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Abstract. We propose a trace-based concurrent program analysis tosoundlyre-
move redundant synchronizations such as locks while preserving the behaviors
of the concurrent computation. Our new method is computationally efficient in
that it involves onlythread-localcomputation and therefore avoids interleaving
explosion, which is known as the main hurdle for scalable concurrency analysis.
Our method builds on the partial-order theory and a unified analysis framework;
therefore, it is more generally applicable than existing methods based on simple
syntactic rules andad hocheuristics. We have implemented and evaluated the
proposed method in the context of runtime verification of multithreaded Java and
C programs. Our experimental results show that lock removalcan significantly
speed up symbolic predictive analysis for detecting concurrency bugs. Besides
runtime verification, our new method will also be useful in applications such as
debugging, performance optimization, program understanding, and maintenance.

1 Introduction

Concurrent programs are notoriously difficult to analyze due to their behavioral com-
plexity resulting from the often extremely large number of thread interleavings. This
renders comprehending all the possible ways in which threads interact a difficult prob-
lem. As a result, programmers often take a defensive stance and label large sections of
code as critical sections. This may result in the addition ofredundant locks, both degrad-
ing performance and making program modeling, analysis, andunderstanding difficult.
The situation is particularly severe in trace-based concurrent program analysis. When
focusing on a concrete execution trace rather than the entire program, we often find
significantly more redundant locks, i.e. locks that are not completely redundant in the
whole program may become redundant when the analysis is restricted to a trace.

Although there exist some methods for identifying redundant synchronizations in
Java and C programs [3, 4, 6, 22, 1, 30], e.g. as part of the compiler’s performance opti-
mization, they are all based on very simple syntactic rules and ad hocheuristics. Since
these methods are based on matching patterns rather than analyzing the program seman-
tics, they do not lead to a generally applicable framework. Indeed, most of them handle
only the simple case ofeffectively thread-localobjects, i.e. locks that are declared as
globally visible but are accessed only by one thread throughout the execution. For the
many truly shared but still redundant locks, these existingmethods are not effective.

We address this limitation by introducing a new and more generally applicable lock
removal algorithm. Our method is generally applicable since it can remove not only the
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effectively thread-locallocks but also thetruly sharedredundant locks. Our method is
also efficient since it is based on a compositional analysis that involves only thread-local
computation. Our method is sound in that it can guarantee preservation of the behavior
of the original computation.

In formulating our lock removal strategy, we start from the classical notion of a
concurrent computation as a happens-before relation on theshared variable accesses or,
equivalently, as a set of partial orders. Two interleavingsare equivalent if they induce
the same partial order of shared variable accesses. Since removing locks lifts the corre-
sponding mutual exclusion constraints, some previously infeasible thread interleavings
may become feasible. Thus there is a danger for lock removal to introduce new program
behaviors. To address this problem, we make sure that new interleavings are added by
lock removal only if they do not add new partial orders. This leads to the formulation
of thebehavior preservationtheorem, which is a main contribution of this paper.

Another main contribution is the set ofefficiently checkableconditions under which
the behavior preservation is guaranteed. They reduce the semantic check of behavior
preservation to a simple static check of the feasibility of transitions between global
control states. This is significant because it allows us to avoid enumerating the often
astronomically large number of thread interleavings. Our method is thread-modular in
that it does not require inspecting the interleaved parallel composition of threads. In
addition, our focus on a concrete execution trace is also crucial in keeping the method
scalable. The concrete execution trace provides the exact memory addresses that are
accessed by each thread, thereby giving us the precise points-to information of lock
pointers, together with information about the actual arrayfields accessed, etc.

Trace-based concurrent program analysis has obvious applications not only in run-
time verification, but also in debugging, just-in-time (JIT) optimization, program un-
derstanding, and maintenance. An important feature of trace-based analysis is that the
trace program has finitely many threads and a fixed set of namedlocks. Although the
whole program may have pointers, loops, recursion, and dynamic thread creation, in
the trace program, each thread is reduced to a bounded straight-line path. Most of the
complications common to static program analysis are avoided because, during the con-
crete execution, branching decisions at if-else statements have been made, function calls
have been inlined, loops have been unrolled, and recursionshave been applied. The only
remaining source of nondeterminism comes from thread interleaving.

We have implemented the proposed method in a runtime verification platform called
Fusion, where the underlying bug detection algorithm uses an SMT-based symbolic
analysis. Since redundant locks can introduce a large set ofsynchronization constraints
during the modeling and checking phases, their presence often significantly increases
the cost of the symbolic analysis. Our lock removal method has been used to remove
these redundant locks. Our experiments on a set of public Java and C programs showed
a significant reduction in the number of locks, which in turn led to a significant speedup
in the subsequent symbolic analysis.

To sum up, this paper has made the following two contributions: (1) formulating
the general framework of behavioral preservation to soundly remove redundant locks;
and (2) proposing a set of efficiently checkable conditions based on the thread-local
computation of lock access patterns.



The remainder of this paper is organized as follows. In Section 2, we use two ex-
amples to illustrate both the benefit and challenges of lock removal. In Section 3, we
illustrate our main ideas. In Section 4, we present a set of efficiently checkable con-
ditions. In Section 5, we demonstrate the application of ouralgorithm on the running
example. Our experimental results are presented in Section6. We review the related
work in Section 7 and give our conclusions in Section 8.

2 Motivation

The main driving application in this paper is runtime predictive analysis [12, 25, 5, 11,
23, 29, 19], which is a promising method for detecting concurrency bugs by analyzing
an execution trace. In other words, even if the given test execution is not erroneous,
but if an alternative interleaving of the events of that trace can trigger a failure, runtime
predictive analysis will be able to detect it. Since a concurrent program often has a very
large number of sequential paths and thread interleavings,statically analyzing the whole
program is often extremely difficult. In such cases, runtimepredictive analysis offers a
good compromise between runtime monitoring and full-fledged model checking.

Runtime predictive analysis typically has three steps: (1)run a test of the concur-
rent program to obtain an execution trace; (2) run a sound static analysis of the trace
to compute all thepotentialviolations, e.g. deadlocks and race conditions; (3) for each
potential violation, build a precise predictive model to decide whether the violation is
feasible. The main scalability bottleneck is step 3 whereinthe feasibility check needs
to explore all possible interleavings of the trace events. Although the problem in step
3 can be solved by an efficient symbolic analysis [29, 19], redundant locks in the trace
program can unnecessarily increase the cost of this analysis, since they can lead to a
large number of locking constraints that need to be modeled and checked. Our lock
removal method can cut down on the number of unnecessary locking constraints, there-
fore resulting in significant performance improvement in the subsequent analysis.

T1() {

0a: —-;
1a: lock(A);
2a: a[1]++;
3a: unlock(A);
4a: a[2]++;
5a: lock(A);
6a: lock(B);
7a: a[3]++;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T2() {

0b: —-;
1b: a[10]++;
2b: a[11]++;
3b: lock(A);
4b: lock(B);
5b: a[12]++;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′

1
() {

0a: —–;
1a: lock(A);
2a: —-;
3a: unlock(A);
4a: —-;
5a: lock(A);
6a: lock(B);
7a: —-;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T ′

2
() {

0b: —-;
1b: —-;
2b: —-;
3b: lock(A);
4b: lock(B);
5b: —-;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′′

1
() {

0a: —-;
1a: —-;
2a: —-;
3a: —-;
4a: —-;
5a: —-;
6a: —-;
7a: —-;
8a: —-;
9a: —-;
10a: sh++;

}

T ′′

2
() {

0b: —-;
1b: —-;
2b: —-;
3b: —-;
4b: —-;
5b: —-;
6b: —-;
7b: —-;
8b: sh++;

}

(a) original (b) intermediate (c) final

Fig. 1.Example: removing redundant lock statements from a concurrent trace program.



Consider the concurrent trace program in Fig. 1 (a), which has two straight-line
paths in threadsT1 andT2, respectively. The global variables aresh and arraya. Sup-
pose that the goal is to check whether locations10a and8b are simultaneously reachable
(e.g. a data race), we need to decide whether there exists a valid interleaving of these
trace statements along whichT1 andT2 can reach10a and8b, respectively.

First, note that precise knowledge of the memory accesses isavailable since the
trace program is derived from a concrete execution. The knowledge can be used to cut
down the number of shared accesses that need to be interleaved. For example, although
a[i] is a global variable, the entries ofa accessed by the two threads in this particular
trace program are all disjoint and can be treated as thread-local. In other words, we can
use the runtime information toslice awaythe redundant statements. This can reduce the
trace program in Fig. 1 (a) to the one in Fig. 1 (b).

Next, consider the program in Fig. 1 (b). Since locksA andB now protect only
thread-local statements, some of these lock statements maybe redundant. We shall
show in later sections that, for this particular example, these lock statements are all
redundant and therefore can be removed while preserving theoriginal program behav-
ior. This reduction yields the simple trace program shown inFig. 1 (c) with only the
shared variable accesses. Consequently, it becomes easy todecide the simultaneous
reachability of10a and8b.

Challenges in Lock Removal.The example in Fig. 1 may give a false impression
that locks protecting only thread-local operations can always be removed. This is not
true, as demonstrated by Fig. 2. In this example, variablesh=0 initially. The assertion
at b7 holds because, to get value 2, one has to executeb1...b3 → a1...a6 → b4...b7,
which is impossible since lockA is held by threadT2 at b3, which prevents threadT1

from acquiring the same lock at locationa2. However, if we remove the lock/unlock
statements ata2 anda4 – since they protect only thread-local operations – the assertion
at b7 may fail because the aforementioned interleaving is now allowed. This example
highlights the fact that locks may play a key role in defining the set of allowed program
behaviors even if they do not guard any global operation. It also shows that, without a
rigorous concurrency analysis,ad hocheuristics are often susceptible to subtle errors.
We address this problem by proposing a generally applicablelock removal framework.

T1() { T2() {

a1 : sh ++; b1 : ......
a2 : lock(A) b2 : lock(A)
a3 : ...... b3 : sh=0;
a4 : unlock(A) b4 : x=sh;
a5 : ...... b5 : unlock(A)
a6 : sh ++; b6 : ......
a7 : ...... b7 : assert(x!=2);
} }

a6: sh++

b1: ......

b3: sh=0

b4: x=sh

b7: assert(x!=2)

a1: sh++

Fig. 2. Example: Assuming thatsh=0 initially. The lock statements ata2 anda4 cannot be re-
moved despite that they do not protect any shared access. Otherwise, assertion atb7 may fail.



3 Lock Removal: the Core Idea

We say that a programP ′ results from another programP via lock removal ifP ′ is
obtained fromP by converting some of the lock statements tonop. A lock statement
in P is considered as redundant if removing that statement does not alter the program
behavior. Here the program behavior is defined as the set of interleaved computations
that are allowed by the program semantics. Since lock statements impose mutual ex-
clusion constraints, they restrict the thread interactions. By removing lock statements
from P , in general, we may allow the new programP ′ to have more interleavings; on
the other hand, it is impossible to remove any previously allowed interleavings inP .
Therefore, to preserve the program behavior, we only need toensure that every newly
added interleaving (allowed inP ′ but not inP) is equivalent, in some sense, to an exist-
ing interleaving inP . In other words, lock removal is sound as long as it does not add
new equivalence classes (of interleavings).

3.1 The Lock Removal Strategy

Since characterizing interleavings directly is cumbersome and computationally expen-
sive, we rely on the standard notion of concurrent computations as happens-before re-
lations on the shared variable accesses [20, 14]. That is, executing two operations from
different threads that update the same memory location in different orders may lead to
different results. Therefore, instead of preserving interleavings of all the statements, we
focus on preserving the partial orders of shared variable accesses (reads and writes).

For a programP comprised of then threadsT1, ..., Tn, a global control states is
a tuple(c1, ..., cn) whereci is a control location ofTi for all i ∈ [1..n]. In contrast
to aconcreteprogram state, denoteds ∈ s, the global control states is moreabstract
in that it tracks only the program counters but not the valuesof the program variables.
Therefores can be viewed as a set of concrete states. Since thread-localoperations are
invisible to the other threads, in the sequel we shall assumewithout loss of generality
that the locations in(c1, ..., cn) are all starting points ofglobal operations, i.e. either
shared reads/writes or lock acquisitions. This restriction can drastically cut down the
number of global control states that need to be considered during our analysis. Note
that if a thread is at locationci, it means that the operation atci has not been executed
yet.

Definition 1 (Visible Successor).For global control statess, s′ in programP , we say
that s′ is a visible successor ofs iff there exist statess ∈ s ands′ ∈ s′ such that

– s′ is reachable froms via a valid concurrent computation, and
– along this computation, the first operation is the only global operation.

Our lock removal strategy can be phrased as follows: Removing all lock statements such
that no new visible successor is introduced to any global control state that is reachable
from the initial state inP . In other words, for eachs, if we can preserve the set of global
control states thats can transit to, the program behavior will be preserved.

Consider Fig. 2 as an example. For all transitions between two global control loca-
tions, e.g. from(a2, b3) to (a6, b3), our lock removal strategy says that, if the transition



is not allowed byP before lock removal, it should not be allowed byP ′ either. Based
on this strategy, the lock statements ata2 anda4 will be preserved, because removing
them would make the infeasible transition inP from (a2, b3) to (a6, b3) feasible inP ′.

3.2 Conservative Static Check

Although the lock removal strategy proposed so far is sound as well as generally appli-
cable, computing the visible successors of a global controlstate is a challenging task,
because the conditions in Definition 1 are semantic conditions. Checking the reachabil-
ity between two concrete statess ands′ would be too expensive in practice. To avoid
this bottleneck, we introduce a set of checks based on the notion of static or control-
statereachability.

Let s = (c1, . . . , cn) ands′ = (c′1, ..., c
′
n) be two global control states, where for

eachi ∈ [1..n], the local pathxi of Ti leads from locationci to c′i. We say thats′ is
statically reachable froms if and only if there exists an interleaving ofx1, ..., xn that
obeys the scheduling constraints imposed by the locks whileignoring data (which is the
consistency between shared variable accesses).

Definition 2 (Static Visible Successor).For global control statess, s′ in programP ,
we say thats′ is a static visible successor ofs iff

– s is statically reachable froms via some interleaved computation, and
– along this computation, at most one global operation is present.

Here the second condition ensures thats′ can be immediately reached froms (hence a
successor). LetSuccP(s) be the set of static visible successors ofs in programP . Our
static lock removal strategy is stated as follows.

Theorem 1 (Behavior Preservation).Let programP ′ result from programP via lock
removal. If for each global control states of P , we haveSuccP(s) = SuccP′(s), then
the two programs have the same behavior as defined by the partial orders of global
operations.

Intuitively, if no new global control state becomes reachable from the initial state, then
there is certainly no new program behavior. For brevity, we omit the proof. A crucial
property of Theorem 1 is that the static reachability check can be turned into a concep-
tual lock removal procedure as follows:

1. Enumerate the setS of global control states of the given trace program.
2. For eachs ∈ S, compute the setSuccP (s)of static visible successors.
3. For each lock statementlk-stmtin threadTi, if there exists a global control location

s such that, removinglk-stmtwould add a new successors′ that is not inSuccP(s),
we must retainlk-stmtelselk-stmtis removed.

There are two remaining problems. First, given two global control statess, s′, how to
efficiently decide whethers′ is a static visible successor ofs. Second, how to efficiently
compute the set of static visible successors ofs while avoiding the naive enumeration
of all global control states. We will address these two problems in the next section.



4 Compositional Lock Removal

We present a compositional analysis for static lock removalto avoid the exponential
blowup incurred by naively enumerating the global control states. Our method is thread-
modular in that the lock removal computation involves only thread-local reasoning, and
therefore has a linear worst-case time complexity in the program size.

4.1 Deciding Static Reachability

We leverage an existing procedure [18] to decide the static reachability between two
global control states. The procedure is both sound and complete for 2-threaded pro-
grams with nested locks. For programs with more than two threads, the procedure re-
mains sound but is not complete. This is acceptable because,as long as it shows thats′

is staticallyunreachablefrom s, the unreachability is guaranteed to hold.

c1

c
′
1

c2

c
′
2

s

s
′

x
1

x
2

T1 T2

The procedure in [18] can be viewed as a generalization of
the standardlocksetanalysis [24]. The key insight is that, to
decide whethers′ = (c′1, c

′
2) is statically reachable froms =

(c1, c2), for example, in a 2-threaded program, merely checking
the disjointness of the set of locks held byT1 andT2 atc′1 andc′2
is not enough (see the figure on the right). Although overlapping
locksets prove thats′ is not reachable froms, the disjointness of
the locksets is not sufficient to prove thats′ is reachable from
s. Instead, reachability can be decided more accurately by first
computing alock access pattern (LAP)for each path fromci to
c′i, wherei ∈ [1..2], and then checking whether the LAPs are
consistent.

Definition 3 (Lock Access Pattern).The lock access pattern for pathxi from ci to c′i
in threadTi, denotedLAP(ci, c′i), is a tuple(L1, L2, bah, fah, Held, Acq) where

– L1 andL2 are the set of locks held byTi at ci andc′i, respectively;
– bah andfah are the backward and forward acquisition histories, respectively:

• for each lockl ∈ L2 held atc′i, bah(l) is the set of locks acquired (and possibly
released) after the last acquisition ofl along pathxi from ci to c′i;

• for each lockl ∈ L1 held atci, fah(l) is the set of locks released (and possibly
acquired) since the last release ofl in traversingxi backward fromc′i to ci.

– Held is the set of locks that are held in every state along pathxi from ci to c′i;
– Acq is the set of locks that are acquired (and possibly released)along pathxi.

A key feature of this LAP-based static analysis procedure isthat all computations are
local to each individual thread, which is crucial in ensuring scalability.

Decomposition Result.The static reachability froms to s
′ can be decided by checking

whether the corresponding lock access patterns are consistent. For ease of exposition,
we present the result for programs with two threads. However, the result, as well as all
the other subsequent results, is applicable to programs with n threads.

Let s = (c1, c2) ands′ = (c′1, c
′
2) be two global control states, andLAP(c1, c′1) =

(L1
1, L

1
2, bah1, fah1, Held1, Acq1) andLAP(c2, c′2) = (L2

1, L
2
2, bah

2, fah2, Held2, Acq2)
be the lock access patterns. Thens′ is statically reachable froms iff



1. L1
1 ∩ L2

1 = ∅, andL1
2 ∩ L2

2 = ∅;
2. there do not exist locksl ∈ L1

1 andl′ ∈ L2
1 such thatl ∈ fah

2(l′) andl′ ∈ fah
1(l);

3. there do not exist locksl ∈ L1
2 andl′ ∈ L2

2 such thatl ∈ bah
2(l′) andl′ ∈ bah

1(l);
4. Acq1 ∩Held2 = ∅, andAcq2 ∩Held1 = ∅.

Forn-threaded programs, the only significant difference would be in conditions 2 and
3, wherein one has to account for the cases in whichn threads form a cyclic dependency
that may span multiple threads instead of just two.

4.2 Compositional Analysis

To avoid the expensive enumeration of global control statesas described in Theorem 1,
we compute for each individual thread, all pairs of local control states that may cor-
responds to some static visible successors. More specifically, a pair(ci, c′i) of control
locations in threadTi is called apair of interest (POI)iff

– ci andc′i correspond to either shared variable accesses or lock acquisitions, and
– there exists a local pathxi in Ti from ci to c′i such that no other shared variable

access or lock acquisition occurs betweenci andc′i.

Our compositional lock removal procedure is given in Algorithm 1. After computing
the POIs of each threadTi, it traverses that thread to collect the lock access patterns for
all POIs. LetLPi denote the set of all lock access patterns inTi. Note thatLPi can be
computed via a single traversal pass of threadTi (step 4).

Algorithm 1 Compositional Lock Removal
1: Input: ThreadsT1, T2

2: for each threadTi do
3: Enumerate all pairs of interestPOI(Ti).
4: Traverse the local path inTi to computeLAP(ci, c′i) for each pair(ci, c′i) ∈ POI(Ti).
5: LetLPi be the set of lock access patterns of all POIs inTi.
6: end for
7: for each pair(lap1, lap2) wherelapi ∈ LPi for all thread indexi ∈ [1..2] do
8: if lap1, lap2 are inconsistentthen
9: Identify the set of lock statements that are the root causes of inconsistency.

10: end if
11: end for
12: Remove lock statements that are not the root causes of inconsistency for any pair.

Instead of iterating through the set of all global control states, Algorithm 1 considers
all pairs (lap1, lap2) of lock access patterns that are inconsistent (step 7). Notethat
lapi corresponds to some pair(ci, c′i) ∈ POI(Ti) and the inconsistency oflap1 and
lap2 means that there exist some lock statements that prevent(c1, c2) from reaching
(c′1, c

′
2). In this case, we need to identify a minimum subset of lock statements that are

sufficient to establish this inconsistency, and retain these lock statements. Finally any
lock statement that is not responsible for causing an inconsistency between any pair of



lock access patterns does not impact the reachability between any pair of global control
states, and is therefore removed.

It is worth pointing out that the lock statements (to be retained) can be identified
from the lock access patterns (lap1 and lap2) alone, without considering the global
control states or the POIs that generate these lock access patterns. In other words, we
can implicitly isolate the set of non-reachable pairs of global control states without
explicitly enumerating them. The algorithm can also be extended to programs withn
threads, by changing step 7 to check for inconsistent tuplesof the form(lap1, ..., lapn),
as opposed to the inconsistent pair(lap1, lap2).

4.3 Identifying the Locks to be Retained

If s′ is not statically reachable froms in the original programP , according to Sec-
tion 4.1, at least one of the conditions in the decompositionresult must be violated.
From these conditions, we can isolate the root causes that prevents from reachings′

statically. Our observation is that ifs′ is not statically reachable froms in P , then we
need to make sure thats′ is not reachable froms in the transformed programP ′. The
behavior preservation can be guaranteed if we retain at least some (but not all) of the
lock statements that prevents from reachings′.

Given an inconsistent pairlap1 andlap2 of lock access patterns, we can define a
reachability barrier by isolating the locks causing the inconsistency. To this end, for
each pair(s, s′) of global control states wheres = (c1, c2) ands′ = (c′1, c

′
2), we define

a reachability barrier, denotedRB(s, s′), which is the set of all locksets (L) for which
at least one of the following conditions holds:

– L = {l}, wherel is held at bothc1 andc2 or at bothc′1 andc′2 (violating condition
1 of the decomposition result);

– L = {l, l′}, wherel andl′ are held atc1 andc2, respectively, such thatl ∈ fah(l′)
andl′ ∈ fah(l) (violation of condition 2);

– L = {l, l′}, wherel andl′ are held atc′1 andc′2, respectively, such thatl ∈ bah(l′)
andl′ ∈ bah(l) (violation of condition 3);

– L = {l}, wherel is held throughoutx1 (or x2) and is acquired alongx2 (or x1)
(violation of condition 4).

Note that in order to ensure thats′ remains unreachable froms, it suffices to retain
the locks belonging to some lockset inRB(s, s′) as that will ensure that at least one
condition of the decomposition result is violated.

5 Applying Lock Removal to the Running Example

We now use our new method to remove all locks in the trace program shown in Fig. 1 (b)
while preserving the program behavior.

We start by identifying the pairs of interest. In the pathx1 shown in Fig. 1 (b),
there are three lock acquisition statements, i.e. locations1a, 5a and6a, and two shared
variable accesses, i.e.,0a and10a (the initial state is always treated as a shared vari-
able access). This leads to the pairs of interestPOI(x1) = {(0a, 0a), (0a, 1a), (1a, 1a),



(1a, 5a), (5a, 5a), (5a, 6a), (6a, 6a), (6a, 10a)}. Similarly,POI(x2) = {(0b, 0b), (0b, 3b),
(3b, 3b), (3b, 4b), (4b, 4b), (4b, 8b), (8b, 8b)}.

Next, we compute the lock access patterns generated by all pairs of interest in paths
x1 andx2. Toward that end, we compute thelap2POI function forx2 that maps each
lock access patternlap that is encountered to the set of POIs ofx2 that generate that
pattern. For each(c2, c′2) in the set{(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}, no lock is
held at eitherc2 or c′2 and no lock is acquired along the sub-sequence ofx2 from c2 to
c′2. Thus all the entries in the lock access pattern tuples for these pairs are empty (note
that if a thread is at location3b it means that the statement at3b hasn’t been executed
yet, i.e., lock held at location3b is ∅).

Consider now the pair of interest(4b, 8b). We show thatLAP(4b, 8b) = ({A}, ∅,
{(A, {B})}, ∅, ∅, {B}). The first two entries in the tuple are the locksets held at4b
and8b which are{A} and∅, respectively. Since no lock is held at the final state8b, the
forward acquisition histories, i.e., the fourth entry of the tuple is empty. On the other
hand, lockA is held at the initial state4b. This lock is released at7b. However before it
is releasedT2 also releasesB at6b. ThusB is in the backward acquisition history ofA
which is reflect in the third entry of the tuple. Also, since lockB is acquired at location
4b, we haveAcq = {B} (6th entry). Finally, since there exists no lock that is heldat
all states, we haveHeld = ∅ (5th entry). Similarly, we may compute the lock access
patterns for the remaining pairs of interest (see Fig. 3 (b)). Similarly, we compute the
lap2POI function forx1 (see Fig. 3 (a)).

From Fig. 3 (a) and 3 (b), we compute the inconsistent pairs(p1, p2) of lock access
patterns where

1. p1 = ({A}, {A}, ∅, ∅, {A}, ∅), p2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): Held andAcq fields
of p1 andp2, respectively, have the common lockA.

2. p1 = (∅, ∅, ∅, ∅, ∅, {A}) andp2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq andHeld fields ofp1
andp2, respectively, have the common lockA.

3. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) andp2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq andHeld

fields ofp1 andp2, respectively, have the common lockA
4. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) andp2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have the

common lockA
5. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) andp2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1 fields have

the common lockA
6. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) andp2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have

the common lockA
7. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) andp2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1

fields have the common lockA
8. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) andp2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): L2 fields

have the common lockA.

Note that in each of the above cases, the only lock occurring in the reachability barriers
of the non-reachable pairs of global control states isA. Since lockB does not occur
in any of the reachability barriers, in the first iteration, we can remove all statements
locking/unlockingB.

Now we repeat the lock removal procedure again on the trace program in Fig. 1 (b),
by converting statements6a, 8a, 4b and 6b to nop. These new traces generate the
lap2POI functions shown in Figs. 3 (c) and (d). Note that now all pairsof access



patterns are mutually consistent. Thus the reachability barriers for all pairs of global
control states are empty. Hence all locks in the original traces can now be removed
giving us the traces with no lock statements.

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(5a, 6a)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(6a, 6a)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(6a, 10a)}

(a)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(3b, 4b)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(4b, 4b)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(4b, 8b)}

(b)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a), (5a, 10a)}

(c)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(3b, 8b)}

(d)

Fig. 3. The lap2POI function forx1 (left) andx2 (right)

Generalizations.So far, for ease of exposition, we have presented all the algorithms
using concurrent trace programs with two threads. However,our results can be extended
to programs with an arbitrary but fixed number of threads. This generalizations do not
require additional insights. The only difference from the 2-thread case is that we need
an efficient technique to decide static reachability between global control states which
are nown-tuples of the form(c1, ...cn), where eachci is either a shared variable access
or a lock acquisition in threadTi. This is achieved via a straightforward extension of the
decomposition result in Section 4.1. That is, for each pair of threads, we check whether
their lock access patterns (LAPs) are consistent.

So far we have discussed only mutex locks. A typical real-world concurrent program
in Java or C (with POSIX threads) may have additional concurrency primitives such as
thread creation and join operations, wait/notify/notifyall, as well as reentrant locks. The
presence of these synchronization primitives does not affect the soundness of our lock
removal algorithm. The reason is that, ifs′ is statically unreachable froms according
to locks (while ignoring data and other concurrency primitives), it is guaranteed to be
unreachable when more synchronization constraints are considered. At the same time,
if there is a way to incorporate the causality constraints imposed by other concurrency
primitives, one can more accurately determine the reachability between global control
states, therefore leading to the identification and removalof potentially more redundant
lock statements. To this end, we have incorporated the universal causality graph based
analysis in [19] during our implementation of the proposed lock removal method. How-
ever, we note that this UCG-based analysis is orthogonal to lock removal, and can be
carried out once in the beginning of the computation.



6 Experiments

We have evaluated the lock removal method in the context of anSMT-based runtime
predictive analysis [28, 29], to quickly remove the lock statements that are redundant
and therefore ease the burden of modeling and checking by theSMT solvers.

We now provide a brief overview of the symbolic predictive analysis. Given a multi-
threaded Java or C program and a user-defined test case, the predictive analysis proce-
dure first instruments the program code to add self-logging capability, and then uses
stress tests to detect concurrency failures. However, due to the scheduling nondeter-
minism and the astronomically large number of interleavings, it is often difficult to
uncover the concurrency bugs. If testing fails to detect anybug, we start a post-mortem
analysis of the logged execution trace.

In this subsequent analysis, first we use a simple control flowanalysis to compute
thepotential bugs. Consider the one-variable three-access atomicity violation [21, 11]
as an example. In this case, a potential bug is a sequencetc...tr...tc′ of program state-
ments such that: (1)tc andtc′ are intended to be executed atomically by one thread, (2)
tr is in another thread and is data dependent with bothtc andtc′ . Then we use a more
precise static analysis based on theuniversal causality graph (UCG [19])to prune away
the obviously bogus violations.

For each remaining potential violation, we call the SMT-based symbolic procedure
to decide if there exists a valid interleaving under which the violation is feasible. In this
context, an interleaving is feasible if it satisfies both thesynchronization consistency
(e.g. locks) and the shared memory consistency. Please refer to [28, 29, 26] for more
information about the symbolic encoding. Here we assume thesequential consistency
(SC) memory model. We have used the YICES solver from SRI [8] in our experiments.
Since having more lock statements generally leads to more logical constraints and there-
fore a higher cost for SMT solving, we have used lock removal before the SMT-based
analysis, to remove the redundant lock statements.

We conducted experiments using the following benchmarks1. The Java programs
come from various public benchmarks [16, 17, 15, 27]. The C programs are the PThreads
implementation of two sets of known bug patterns. The first set (At) mimics an atomicity
violation in the Apache web server code (c.f. [21]), whereAt1 is the original program,
while At1aandAt2aare generated by adding code to the original programs to remove
the atomicity violations. The second set (bank) is a parameterized version of thebank
example [10], where the original programbank-avhas a well-known atomicity viola-
tion and the remaining two are various attempts of fixing it All our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora.

Table 1 shows the results. The first five columns show the statistics of the trace
program, including the name, the number of threads, the total number of events, the
number of lock/unlock events, and the number of named locks.The next nine columns
show the statistics of the lock removal computation. In particular, Columns 6-9 show
the total number of pairs of interest (POI), the number of POIs without any held lock
(POI-e), the number of POIs with non-trivial lock acquisition histories (POI-h), and the
maximum nesting depths of locks (max-h). The fact thatmax-his often zero helps to

1 The benchmarks are available at http://www.nec-labs.com/∼chaowang/pubDOC/LnW.tar.gz



make our analysis scale to real-life programs. Columns 10-11 show the total number of
relevant pairs of global control states, and the number of pairs wherein one state is un-
reachable from the other. Columns 12 and 13 show the number ofcritical sections (pairs
of lock-unlock statements) in the original and transformedprograms, respectively. Col-
umn 14 shows the total time (in seconds) taken for the lock removal computation.

Table 1.Results: Using lock removal to improve symbolic analysis.memmeans memory-out.

Concurrent Trace Program Lock Removal Computation Symbolic Analysis
name thrdseventslk-evs lk-v POI POI-ePOI-hmax-h vis-ne vis-ch lk-r rm-r time(s) p-avsr-avspre(s)post(s)

ra.Main 3 55 12 3 23 7 0 0 65 0 5 3 0.0 2 0 0.0 0.0
connect 4 97 16 1 43 29 0 0 1526 0 8 0 0.0 6 0 0.1 0.1
hedcex 1 122 35 7 1 0 0 0 0 0 0 0 0.0 0 0 0.0 0.0
liveness 7 283 44 9 105 68 0 0 10272 0 15 0 0.2 36 0 0.4 0.4
BarrierB1 10 653 108 2 307 168 0 0 69498 0 35 14 0.9 102 0 10.5 3.0
BarrierB2 13 805 136 2 409 217 0 0 120659 0 49 21 1.6 87 0 54.5 7.4
account1 11 902 146 21 230 134 0 0 43690 0 72 30 0.7 140 2 1.8 0.9
philo 6 1141 126 6 433 260 0 0 147294 0 63 10 2.2 81 0 42.5 19.4
account2 21 1747 282 41 442 260 0 0 171400 0 140 60 2.6 280 3 8.7 2.4
Daisy1 3 2998 422 10 843 105 29 1 17249 141 204 175 0.3 7 0 mem 21.3
Elevator1 4 3004 370 11 893 28 0 0 1453 0 184 174 0.1 4 0 29.6 0.7
Elevator2 4 5001 610 11 1992 116 0 0 25435 0 304 257 0.7 8 0 mem 4.3
Elevator3 4 8004 1128 11 2369 214 0 0 81890 0 563 468 1.9 12 0 mem 28.2
Tsp 4 45653 20 5 87 4 0 0 20 0 8 6 0.0 0 0 0.0 0.0

At1 3 88 6 1 14 7 0 0 60 0 3 0 0.0 3 0 1.0 0.0
At1a 3 100 8 1 17 10 0 0 126 0 4 0 0.0 4 0 1.0 0.0
At2a 3 462 126 2 156 149 32 1 38208 9216 52 16 0.6 52 16 2.0 0.6
Bank-av 3 748 20 3 160 104 0 0 28776 0 40 8 0.4 40 8 8.0 0.4
Bank-sav 3 852 28 3 195 139 0 0 51510 0 56 8 0.7 56 8 8.0 0.7
Bank-fix 3 856 32 3 204 147 16 1 5761212540 64 8 0.8 64 8 9.0 0.8

Finally, the last four columns in Table 1 show the impact of lock removal on the
performance of a runtime verification procedure. Recall that, for each of the potential
atomicity violations, we use symbolic analysis to decide whether it is a real atomicity
violation. Here we first show the total number of potential atomicity violations (p-avs)
that are collected by a simple static analysis, and then showthe number of real atom-
icity violations found by the precise symbolic analysis (r-avs). Please refer to [29, 19]
for more details on predicting atomicity violation. The last two columns compare the
runtime of symbolic analysis with and without lock removal.The results clearly show
that lock removal has made the predictive verification step more efficient. Note that for
Daisy1(which is file system) andElevator2, without lock removal, symbolic execution
would run out of the 2GB memory limit, whereas after lock removal, they were able to
finish in short time.

7 Related Work

Existing work on automatically removing unnecessary synchronizations has concen-
trated mostly on performance optimization and on eliminating thread-local locks [3, 4,
6, 30], i.e. locks that have been acquired or released by a single thread or used to protect



an object accessed by a single thread. The difference among these methods lies in how
they identify shared/escaped objects. For example, Blanchet [3] uses a flow-insensitive
escape analysis both to allocate thread-local objects on the stack and to eliminate syn-
chronization from stack-allocated objects. Bogda et. al. [4] also use a flow-insensitive
escape analysis to eliminate synchronization from thread local objects, but the analysis
is limited to thread-local objects that are only reachable by paths of one or two refer-
ences from the stack. Choi et al. [6] perform an inter-procedural points-to analysis to
classify objects as globally escaping, escaping via an argument, and not escaping. When
synchronizing, the compiler eliminates synchronizationsfor thread-local objects, while
preserving Java semantics by flushing the local processor cache.

Ruf [22] combines a thread behavior analysis with a unification based alias analysis
to removal unnecessary synchronizations. Aldrich et al. [1] propose three analysis to
optimize the synchronization opportunities: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock analysis computes a description of the monitors
held at each synchronization point so that reentrant locks and enclosed locks can be
eliminated. Unshared field analysis identifies unshared fields so that lock analysis can
safely identify enclosed locks. Finally, multithreaded object analysis identifies which
objects may be accessible by more than one thread. This enables the elimination of all
synchronization on objects that are not multi-threaded. Zee and Rinard [30] present a
static program analysis for removing unnecessary write barriers in Java programs that
use generational garbage collection.

In contrast, the focus of our work is not to identify which objects areeffectively
thread-local, which objects are shared, or when they are shared, by multiple threads,
but to identify more optimization opportunities on the truly shared objects and yet re-
dundant locks. To the best of our knowledge, this is the first such lock removal algo-
rithm. It is generally applicable, based on a rigorous and unified concurrency analysis
framework. It is also practically efficient, due to the use oflock access patterns, which
involves only thread-local computation.

In the formulation of our efficient check for behavior preservation, we have lever-
aged the lock access patterns [18], since our trace program has a fixed number of threads
interacting with only nested locks. To extend the method from trace programs to whole
programs, one might need to leverage the more advanced machinery in [13, 9] to deal
with locks interacting with dynamic thread creation.

In the literature, there has also been some work on reducing the run-time cost of
synchronizations, e.g. by making their implementation more efficient (e.g. [2]) rather
than removing the unnecessary ones. These techniques complement ours. Our local
removal algorithm is also different from lock coarsening [7], which optimizes the nec-
essary synchronizations, e.g. those arising from acquiring and releasing a lock multiple
times in succession. Converting multiple lock operations into one, in general, changes
the program behavior, and therefore one must take care not tointroduce deadlock.

8 Conclusions

In this paper, we have presented an efficient and fully automatic lock removal technique
for concurrent trace programs. A key feature of our method isthat it is compositional



in nature, i.e., hinges on a thread local analysis, which makes it applicable to large,
realistic programs. Furthermore, our technique guarantees the preservation of program
behaviors, i.e., partial orders induced on shared variableaccesses. These features make
it a standalone utility with many wide ranging applications, including performance op-
timization as well as improving the efficacy of concurrent program analysis like run-
time verification, model checking and dataflow analysis. As aconcrete application, we
demonstrated the use of our lock removal technique in enhancing the scalability of pre-
dictive analysis in the context of runtime verification of concurrent programs.
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