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Abstract. In this tutorial, we first provide a brief overview of the latest develop-
ment in SMT based symbolic predictive analysis techniques and their applications
to runtime verification. We then present a unified runtime analysis platform for
detecting concurrency related program failures in the x86 executables of shared-
memory multithreaded applications. Our platform supportsefficient monitoring
and easy customization of a wide range ofexecution trace generalizationtech-
niques. Many of these techniques have been successfully incorporated into our
in-house verification tools, including BEST (Binary instrumentation based Error-
directed Symbolic Testing), which can detect concurrency related errors such as
deadlocks and race conditions, generate failure-triggering thread schedules, and
provide the visual mapping between runtime events and theirprogram code to
help debugging.

1 Introduction

Parallel and concurrent programming is rapidly becoming a mainstream topic in to-
day’s corporate world, propelled primarily by the use of multicore processors in all
application domains. As the CPU clock speed remains largelyconstant, developers in-
creasingly need to write concurrent software to harness thecomputing power of what
soon will be the tens, hundreds, and thousands of cores [1]. However, manually ana-
lyzing the behavior of a concurrent program is often difficult. Due to the scheduling
nondeterminism, multiple runs of the same program may exhibit different behaviors,
even for the same program input. Furthermore, the number of possible interleavings
in a realistic application is often astronomically large. Even after a failure is detected,
deterministically replaying the erroneous behavior remains difficult. Therefore, devel-
opers need more powerful analysis and verification tools than what they currently have,
in order to deal with concurrency problems such as deadlocksand race conditions.

Although static and dynamic methods for detecting concurrency bugs have made
remarkable progress over the years, in practice they can still report too many false
alarms or miss too many real bugs. Furthermore, most of the existing bug detection
tools targetapplication-levelsoftware written in languages such as Java or C#. Tools
that can directly check the x86 executables of thesystem-levelsoftware are lagging
behind. Software in the latter category are often more critical to the reliability of the
entire system. They may be developed using a wide range of programming languages,
including C/C++, and may use external libraries whose source code are not available.
This is one reason why we need tools to directly verify x86 executables. Another reason
is that x86 executables more accurately reflect the instructions that are executed by the
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multicore hardware. Almost all microprocessors today are based on the multicore ar-
chitecture and employ some form of relaxed memory model. Programming languages
such as Java and C++ are also in the process of incorporating language-level relaxed
memory models [2, 3]. In this case, the behavior of the x86 executable may be drasti-
cally different from the source code due to compiler optimizations, especially when the
program has concurrency bugs. Therefore, analyzing only the source code is no longer
adequate.

We present a runtime analysis and verification platform thatcan work directly on
the x86 executables of Linux applications. We use PIN [4] to instrument both the ex-
ecutables and all the dynamically linked libraries upon which the applications depend.
The additional code injected during this instrumentation process are used to moni-
tor and control the synchronization operations such as lock/unlock, wait/notify, thread
create/join, as well as the shared memory accesses. We then use a logical constraint
based symbolic predictive analysis [5–8] to detect runtimefailures by generalizing the
recorded execution trace. Our trace generalization model is capable of capturing all
the possible interleavings of events of the given trace. We check whether any of the
interleaving can fail, by first encoding these interleavings and the error condition as a
set of quantifier-free first-order logic formulas, and then deciding the formulas with an
off-the-self SMT solver.

Our trace generalization model can be viewed as a kind of leanprogram slice, cap-
turing a subset of the behaviors of the original program. By focusing on this trace gener-
alization model rather than the whole program, many rigorous but previously expensive
techniques, such as symbolic execution [9, 10], become scalable for practical uses.

The remainder of this paper is organized as follows. We give abrief overview of the
existing predictive analysis methods in Section 2. We introduce our symbolic predic-
tive analysis in Section 3. The major analysis steps of our BEST tool are presented in
Section 4, followed by a discussion of the implementation and evaluation. We review
related work in Section 6, and give our conclusions in Section 7.

2 A Brief Overview of Predictive Analysis Methods

Concurrency control related programming errors are due to incorrectly constrained in-
teractions of the concurrent threads or processes. Despitetheir wide range of symptoms,
these bugs can all be classified into two categories. Bugs in the first category are due
to under-constraining, where the threads have more freedom in interacting with other
threads than they should have, leading torace conditions, which broadly refer to data
races, atomicity violations, and order violations. Bugs inthe second category are due
to over-constraining, where the threads are more restricted than they should be, lead-
ing to either deadlocks or performance bugs. Since these bugs are scheduling sensitive,
and the number of possible thread interleavings is often astronomically large, they are
often rare events during the program execution. Furthermore, in a runtime environment
where the scheduling is controlled by the underlying operating system, merely running
the same test again and again does not necessarily increase the chance of detecting the
bug.

Fig. 1 shows an example of two concurrent threads sharing a pointer p. Due to
under-constraining, an atomicity violation may be triggered in some interleaved exe-
cutions. More specifically, the statementse2-e5 in ThreadT1 are meant to be executed
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ThreadT1 ThreadT2

{ e1 : p = &a;
e2 : b = p;
e3 : if(b 6= 0) {

...
e4 : q = p;
e5 : ∗ q = 10;

} ...
} e6 : p = 0;

e6 : WR(p)

e2 : RD(p)

e4 : RD(p)

e1 : WR(p)

(a) original

e6 : WR(p)

e2 : RD(p)

e4 : RD(p)

e1 : WR(p)

(b) feasible

e6 : WR(p)

e4 : RD(p)

e2 : RD(p)

e1 : WR(p)

(c) infeasible

Fig. 1. The given tracee1e2 . . . e6 in (a) is not buggy, but the alternative interleaving in (b) has an atomicity violation,
leading to the null pointer dereference failure ate5. Assuming thatp=0 initially, the interleaving in (c) is bogus sincee4
cannot be executed whenb = 0.

atomically. Note that suchatomicityproperty (between the checke2e3 and the usee4e5)
always holds in sequential programs, but may be broken in a concurrent program un-
less it is enforced explicitly using synchronizations suchas locks. For example, assume
thatp = 0 initially in Fig. 1, then executinge6 in betweene2, e4 would lead to a null
pointer dereference ate5. Atomicity violations are different from data races, i.e. asitua-
tion where two threads can access the same memory location without synchronization.
In Fig. 1, for example, even if we add a lock-unlock pair to protect each access top (in
e1, e2, e4, e6), the failure ate5 due to atomicity violation will remain.

Runtime concurrency bug detection and prediction have become an active research
topic in recent years [11–18]. Broadly speaking, these existing techniques come in two
flavors. When the goal is to detect runtime errors exposed by the given execution, it is
called themonitoringproblem (e.g. [12, 13, 18]). When the goal is to detect errorsnot
only in the given execution, but also in other possible interleavings of the events of that
execution, it is called thepredictionproblem. For example, in Fig. 1, the given trace in
(a) does not fail. However, from this trace we can infer the two alternative interleavings
in (b) and (c). Both interleavings, if feasible, would lead to a runtime failure ate5. A
more careful analysis shows that the trace in (b) is feasible, meaning that it can happen
during the actual program execution, whereas the trace in (c) is infeasible, i.e. it is a
false alarm.

Depending on how they infer new interleavings from the giventrace, predictive
analysis methods in the literature can be classified into twogroups. Methods in the
first group (e.g. [19, 11, 20, 21, 15, 22]) detect must-violations, i.e. the reported viola-
tion must be a real violation. Methods in the second group (e.g. [23, 24, 16, 14, 25, 26])
detect may-violations, i.e. the reported violation may be areal violation. Conceptually,
methods in the first group start by regarding the given traceρ as a totally ordered set of
events (ordered by the execution sequence inρ), and then removing the ordering con-
straints imposed solely by the nondeterministic scheduling. However, since the type of
inferred interleavings are limited, these methods often miss many real bugs. In contrast,
methods in the second category start by regarding the given traceρ as an unordered
set of events, meaning that any permutation ofρ is initially allowed, and then filtering
out the obviously bogus ones using the semantics of the synchronization primitives.
For example, if two consecutive eventse1e2 in one thread ande3 in another thread are
both protected by lock-unlock pair over the same lock, then the permutatione1e3e2 is
forbidden based on the mutual exclusion semantics of locks.
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The entire spectrum of predictive analysis methods is illustrated in Fig. 2. Given
an execution traceρ, the left-most point represents the singleton set containing trace
ρ itself, whereas the right-most point represents the set of all possible permutations
of traceρ, regardless of whether the permutations are feasible or not. Therefore, the
left-most point denotes the coarsest under-approximated predictive model, whereas the
right-most point denotes the coarsest over-approximated predictive model. The left-
to-middle horizontal line represents the evolution of the under-approximated analysis
methods in the first group – they all report must-violations,and they have been able to
cover more and more real bugs over the years. This line of research originated from the
happens-before causality relationship introduced by Lamport [19]. The right-to-middle
horizontal line represents the evolution of the over-approximated analysis methods in
the second group – they all report may-violations, and they have been able to steadily
reduce the number of false alarms over the years. Some early developments of this
line of research include the Eraser-style lockset analysis[23] and the lock acquisition
history analysis [27]. Although significant progress has been made over the years, it is
still the case that these existing methods may either miss many real bugs or generate
many false alarms. For example, if an over-approximated method relies solely on the
control flow analysis while ignoring data, it may report Fig.1 (c) as a violation although
the interleaving is actually infeasible. If an under-approximated method strives to avoid
false alarms, but in the process significantly restricts thetype of inferred traces, it may
miss the real violation in Fig. 1 (b).

Lockset [23]

Trace (un-ordered set)

TAS [28]

Trace (total ordered set) CTP [5–7]

Chen&Rosu [21]
Senet al. [11]

Happens-before [19]

traces
all real & no bogus

traces
many bogus

traces
some bogusone real

trace
some real
traces

UCG [29] Meta-analysis [26]
Acquisition history [27]

Fig. 2. The landscape of predictive analysis methods

In our recent work [5–7], we introduced a precise trace generalization model to-
gether with an efficient logical constraint based symbolic analysis. Our model, called
the Concurrent Trace Program (CTP), captures all the interleavings that can possibly
be inferred from a given trace, without introducing any bogus interleavings. As illus-
trated in Fig. 2, CTP represents the theoretically optimal point, where the two long
lines of research on predictive methods converge. However,the practical use of CTP
as a predictive model depends on how efficient its error detection algorithm is. We be-
lieve that the key to its widespread use will be the judiciousapplication ofsymbolic
analysistechniques andinterference abstractions. SMT based symbolic analysis will
help combatinterleaving explosion, the main bottleneck in analysis algorithms based
on explicitly enumerating the interleavings. Explicit enumeration is avoided entirely in
our SMT-based symbolic analysis. Interference abstraction refers to the over- or under-
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approximated modeling of the thread interactions with a varying degree of precision.
The main idea is that, for the purpose of deciding a property at hand, we often do not
need to precisely model all the details of the thread interactions. Our SMT based sym-
bolic analysis provides a flexible and unified framework for soundly performing such
over- or under-approximations, without forcing us to worryabout the validity of the
analysis results.

3 SMT-based Symbolic Predictive Analysis

Recall that the Concurrent Trace Program (CTP) is the optimal predictive model be-
cause it can catch all real bugs that can possibly be predicted from a given trace, with-
out introducing any bogus bug. Fig. 3 shows how the CTP is derived from a concrete
execution trace. Here the main threadT0 creates threadsT1 andT2, waits for their ter-
mination, and asserts(x 6= y). This given execution does not violate the assertion. From
this trace, however, we can derive the model on the right-hand side, which is a parallel
composition of the three bounded straight-line threads. Inthis model, we remove all
the execution ordering constraints (of the given trace) imposed solely by the nondeter-
ministic scheduling. For example,e15 can execute aftere21 although it was executed
beforee21 in the given trace. However, not all interleavings are allowed: interleaving
e1e2e21e26e27e28e11 . . . e15e18e3 . . . e5 is not allowed, because the assume condition
in e26 is invalid, and as a result, we cannot guarantee the feasibility of this interleaving.
In other words, this interleaving may be bogus.

ThreadT0

int x = 0, y = 0;
pthreadt t1, t2;
main(){

e1 pthreadcreate(t1, ..., foo);
e2 pthreadcreate(t2, ..., bar);
e3 pthreadjoin(t2);
e4 pthreadjoin(t1);
e5 assert( x != y);

}

ThreadT1

foo() {
e11 int a=y;
e12 if (a==0){
e13 x=1;
e14 a=x+1;
e15 x=a;
e16 }else
e17 x=0;
e18 }

ThreadT2

bar(){
e21 int b=x;
e22 if (b==0) {
e23 y=1;
e24 b=y+1;
e25 y=b;
e26 }else
e27 y=0;
e28 }

(Execution Trace)

e0: x=0,y=0;
e1: fork(1)
e2: fork(2)
——->
e11 : a=y;
e12 : assume(a=0)
e13 : x=1;
e14 : a=x+1;
e15 : x=a;
e18 :
——->
e21: b=x;
e26: assume(b6=0)
e27: y=0;
e28:

<——-
e3: join(2)
e4: join(1)
e5: assert(x 6= y)

e18

e5 : assert( x6= y);
JOIN

e0 : x=0,y=0;

e21: b=x;

e27 : y=0;

t26:(b 6= 0)

T2
e2

e3

e4

e28

T0

FORK
e1

e11: a=y;

e12:(a = 0)

e13 : x=1;

e14 : a=x+1;

T1

e15 : x=a;

Fig. 3.A multithreaded C program, an execution trace, and the concurrent trace program (CTP).

CTP is ideally suited for detecting concurrency bugs since it is a concurrency con-
trol skeleton, with most of the complications of typical sequential code removed. For
example, pointers have been dereferenced, loops have been unrolled, and recursion has
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been applied during the concrete execution. Assignment such as(∗p) := 10 is modeled
asassume(p=&a); a:=10 if p points to variablea in the given execution. As a result, the
interleavings in whichp does not match the memory address&a are excluded from the
model. In other words, pointerp has been replaced by one of its constant value&a. The
variables and expressions whose valuations are insensitive to thread scheduling can be
replaced by their concrete values in the given trace. The only source of nondeterminism
in a CTP comes from the thread interleaving.

3.1 SMT-based Symbolic Encoding

We check for property violation by formulating this verification problem as a constraint
solving problem. That is, we build a quantifier-free first-order logic formulaΦ such that
Φ is satisfiable if and only if there is an erroneous interleaving in the CTP. Conceptually,
Φ := ΦTM ∧ ΦSC ∧ ΦPRP , whereΦTM is the thread model encoding the individual
behaviors of all threads,ΦSC is the sequential consistency model encoding all the valid
thread interactions, andΦPRP is the property constraint encoding the failure condition.
Central to the analysis isΦSC , which specifies, in a valid interleaving, which shared
memory read should be mapped to which shared memory write andunder what condi-
tion. For example, each shared memory readrx must match a preceding shared memory
write wx for the same memory locationx; and if rx matcheswx, then any other write
w′

x to the same location must happen either beforewx or afterrx. Synchronization op-
erations such as lock-unlock and wait-notify are modeled similarly. The logic formula
Φ is then decided by an off-the-shelf SMT solver.

Compared to existing methods, our constraint-based approach provides a unified
analysis framework with the following advantages. First, it is flexible in checking a
diverse set of concurrency related properties; there is no longer a need to develop sep-
arate algorithms for detecting deadlocks, data races, atomicity violations, etc. All these
properties can be modeled in our framework as a set of logicalconstraints. Second, it
is efficient since the program behaviors are capturedimplicitly as a set of mathematical
relations among all synchronization operations and shared-memory accesses, therefore
avoiding the interleaving explosion. Third, our analysis is more precise and covers more
interleavings. It also allows easy exploitation of the various trade-offs between the anal-
ysis precision and the computation overhead, simply by adding or removing some logic
constraints. This is crucially importantly because, as we have mentioned earlier, not all
the inference constraints (inΦSC ) may be needed for deciding the property at hand.
Forth, our symbolic encoding is compositional in that the behaviors of the individual
threads are modeled as one set of logical constraints (inΦTM ), while the thread interfer-
ence is modeled as another set of logical constraints (inΦSC ). The parallel composition
is accomplished by conjoining these two sets of constraintstogether.

3.2 Interference Abstractions

While the CTP model and the associated symbolic predictive analysis provide a solid
theoretical foundation, their practical use will hinge upon the judicious application of
proper interference abstractions. Interference abstraction refers to the over- or under-
approximated modeling of the thread interactions with a varying degree of precision. In
our symbolic analysis framework, interference abstractions are manifested as the over-
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or under-approximations of formulaΦSC . Since modeling the thread interactions is the
most expensive part of the concurrent program analysis, without abstraction, symbolic
analysis will not be able to scale to large applications. Ourmain hypothesis is that, since
concurrency bugs typically involve a small number of unexpected thread interferences,
they can often be captured by succinct interference abstractions.

In a previous work [29], we proposed an over-approximated interference abstrac-
tion, called theUniversal Causality Graph (UCG), where the shared-memory accesses
are abstracted away while the control flow and the synchronization primitives are re-
tained. We represent the happens-before causality relationship among trace events as a
graph, where the nodes are the events and the edges are must-happen-before relations
between the events, as imposed by the thread-local program order, the synchronization
primitives, and the property. Checking whether a property holds can be reduced to the
problem of checking whether these causality edges can form acycle. The existence of
a cycle means that none of the interleavings of the CTP can satisfies the property. How-
ever, due to over-approximations, this analysis is conservative in that it guarantees to
catch all violations that can possibly be predicted from a given trace, but may report
some false alarms. Our UCG based analysis is provably more accurate than the exist-
ing methods in the same category, e.g. the widely used lockset based methods [23, 24,
16, 14, 25, 26]. The reason is that lockset analysis typically models locks precisely, but
cannot robustly handle synchronization primitives other than locks, such as wait-notify
and fork-join. In contrast, our UCG based method precisely model the semantics of all
common synchronization primitives, as well as the synergy between the different types
of primitives.

In another work [28], we proposed an under-approximated interference abstraction
called theTrace Atomicity Segmentation (TAS), which can soundly restrict the search
space that needs to be considered to detect the most general form of atomicity viola-
tions. More specifically, the TAS is a trace segment consisting of all the events in the
surrounding areas of an atomic block, such that these eventsare sufficient for checking
whether this atomicity property can be violated. Differentfrom most existing work, our
method can detect violations that involve an arbitrary number of variables and threads,
rather than the simplest atomicity violations involving a single variable and three mem-
ory accesses. As illustrated in Fig. 2, TAS is regarded as an under-approximation. The
case for using TAS in practice is when the runtime analysis does not have access to
the program code, or cannot afford to monitor every instruction, but is still required to
guarantee no false alarms. Our preliminary experiments in [28] show that the TAS is
typically small even in an otherwise long execution trace.

We also proposed an algorithm to automatically find the interference abstraction
that is optimal to the property at hand. Unlike the ones with aprescribed precision, a
property specific interference abstraction can be more efficient since it only needs a
minimal set of interference constraints. The rationale behind is that sometimes we can
prove a property using an over-approximated abstraction, e.g. the control-state reacha-
bility analysis [26, 29]. Sometimes we can detect real bugs with an under-approximated
abstraction, e.g. by artificially bounding the number of context switches, since the bugs
may be scheduling-insensitive, and therefore may show up even in serial executions or
when threads interleave only sporadically [30, 31]. However, it is generally difficult to
decidea priori which abstraction is more appropriate. To solve this problem, we pro-
posed an iterative refinement algorithm [32]. We will start with a coarse initial abstrac-
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tion which is either over- or under-approximated, based on whether the property likely
holds or not. Depending on the initial abstraction, this refinement process may be ei-
ther under-approximation widening or over-approximationrefinement. It is interesting
to point out that,optimalinterference abstraction, defined as the most succinct abstrac-
tion that is sufficient to decide the property, may not be a purely over-approximated
model or a purely under-approximated model, but a hybrid model as represented by
the dots in the middle of Fig. 4. In this figure, we have bent over the right-to-middle
horizontal line in Fig. 2 to make it the bottom-to-top vertical line. Most of the points in
this two-dimensional plane correspond to the hybrid models. As we have shown in [32],
with a careful analysis, such hybrid models can still be usedto accurately decide the
property at hand, despite the fact that they are considered as neither sound nor complete
in the traditional sense. Fig. 5 shows that small interference abstractions are often suffi-
cient for checking properties in realistic applications, and that their use can drastically
improve the scalability of our symbolic analysis.

Fig. 4. Finding the optimal interference
abstraction: identifying the smallest set
of interference constraints that are suffi-
cient for deciding the property.

Fig. 5. Experimental results from [32]:
using interference abstraction can lead to
faster property checking than using the
full-blown interference constraints.

4 The BEST Platform

OurBinary instrumentation-based Error-directed Symbolic Testing (BEST)tool imple-
ments some of the symbolic predictive analysis techniques introduced in the previous
sections, and is capable of detecting concurrency errors bydirectly monitoring an un-
modified x86 executable at runtime. In the remainder of this paper, we shall use atom-
icity violations as an example to illustrate the features ofour framework. As shown in
Fig. 6, the predictive analysis in BEST consists of the following stages:

– Stage I, recording the execution trace and building the predictive model;
– Stage II, simplifying the model using sound program transformations;
– Stage III, inferring and then statically pruning the atomicity properties;
– Stage IV, predicting the violations of the atomicity properties;
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– Stage V, replaying the erroneous interleaving, to see if it can cause runtime failures.
– Go back to Stage I.

Before using this tool, the developer needs to provide an execution environment for the
program under test, i.e. a test harness. Details of the stages are illustrated as follows.������� ���	��
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Fig. 6. BEST architecture

4.1 The Staged Analysis

Stage I.While testing the concurrent application, we use PIN to instrument the exe-
cutable at run time to record the sequence of global events generated by the execution.
The global events include both synchronization operationssuch as lock-unlock and the
shared memory reads and writes. From this sequence of events, we derive a concurrent
trace model (CTM), which may be an over-approximation of theCTP. The model can
be viewed as ageneratorof traces, including both the given traceρ and all the other
interleavings that can be obtained by relaxing the orderingconstraints (inρ) imposed
by the non-deterministic scheduling. Even if the given execution traceρ does not fail, a
runtime failure may still occur in some of the alternative interleavings.
Stage II. Given the initial model, we perform the following simplifications. First, we
identify the operations over only thread-local variables,where the thread-local vari-
ables are identified by checking whether their memory locations are accessed by more
than one concurrent threads. Then, we merge consecutive thread-local operations into
a single operation. Next, we perform constant value propagation to simplify all the
expressions that are scheduling-insensitive. These simplifications can lead to orders-
of-magnitude reduction in the model size, measured in termsof the number of trace
events. Finally, we use sound static analysis techniques such as lockset analysis and
simple happen-before (HB) analysis to quickly identify theordering constraints im-
posed by synchronizations (which must be satisfied by all valid interleavings) and then
eliminate the obviously infeasible interleavings.
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Stage III. On the simplified model, we infer the likely atomic regions based on the
structure of the program code. Note that these atomic regions may involve multiple
shared variable accesses. We also assume that the given trace is good (unless it fails) and
therefore remove any region that is not atomic in the given execution. The remaining
regions are treated as atomic. We use the notion ofcausal atomicityas in [33] as well
as the notion ofcausal mutual atomicity(CMA) as in [34]. In the latter case, we check
the violation of two pair-wise atomic regions from different threads with at least two
conflicting transitions.
Stage IV.For each atomicity property, we perform a property specific program slicing,
followed by another pass of simplifications and merging of the consecutive thread-local
events. We check for violations of the atomicity propertiesby formulating the problem
as a constraint solving problem. That is, we build a quantifier-free first-order logic for-
mulaΦ such thatΦ is satisfiable if and only if there is an erroneous interleaving. The
logic formulaΦ is then decided by an off-the-shelf SMT solver.
Stage V.Once our SMT based analysis detects a violation, it will generate an erroneous
thread schedule. To replay it, we use PIN to instrument the executables at runtime, and
apply the externally provided schedule. After Stage V, we goback to Stage I again. The
entire procedure stops either when a runtime failure (e.g. crash) is found, or when the
time limit is reached.

Our BEST tool can provide the visualization of the failure-triggering execution.
If the executable contains the compiler generated debugging information, BEST can
also provide a mapping from the trace events to the corresponding program statements.
On the Linux platform, for example, we use a gnu utility called objdump to obtain
the mapping between processor instructions and the corresponding source file and line
information.

4.2 Inferring Atomicity Properties

Programmers often make some implicit assumptions regarding the concurrency control
of the program, e.g. certain blocks are intended to be mutually exclusive, certain blocks
are intended to be atomic, and certain instructions are intended to be executed in a
specific order. However, sometimes these implicit assumptions are not enforced using
synchronization primitives such as locks and wait-notify.Concurrency related program
failures are often the result of these implicit assumptionsbeing broken, e.g. data races,
atomicity violations, and order violations. There are existing methods (e.g. [12]) for
statically mining execution order invariants form the program source code. There are
also dynamic methods (e.g. [13]) for inferring invariants at runtime. For example, if no
program failure occurs during testing, then the already tested executions often can be
assumed to satisfy the programmer’s intent.

Our BEST tool heuristically infers such likely atomicity properties from the x86
executables. Our approach is an application of the existingmethods in [12, 13] together
with the following extensions. Let a global access denote either a synchronization oper-
ation or a shared memory accesses. When inferring the likelyatomic regions, we require
each region to satisfy the following conditions:

– the region must contain at least one shared memory read/write;
– the first and/or last global access must be a shared memory read/write;
– the global accesses must be within a procedure boundary;
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– the global accesses must be close to each other in the programcode;

In additional, the region should not be divided by blocking synchronization operations
such as thread creation/join or the wait/notify, which willmake the region non-atomic.

.......
./atom.c:59

pthread_mutex_lock(l2);
.......
8048776:       e8 c1 fd ff ff call   804853c
./atom.c:61

++Z;
804877b:       a1 28 9a 04 08        mov 0x8049a28,%eax
8048780:       83 c0 01              add    $0x1,%eax
8048783:       a3 28 9a 04 08        mov %eax,0x8049a28
./atom.c:63

X = (char *)malloc(Z);
8048788:       a1 28 9a 04 08        mov 0x8049a28,%eax
804878d:       89 04 24              mov %eax,(%esp)
8048790:       e8 97 fd ff ff call   804852c
8048795:       a3 2c 9a 04 08        mov %eax,0x8049a2c
./atom.c:65

pthread_mutex_lock(l1);
80487a1:       e8 96 fd ff ff call   804853c
.......

fghijklmknho
npop

Fig. 7. Inferring atomicity withobjdump using code structure

Fig. 7 shows an example of inferring the likely atomic regions from the program
code, by following the above guidelines. This figure contains the output ofobjectdump
for a small C program calledatom.cat Lines 59, 61, 63, and 65. The entire execution
trace, together with its CTM and interleaving lattice, can be found in [35]. The transition
corresponding topthread mutex lock(l2) is assigned a tag〈atom.c, 59〉. Similarly,
the transitions corresponding++Z is assigned a tag〈atom.c, 61〉. Using the rules for
inferring atomic regions, we mark the transitions corresponding to statements++Z and
X=(char*)malloc(Z) as the likely atomic region. In other words, if we can find an
interleaved execution which breaks this atomicity assumption, the execution will be
regarded as risky – it is more likely to lead to a program failure. In Stage V of our
BEST tool, we will replay such interleavings in order to maximize the exposure of the
real failures.

5 Implementation and Evaluation

Our tool has been implemented for x86 executables on the Linux platform. We use
PIN [4] for dynamic code instrumentation and the YICES [36] solver for symbolic
predictive analysis. Our BEST tool can directly check for concurrency failures in exe-
cutables that use the POSIX threads. Whenever the program source code are available,
for example, in C/C++/Java, we usegcc/g++/gcj to compile the source code into x86
executables before checking them. With the help of dynamic instrumentation form PIN,
we can model the instructions that come from both the application and the dynamically
linked libraries. Specifically, we are able to record all thePOSIX thread synchroniza-
tions such as wait/notify, lock/unlock, and fork/join, as well as the shared memory ac-
cesses.
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For efficiency reasons, BEST may choose to turn off the recording of the thread-
local operations such as stack reads/writes. This option inprinciple may lead to a fur-
ther over-approximation of the trace generalization model, meaning that some of the
violations reported by our analysis may be spurious. As a result, replay in Stage V may
fail (our bailout strategy is to start a free run as soon as thereplay fails). However, such
cases turn out to be rare in our experiments.

We have experimented with some public domain multi-threaded applications from
the sourceforge and freshmeat websites. The size of these benchmarks are in the range
of 1K-33K lines of C/C++ or Java code. They includeaget(1.2K LOC,C), fastspy(1.5K
LOC, C), finalsolution(2K LOC, C++), prozilla (2.7K LOC,C++), axel (3.1K LOC,
C), bzip2smp(6.4K LOC,C), alsaplayer(33K LOC,C++), andtsp (713,Java). The
length of the execution trace ranges from a few hundreds to 34K events, with 4 to 67
threads. Most of the inferred atomic regions involve more than one variable accesses.
Due to the use of interference abstractions and the various model simplification and
search space reduction techniques, the CPU time per check byour analysis is a few
seconds on average.

Our BEST tool found several previously known/unknown atomicity violations. The
bug list can be found inhttp://www.nec-labs.com/∼malay/notes.html.

6 Related work

We have reviewed the existing methods for runtime monitoring and prediction of con-
currency failures in Section 2. It should be clear that for such analysis to detect a failure,
a failure-inducingexecution trace should be provided as input, which containsall the
events that are needed to form afailure-triggeringinterleaving. While we have assumed
that this failure-inducing execution trace is available, generating such trace can be a
difficult task in practice, since it requires both theright thread schedule and theright
program input.

When the thread scheduling is controlled by the operating system, it is difficult to
generate a failure-inducing thread schedule – repeating the same test does not necessar-
ily increase the coverage. Standard techniques such as load/stress tests and randomiza-
tion [37] are not effective, since they are highly dependenton the runtime environment,
and even if a failure-inducing schedule is found, replayingthe schedule remains dif-
ficult. CHESS-like tools [38, 31, 39] based on stateless model checking [40] are more
promising, but too expensive due to interleaving explosion, even with partial order re-
duction [41] and context bounding [42, 43]. A more practicalapproach is to systemati-
cally, but also selectively, test a subset of thread schedules while still cover the common
bug patterns. Similar approaches have been used in CalFuzzer [44], PENELOPE [45],
and our recent work in [46].

Generating the failure-inducing execution trace also requires the right data input.
In practice, test inputs are often hand crafted, e.g. as partof the testing harness. Al-
though DART-like automated test generation techniques [47–54] have made remark-
able progress for sequential programs, extending them to concurrent programs has been
difficult. For example, ESD [55] extended the test generation algorithm in KLEE [52]
to multithreaded programs; Sen and Agha [20] also outlined aconcolic testing algo-
rithm for multithreaded Java. However, these existing methods were severely limited
by interleaving explosion – it is difficult to systematically achieve a decent code and
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interleaving coverage within a reasonable period of time. In ESD, for example, heuris-
tics are used to artificially reduce the number of interleavings; however, the problem is
that the reduction is arbitrary and often does not match the common concurrency bug
patterns. This leads to missed bugs, and also makes it difficult to identify which part of
the search space is covered and which part is not. Therefore,we consider scalable and
efficient test input generation for concurrent programs as an interesting problem for a
future work.

7 Conclusions

In this paper, we have provided a brief overview of the latestdevelopment in SMT-
based symbolic predictive analysis. We have also presentedour BEST tool for detect-
ing runtime failures in unmodified x86 executables on the Linux platform using POSIX
threads. BEST uses a staged analysis with various simplifications and model reduction
techniques to improve the scalability of the symbolic analysis. It infers likely atom-
icity properties and then checks them using the symbolic analysis. Thread schedules
that violate some of these likely atomicity properties are used to re-direct the testing
toward the search subspaces with a higher risk. BEST also provides the visualization
of trace events by mapping them to the program statements to help debugging. We be-
lieve that these SMT-based symbolic predictive analysis techniques hold great promise
in significantly improving concurrent program verification.
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