
T TChen&Rosu [21] TAS|[28] UCG [29] Meta-analysis [261 T
Senet al.[11] Acquisition history [27]
Happens-before [19] Lockset [23]
one real some real all real & no bogus some bogus many bogus
trace traces traces traces traces

Fig. 2. The landscape of predictive analysis methods

In our recent work [5—7], we introduced a precise trace gairation model to-
gether with an efficient logical constraint based symbatialgsis. Our model, called
the Concurrent Trace Program (CTP), captures all the edeihgs that can possibly
be inferred from a given trace, without introducing any b®@uterleavings. As illus-
trated in Fig. 2, CTP represents the theoretically optin@hi where the two long
lines of research on predictive methods converge. Howdverpractical use of CTP
as a predictive model depends on how efficient its error tietealgorithm is. We be-
lieve that the key to its widespread use will be the judiciapplication ofsymbolic
analysistechniques anthterference abstraction$SMT based symbolic analysis will
help combainterleaving explosionthe main bottleneck in analysis algorithms based
on explicitly enumerating the interleavings. Explicit @meration is avoided entirely in
our SMT-based symbolic analysis. Interference abstrmacéers to the over- or under-

approximated modeling of the thread interactions with aivay degree of precision.
The main idea is that, for the purpose of deciding a propdrhaad, we often do not
need to precisely model all the details of the thread inteyas. Our SMT based sym-
bolic analysis provides a flexible and unified framework foarsdly performing such
over- or under-approximations, without forcing us to woatyout the validity of the
analysis results.

3 SMT-based Symbolic Predictive Analysis

Recall that the Concurrent Trace Program (CTP) is the optresictive model be-
cause it can catch all real bugs that can possibly be predicien a given trace, with-
out introducing any bogus bug. Fig. 3 shows how the CTP isvddrirom a concrete
execution trace. Here the main threBgdcreates threads; and7s, waits for their ter-
mination, and asserts # y). This given execution does not violate the assertion. From
this trace, however, we can derive the model on the rightisare, which is a parallel
composition of the three bounded straight-line threadshis model, we remove all
the execution ordering constraints (of the given trace)asegl solely by the nondeter-
ministic scheduling. For example;; can execute aftat,; although it was executed
beforees; in the given trace. However, not all interleavings are adidwinterleaving
e1€2€21626€27€28€11 - - - €15€18€3 . . . €5 1S not allowed, because the assume condition
in egq is invalid, and as a result, we cannot guarantee the feigitilthis interleaving.

In other words, this interleaving may be bogus.

ThreadT, Ty
(Execution Trace) €0 - x=0,y=0;
intx=0,y=0; FORK
pthreadt t1, t2; eo: x=0,y=0; @
main() { eq: fork(1) g » T
ey pthreadcreate(t1, ..., foo); es: fork(2) o >
es pthreadcreate(t2, ..., bar); > - asy; €012 b=X;
es pthreadjoin(t2); e11:a=y;
eq pthreadjoin(t1); e12: assume(a=0) eri(a = V O
es assert(x !=vy); e13: X=1; - ta:(b # 0)
} e14: a=x+1;
e15: X=a; ez 1 x=1; O
ThreadT; ThreadTs» €1s: ¢27 1 ¥=0;
_'>b_X' ey a=x+1T
foo() { bar() { c21: b=
e11 intasy; ea1 inth=x; e2e: assume(k-0) o ’ "
e12 if (a==0) { €22 if (b==0) { 627: y=0; €15 : X=8; i;i‘
e13 x=1; €23 y=1, < €28: m!} o
e1q a=x+1;| |e2a b=y+1; - —
615 X=a; 625 y=b; €3: j_O!n(Q) JON e - assert(x/y);
e Jelse ess Jelse eatjoin(1)
e1r X=0; e2r y=0; es: asserg # y)
e1s } e28

Fig. 3. A multithreaded C program, an execution trace, and the qoexcttrace program (CTP).

CTP is ideally suited for detecting concurrency bugs sihéea concurrency con-
trol skeletonwith most of the complications of typical sequential codmoved. For
example, pointers have been dereferenced, loops have hedted, and recursion has

been applied during the concrete execution. Assignmemhtasicp) := 10 is modeled
asassume(p=&a); a:=10 if p points to variable in the given execution. As a result, the
interleavings in whiclp does not match the memory addréssare excluded from the
model. In other words, pointerhas been replaced by one of its constant v&élueThe
variables and expressions whose valuations are insengitishread scheduling can be
replaced by their concrete values in the given trace. Thesmirce of nondeterminism
in a CTP comes from the thread interleaving.

3.1 SMT-based Symbolic Encoding

We check for property violation by formulating this verifimn problem as a constraint
solving problem. That is, we build a quantifier-free firstt@rlogic formula® such that

@ is satisfiable if and only if there is an erroneous interlegvin the CTP. Conceptually,
@ := Oy N Pso AN Pprp, Wheredr, is the thread model encoding the individual
behaviors of all thread®5¢ is the sequential consistency model encoding all the valid
thread interactions, anBlp g p is the property constraint encoding the failure condition.
Central to the analysis i®sc, which specifies, in a valid interleaving, which shared
memory read should be mapped to which shared memory writeiater what condi-
tion. For example, each shared memory reachust match a preceding shared memory
write w,, for the same memory locatiory and if r, matchesw,, then any other write
w’, to the same location must happen either beferer afterr,.. Synchronization op-
erations such as lock-unlock and wait-notify are modeledlarly. The logic formula

@ is then decided by an off-the-shelf SMT solver.

Compared to existing methods, our constraint-based apprpavides a unified
analysis framework with the following advantages. Firstsiflexible in checking a
diverse set of concurrency related properties; there i®ngdr a need to develop sep-
arate algorithms for detecting deadlocks, data races,ieitymiolations, etc. All these
properties can be modeled in our framework as a set of logmastraints. Second, it
is efficient since the program behaviors are capturgdicitly as a set of mathematical
relations among all synchronization operations and sharechory accesses, therefore
avoiding the interleaving explosion. Third, our analysigiore precise and covers more
interleavings. It also allows easy exploitation of the was trade-offs between the anal-
ysis precision and the computation overhead, simply byrapldi removing some logic
constraints. This is crucially importantly because, as axementioned earlier, not all
the inference constraints (ibsc) may be needed for deciding the property at hand.
Forth, our symbolic encoding is compositional in that thbdweors of the individual
threads are modeled as one set of logical constraings(in), while the thread interfer-
ence is modeled as another set of logical constraint8{im). The parallel composition
is accomplished by conjoining these two sets of constréagsther.

3.2 Interference Abstractions

While the CTP model and the associated symbolic predictiadyais provide a solid
theoretical foundation, their practical use will hinge ngbe judicious application of
proper interference abstractions. Interference abgtracefers to the over- or under-
approximated modeling of the thread interactions with giwardegree of precision. In
our symbolic analysis framework, interference abstractiare manifested as the over-

or under-approximations of formuts . Since modeling the thread interactions is the
most expensive part of the concurrent program analysisowttabstraction, symbolic
analysis will not be able to scale to large applications. @am hypothesis is that, since
concurrency bugs typically involve a small number of unexted thread interferences,
they can often be captured by succinct interference aistnasc

In a previous work [29], we proposed an over-approximatéeriarence abstrac-
tion, called theUniversal Causality Graph (UCGWwhere the shared-memory accesses
are abstracted away while the control flow and the synchatioiz primitives are re-
tained. We represent the happens-before causality negdttip among trace events as a
graph, where the nodes are the events and the edges are appstihbefore relations
between the events, as imposed by the thread-local progiden ¢he synchronization
primitives, and the property. Checking whether a propedigé can be reduced to the
problem of checking whether these causality edges can farycla. The existence of
a cycle means that none of the interleavings of the CTP césfisatthe property. How-
ever, due to over-approximations, this analysis is corievin that it guarantees to
catch all violations that can possibly be predicted from\aegitrace, but may report
some false alarms. Our UCG based analysis is provably margae than the exist-
ing methods in the same category, e.g. the widely used lbblesed methods [23, 24,
16,14, 25, 26]. The reason is that lockset analysis typicatidels locks precisely, but
cannot robustly handle synchronization primitives othantlocks, such as wait-notify
and fork-join. In contrast, our UCG based method precisadgehthe semantics of all
common synchronization primitives, as well as the syneegyben the different types
of primitives.

In another work [28], we proposed an under-approximatestfiatence abstraction
called theTrace Atomicity Segmentation (TASich can soundly restrict the search
space that needs to be considered to detect the most gemenabf atomicity viola-
tions. More specifically, the TAS is a trace segment comgjsbif all the events in the
surrounding areas of an atomic block, such that these eaemtufficient for checking
whether this atomicity property can be violated. Differfrotn most existing work, our
method can detect violations that involve an arbitrary nendf variables and threads,
rather than the simplest atomicity violations involvingrgse variable and three mem-
ory accesses. As illustrated in Fig. 2, TAS is regarded amndemapproximation. The
case for using TAS in practice is when the runtime analysessdwt have access to
the program code, or cannot afford to monitor every instonctbut is still required to
guarantee no false alarms. Our preliminary experiment2&h $how that the TAS is
typically small even in an otherwise long execution trace.

We also proposed an algorithm to automatically find the fatence abstraction
that is optimal to the property at hand. Unlike the ones wigirescribed precision, a
property specific interference abstraction can be moreigftisince it only needs a
minimal set of interference constraints. The rationalerefs that sometimes we can
prove a property using an over-approximated abstractigntlee control-state reacha-
bility analysis [26, 29]. Sometimes we can detect real buigis an under-approximated
abstraction, e.g. by artificially bounding the number ofteahswitches, since the bugs
may be scheduling-insensitive, and therefore may show ap &vserial executions or
when threads interleave only sporadically [30, 31]. Howgités generally difficult to
decidea priori which abstraction is more appropriate. To solve this prnoblee pro-
posed an iterative refinement algorithm [32]. We will staittva coarse initial abstrac-

tion which is either over- or under-approximated, based bather the property likely
holds or not. Depending on the initial abstraction, thisnefient process may be ei-
ther under-approximation widening or over-approximatiefinement. It is interesting
to point out thatpptimalinterference abstraction, defined as the most succinatzabst
tion that is sufficient to decide the property, may not be elyuover-approximated
model or a purely under-approximated model, but a hybrid ehad represented by
the dots in the middle of Fig. 4. In this figure, we have bentrdle right-to-middle
horizontal line in Fig. 2 to make it the bottom-to-top veatitine. Most of the points in
this two-dimensional plane correspond to the hybrid modedsve have shown in [32],
with a careful analysis, such hybrid models can still be usedccurately decide the
property at hand, despite the fact that they are consideradither sound nor complete
in the traditional sense. Fig. 5 shows that small interfeeaabstractions are often suffi-
cient for checking properties in realistic applicationsd @hat their use can drastically
improve the scalability of our symbolic analysis.

Higher

: Runtime (seconds)
Precision

. Interference Abstraction
" (total order) cTe
No ¢e oee Kf * 10000
bogus

traces

= Symbolic

1000 mSym-IA

Fewer ¢ Optimal
bogus
traces

More 10
bogus o Trace
traces : (not

1

100

e 00 o

®: ordered)
.

WZ)’ZE’ZZTZZTZZ,’ZZ’Z’Z’ZZ’H

I

e
-

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fewer More Al Higher'
Different Test Cases

real traces real traces real traces Coverage

Fig. 4. Finding the optimal interference
abstraction: identifying the smallest set
of interference constraints that are suffi-
cient for deciding the property.

Fig.5. Experimental results from [32]:
using interference abstraction can lead to
faster property checking than using the
full-blown interference constraints.

4 The BEST Platform

Our Binary instrumentation-based Error-directed Symbolistifeg (BEST}ool imple-
ments some of the symbolic predictive analysis techniguiesduced in the previous
sections, and is capable of detecting concurrency errodirbgtly monitoring an un-
modified x86 executable at runtime. In the remainder of thjsqp, we shall use atom-
icity violations as an example to illustrate the featureswfframework. As shown in
Fig. 6, the predictive analysis in BEST consists of the felfty stages:

— Stage |, recording the execution trace and building theiptigd model;
— Stage I, simplifying the model using sound program tranmsfations;
— Stage lll, inferring and then statically pruning the atoityiproperties;
— Stage |V, predicting the violations of the atomicity projes;

— Stage V, replaying the erroneous interleaving, to see #nt@ause runtime failures.
— Go back to Stage I.

Before using this tool, the developer needs to provide aowian environment for the
program under test, i.e. a test harness. Details of thestagéllustrated as follows.

STAGE |: TRACE GENERALIZATION STAGE V: DEBUG TRACES

TARGET BINARY &
TeST HARNESS

' 1
' 1
[} EXECUTE AND BuiLo CONCURRENT !
0 1
] REcORD TrAcE MoDEL (CTM) |
' 1

INFER ATOMIC REGIONS
* USE DEBUG INFO. (OBJDUMP)
*_USE SOURCE-LINE PROXIMITY

MERGE
* MERGE LOCAL TRANSITIONS

0

LOCKSET & HB ANALYSIS
ELIMINATE INFEASIBLE CONTEXT
SWITCHES

S3INAIHIS AY

SELECT AN ENCODE PROPERTY
| ATOMICITY PROPERTY AV CONDITIONS

FINDAV

(DECISION PROCEDURE)

MERGE (GENERATE AV SCHEDULES
(PER PROPERTY)

PRUNE ATOMIC REGIONS
* REMOVE “"PROVED" ATOMIC
* REMOVE “OBSERVED” NON-ATOMIC

POR ANALYSIS GENERATE ATOMICITY PROPERTIES

* EUMINATE REDUNDANT * CAusAL ATomICITY (CA) , OR POR ANALYSIS ENCODE SCHEDULES
CONTEXT SWITCHES * CAUSAL MUTUAL ATOMICITY (CMA) (PER PROPERTY) FEASIBLE+ REPRESENTATIVE
1 a2 PPROPERTY-SPECIFIC SIMPLIFICATION ENCODE & SOLVE

STAGE II: SIMPLIFY CTM STAGE IlI: INFERRING ATOMICITY SPECIFICATION STAGE IV: PROPERTY-SPECIFIC SYMBOLIC ANALYSIS

Fig. 6. BEST architecture

4.1 The Staged Analysis

Stage |. While testing the concurrent application, we use PIN torimsent the exe-
cutable at run time to record the sequence of global evemisrgied by the execution.
The global events include both synchronization operatsues as lock-unlock and the
shared memory reads and writes. From this sequence of ewentierive a concurrent
trace model (CTM), which may be an over-approximation of @id°. The model can
be viewed as generatorof traces, including both the given trapeand all the other
interleavings that can be obtained by relaxing the ordeconstraints (inp) imposed
by the non-deterministic scheduling. Even if the given exien tracep does not fail, a
runtime failure may still occur in some of the alternativeeiheavings.

Stage Il. Given the initial model, we perform the following simplifibans. First, we
identify the operations over only thread-local variablebgre the thread-local vari-
ables are identified by checking whether their memory locatiare accessed by more
than one concurrent threads. Then, we merge consecuteadfocal operations into
a single operation. Next, we perform constant value proj@gao simplify all the
expressions that are scheduling-insensitive. These gicagions can lead to orders-
of-magnitude reduction in the model size, measured in tevhitke number of trace
events. Finally, we use sound static analysis techniquels as lockset analysis and
simple happen-before (HB) analysis to quickly identify threlering constraints im-
posed by synchronizations (which must be satisfied by ailil vaterleavings) and then
eliminate the obviously infeasible interleavings.

10

Stage Ill. On the simplified model, we infer the likely atomic regiorssbd on the
structure of the program code. Note that these atomic regieay involve multiple
shared variable accesses. We also assume that the giveistgpod (unless it fails) and
therefore remove any region that is not atomic in the giveacetion. The remaining
regions are treated as atomic. We use the noticzaakal atomicityas in [33] as well
as the notion o€ausal mutual atomicitfCMA) as in [34]. In the latter case, we check
the violation of two pair-wise atomic regions from diffetehreads with at least two
conflicting transitions.
Stage IV. For each atomicity property, we perform a property specifagpam slicing,
followed by another pass of simplifications and merging eftbnsecutive thread-local
events. We check for violations of the atomicity properbggormulating the problem
as a constraint solving problem. That is, we build a quamntifige first-order logic for-
mula® such that is satisfiable if and only if there is an erroneous interlegviThe
logic formula® is then decided by an off-the-shelf SMT solver.
Stage V.Once our SMT based analysis detects a violation, it will gatesan erroneous
thread schedule. To replay it, we use PIN to instrument tieewables at runtime, and
apply the externally provided schedule. After Stage V, wback to Stage | again. The
entire procedure stops either when a runtime failure (eash) is found, or when the
time limit is reached.

Our BEST tool can provide the visualization of the failurigigering execution.
If the executable contains the compiler generated debgggiiormation, BEST can
also provide a mapping from the trace events to the correpgiprogram statements.
On the Linux platform, for example, we use a gnu utility cdlbj dunp to obtain
the mapping between processor instructions and the camegpg source file and line
information.

4.2 Inferring Atomicity Properties

Programmers often make some implicit assumptions regatb@concurrency control
of the program, e.g. certain blocks are intended to be miyteatlusive, certain blocks
are intended to be atomic, and certain instructions aredee to be executed in a
specific order. However, sometimes these implicit assuomptare not enforced using
synchronization primitives such as locks and wait-notfgncurrency related program
failures are often the result of these implicit assumptiogisig broken, e.g. data races,
atomicity violations, and order violations. There are &g methods (e.g. [12]) for
statically mining execution order invariants form the mag source code. There are
also dynamic methods (e.qg. [13]) for inferring invariaritsuatime. For example, if no
program failure occurs during testing, then the alreadieteexecutions often can be
assumed to satisfy the programmer’s intent.

Our BEST tool heuristically infers such likely atomicitygperties from the x86
executables. Our approach is an application of the existiethods in [12, 13] together
with the following extensions. Let a global access dendteeeia synchronization oper-
ation or a shared memory accesses. When inferring the itelyic regions, we require
each region to satisfy the following conditions:

— the region must contain at least one shared memory readjwrit
— the first and/or last global access must be a shared memaliyuréa;
— the global accesses must be within a procedure boundary;

11

— the global accesses must be close to each other in the pragdan

In additional, the region should not be divided by blockiggehronization operations
such as thread creation/join or the wait/notify, which wuilhke the region non-atomic.

./atomc: 59
pt hread_nut ex_| ock(12);

8048776: e8 cl fd ff ff call 804853c
./atomc: 61
 ++Z
B 804877b: al 28 9a 04 08 nmov 0x8049a28, %eax
2| 8048780: 83 c0 01 add $0x1, %eax
% 8048783: a3 28 9a 04 08 nov %ax, 0x8049a28

./atomc: 63

A

X = (char *)malloc(2);

L | 8048788: al 28 9a 04 08 nov 0x8049a28, Yeax
g 804878d: 89 04 24 nov %eax, (¥esp)
&| 8048790: e8 97 fd ff ff call 804852c
b | 8048795: a3 2c 9a 04 08 nov %eax, 0x8049a2c
./atomc: 65
pt hread_nut ex_| ock(11);
80487al: e8 96 fd ff ff cal | 804853c

Fig. 7. Inferring atomicity withobj dunp using code structure

Fig. 7 shows an example of inferring the likely atomic regidrom the program
code, by following the above guidelines. This figure corgdive output obbjectdump
for a small C program calledtom.cat Lines 59, 61, 63, and 65. The entire execution
trace, together with its CTM and interleaving lattice, caridund in [35]. The transition
corresponding tpt hr ead_nut ex_| ock(| 2) is assigned a ta@itom.c, 59). Similarly,
the transitions correspondingZ is assigned a tadutom.c, 61). Using the rules for
inferring atomic regions, we mark the transitions corregpiog to statements+z and
X=(char) mal | oc(Z) as the likely atomic region. In other words, if we can find an
interleaved execution which breaks this atomicity assionpthe execution will be
regarded as risky — it is more likely to lead to a program failun Stage V of our
BEST tool, we will replay such interleavings in order to nrakie the exposure of the
real failures.

5 Implementation and Evaluation

Our tool has been implemented for x86 executables on thexlatform. We use
PIN [4] for dynamic code instrumentation and the YICES [36lver for symbolic
predictive analysis. Our BEST tool can directly check foncarrency failures in exe-
cutables that use the POSIX threads. Whenever the prognamescode are available,
for example, in C/C++/Java, we ugec/g++/gcjto compile the source code into x86
executables before checking them. With the help of dynamnsizimentation form PIN,
we can model the instructions that come from both the appdicand the dynamically
linked libraries. Specifically, we are able to record all B@SIX thread synchroniza-
tions such as wait/notify, lock/unlock, and fork/join, aslihas the shared memory ac-
cesses.

12

For efficiency reasons, BEST may choose to turn off the récgrdf the thread-
local operations such as stack reads/writes. This optigmiirciple may lead to a fur-
ther over-approximation of the trace generalization moaeaning that some of the
violations reported by our analysis may be spurious. As altigeplay in Stage V may
fail (our bailout strategy is to start a free run as soon asepkay fails). However, such
cases turn out to be rare in our experiments.

We have experimented with some public domain multi-thrdaagplications from
the sourceforge and freshmeat websites. The size of theshimarks are in the range
of 1K-33K lines of C/C++ or Java code. They incluatget(1.2K LOC,C), fastspy(1.5K
LOC, O), finalsolution(2K LOC, C++), prozilla (2.7K LOC, C++), axel (3.1K LOC,
O), bzip2smy6.4K LOC, C), alsaplayer(33K LOC, C++), andtsp(713,Java). The
length of the execution trace ranges from a few hundreds koe34nts, with 4 to 67
threads. Most of the inferred atomic regions involve moantbne variable accesses.
Due to the use of interference abstractions and the varimgehsimplification and
search space reduction techniques, the CPU time per cheokirbgnalysis is a few
seconds on average.

Our BEST tool found several previously known/unknown attyiviolations. The
bug list can be found iht t p: / / waww. nec- | abs. coml ~mal ay/ not es. ht ni .

6 Related work

We have reviewed the existing methods for runtime monitpand prediction of con-
currency failures in Section 2. It should be clear that fahsanalysis to detect a failure,
a failure-inducingexecution trace should be provided as input, which contalirnthe
events that are needed to forrfadlure-triggeringinterleaving. While we have assumed
that this failure-inducing execution trace is availablengrating such trace can be a
difficult task in practice, since it requires both thight thread schedule and thight
program input.

When the thread scheduling is controlled by the operatistesy, it is difficult to
generate a failure-inducing thread schedule — repeatasgdme test does not necessar-
ily increase the coverage. Standard techniques such astieess tests and randomiza-
tion [37] are not effective, since they are highly dependerthe runtime environment,
and even if a failure-inducing schedule is found, replayimg schedule remains dif-
ficult. CHESS-like tools [38, 31, 39] based on stateless roldecking [40] are more
promising, but too expensive due to interleaving explosamen with partial order re-
duction [41] and context bounding [42, 43]. A more practiggproach is to systemati-
cally, but also selectively, test a subset of thread sclesdumhile still cover the common
bug patterns. Similar approaches have been used in CalHdziePENELOPE [45],
and our recent work in [46].

Generating the failure-inducing execution trace also iregtthe right data input.
In practice, test inputs are often hand crafted, e.g. asgédtte testing harness. Al-
though DART-like automated test generation techniques$47 have made remark-
able progress for sequential programs, extending thenrtourcent programs has been
difficult. For example, ESD [55] extended the test genenagigorithm in KLEE [52]
to multithreaded programs; Sen and Agha [20] also outlinedrecolic testing algo-
rithm for multithreaded Java. However, these existing m@shwere severely limited
by interleaving explosion — it is difficult to systematigalichieve a decent code and

13

interleaving coverage within a reasonable period of tim&$D, for example, heuris-
tics are used to artificially reduce the number of interlegsi however, the problem is
that the reduction is arbitrary and often does not match ¢imencon concurrency bug
patterns. This leads to missed bugs, and also makes it ditficidentify which part of
the search space is covered and which part is not. Thersferepnsider scalable and
efficient test input generation for concurrent programsramgeresting problem for a
future work.

7 Conclusions

In this paper, we have provided a brief overview of the latistelopment in SMT-
based symbolic predictive analysis. We have also presenteBEST tool for detect-
ing runtime failures in unmodified x86 executables on thaukiplatform using POSIX
threads. BEST uses a staged analysis with various simpilifitssand model reduction
techniques to improve the scalability of the symbolic asilylt infers likely atom-
icity properties and then checks them using the symbolityaisa Thread schedules
that violate some of these likely atomicity properties asedito re-direct the testing
toward the search subspaces with a higher risk. BEST alsoda®the visualization
of trace events by mapping them to the program statementdpadebugging. We be-
lieve that these SMT-based symbolic predictive analysisriejues hold great promise
in significantly improving concurrent program verification

References

[EnY

. Ross, P.E.: Top 11 technologies of the decade. IEEE $ped8(1) (2011) 27-63

2. Manson, J., Pugh, W., Adve, S.V.: The java memory modelAGM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. (2008)-391

3. Boehm, H.J., Adve, S.V.: Foundations of the c++ concuyememory model. In: ACM
SIGPLAN Conference on Programming Language Design andelightation. (2008) 68—
78

4. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Loayy G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: PIN: Building customized program analysisl$ with dynamic instrumen-
tation. In: ACM SIGPLAN Conference on Programming LanguBgsign and Implemen-
tation, New York, NY, USA, ACM (2005) 190-200

5. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic preédécanalysis for concurrent
programs. In: International Symposium on Formal Metho2809) 256-272

6. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolicnimg of concurrent program ex-
ecutions. In: ACM SIGSOFT Symposium on Foundations of SafeAEngineering. (2009)
23-32

7. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-baseadbmlic analysis for atomic-
ity violations. In: International Conference on Tools anidiéxithms for Construction and
Analysis of Systems. (2010)

8. Kundu, S., Ganai, M.K., Wang, C.: CONTESSA: Concurremsyihg augmented with sym-
bolic analysis. In: International Conference on Computitedl Verification. (2010) 127—
131

9. King, J.C.: Symbolic execution and program testing. Comm\CM 19(7) (1976) 385-394

10. Clarke, L.A.: A system to generate test data and synddbliexecute programs. |IEEE
Trans. Software En@(3) (1976) 215-222

14

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Sen, K., Rosu, G., Agha, G.: Runtime safety analysis dfithteaded programs. In: ACM
SIGSOFT Symposium on Foundations of Software Enginee(R@3) 337-346

Xu, M., Bodik, R., Hill, M.D.: A serializability violdbn detector for shared-memory server
programs. In: ACM SIGPLAN Conference on Programming LamgguBesign and Imple-
mentation. (2005) 1-14

Lu, S., Tucek, J., Qin, F.,, Zhou, Y.: AVIO: detecting atoity violations via access inter-
leaving invariants. In: Architectural Support for Programg Languages and Operating
Systems. (2006) 37-48

Wang, L., Stoller, S.D.: Runtime analysis of atomicity multithreaded programs. |[EEE
Trans. Software Eng2(2) (2006) 93—-110

Chen, F., Serbanuta, T., Rosu, G.: jPredictor: a piigdiatintime analysis tool for java. In:
International Conference on Software Engineering. (2@23)-230

Flanagan, C., Freund, S.N.: Atomizer: A dynamic atotyichecker for multithreaded pro-
grams. In: Parallel and Distributed Processing Sympos{@o04)

Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sourtdcmplete dynamic atomicity
checker for multithreaded programs. In: ACM SIGPLAN Coefere on Programming Lan-
guage Design and Implementation. (2008) 293-303

Farzan, A., Madhusudan, P.: Monitoring atomicity in@mnent programs. In: International
Conference on Computer Aided Verification. (2008) 52—65

Lamport, L.: Time, clocks, and the ordering of events iisributed system. Commun.
ACM 21(7) (1978) 558-565

Sen, K., Rosu, G., Agha, G.: Detecting errors in mukidtled programs by generalized
predictive analysis of executions. In: Formal Methods f@e® Object-Based Distributed
Systems. (2005) 211-226

Chen, F., Rosu, G.: Parametric and sliced causalitylintarnational Conference on Com-
puter Aided Verification, Springer (2007) 240-253 LNCS 4590

Sadowski, C., Freund, S.N., Flanagan, C.: Singletrdakznamic determinism checker for
multithreaded programs. In: European Symposium on Pragiag (2009) 394-409
Savage, S., Burrows, M., Nelson, G., Sobalvarro, P.efgah, T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Cdiripyst.15(4) (1997) 391-411
von Praun, C., Gross, T.R.: Object race detection. Il'VIAIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applicat{@001) 70-82

Farzan, A., Madhusudan, P.: The complexity of prediciitomicity violations. In: Inter-
national Conference on Tools and Algorithms for Constarctand Analysis of Systems.
(2009) 155-169

Farzan, A., Madhusudan, P.: Meta-analysis for atoyniditlations under nested locking.
In: International Conference on Computer Aided Verificati(?009) 248-262

Kahlon, V., lvancic, F., Gupta, A.: Reasoning aboutadsecommunicating via locks. In:
International Conference on Computer Aided Verificati®2Q5) 505-518 LNCS 3576.
Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive lgsiz for detecting serializability
violations through trace segmentation. In: Internatid@ahference on Formal Methods and
Models for Codesign. (2011)

Kahlon, V., Wang, C.: Universal Causality Graphs: A medcappens-before model for
detecting bugs in concurrent programs. In: Internationathf€rence on Computer Aided
Verification. (2010) 434-449

Qadeer, S., Rehof, J.: Context-bounded model checKiognzurrent software. In: Inter-
national Conference on Tools and Algorithms for Constarctand Analysis of Systems,
Springer (2005) 93-107

Musuvathi, M., Qadeer, S., Ball, T., Basler, G., NaiRaf., Neamtiu, |.: Finding and repro-
ducing heisenbugs in concurrent programs. In: OSDI. (2Q68)-280

Sinha, N., Wang, C.: On interference abstractions. GMSIGACT-SIGPLAN Symposium
on Principles of Programming Languages. (2011) 423-434

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

15

Farzan, A., Madhusudan, P.: Causal atomicity. In: fr@tBonal Conference on Computer
Aided Verification. (2006) 315-328

Ganai, M., Kundu, S., Gupta, R.: Partial order reducfamscalable testing of SystemC
TLM designs. In: Design Automation Conference. (2008)

Ganai, M.K., Arora, N., Wang, C., Gupta, A., Balakrishn&.: BEST: A symbolic testing
tool for predicting multi-threaded program failures. IRHE/ACM International Conference
On Automated Software Engineering. (2011)

Dutertre, B., de Moura, L.: A fast linear-arithmetic\sal for DPLL(T). In: International
Conference on Computer Aided Verification, Springer (20816)94 LNCS 4144.

Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns aod o test them. In: Parallel and
Distributed Processing Symposium. (2003) 286

Godefroid, P.: Software model checking: The VeriSoftrapch. Formal Methods in System
Design26(2) (2005) 77-101

Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A mmetimodel checker for multithreaded
C programs. Technical Report UUCS-08-004, University afijt2008)

Godefroid, P.: VeriSoft: A tool for the automatic anadysf concurrent reactive software.
In: International Conference on Computer Aided Verificati(l997) 476-479

Flanagan, C., Godefroid, P.: Dynamic partial-ordeuotion for model checking software.
In: ACM SIGACT-SIGPLAN Symposium on Principles of Prograinign Languages. (2005)
110-121

Qadeer, S., Wu, D.: KISS: keep it simple and sequentral ACM SIGPLAN Conference
on Programming Language Design and Implementation. (200424

Musuvathi, M., Qadeer, S.: Partial-order reductiondontext-bounded state exploration.
Technical Report MSR-TR-2007-12, Microsoft Research @eoer 2007)

Joshi, P., Naik, M., Park, C.S., Sen, K.: CalFuzzer: Aamsible active testing framework for
concurrent programs. In: International Conference on QgderpAided Verification. (2009)
675-681

Sorrentino, F., Farzan, A., Madhusudan, P.: PENELORfving threads to expose atom-
icity violations. In: ACM SIGSOFT Symposium on FoundatiarfsSoftware Engineering.
(2010) 37-46

Wang, C., Said, M., Gupta, A.: Coverage guided systeneaticurrency testing. In: Inter-
national Conference on Software Engineering. (2011) 2202

Khurshid, S., Pasareanu, C.S., Visser, W.: Generadigmdbolic execution for model check-
ing and testing. In: International Conference on Tools afgbAthms for Construction and
Analysis of Systems. (2003) 553-568

Godefroid, P., Klarlund, N., Sen, K.: DART: directed @uaited random testing. In: Pro-
gramming Language Design and Implementation. (June 2Q0%)223

Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated w#iox fuzz testing. In: Network
and Distributed System Security Symposium. (2008)

Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit tegtengine for C. In: ACM
SIGSOFT Symposium on Foundations of Software Enginee(&@5) 263—-272

Burnim, J., Sen, K.: Heuristics for scalable dynamit geseration. In: ASE. (2008) 443—
446

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassistedl amntomatic generation of high-
coverage tests for complex systems programs. In: OSDI8)2209—-224

Lewandowski, G., Bouvier, D.J., Chen, T.Y., McCartrey, Sanders, K., Simon, B., Van-
DeGrift, T.: Commonsense understanding of concurrencyipeding students and concert
tickets. Commun. ACM53 (July 2010) 60-70

Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, 8e8, K., Tillmann, N., Visser, W.:
Symbolic execution for software testing in practice: prafiary assessment. In: International
Conference on Software Engineering. (2011) 1066-1071

Zamfir, C., Candea, G.: Execution synthesis: a techrfmyueutomated software debugging.
In: EuroSys. (2010) 321-334

