Lock Removal for Concurrent Trace Programs*

Vineet Kahlort and Chao Wang

L NEC Laboratories America, Princeton, NJ 08540
2 Department of ECE, Virginia Tech, Blacksburg, VA 24061

Abstract. We propose a trace-based concurrent program analysutadlyre-
move redundant synchronizations such as locks while pregethe behaviors
of the concurrent computation. Our new method is computatip efficient in
that it involves onlythread-localcomputation and therefore avoids interleaving
explosion, which is known as the main hurdle for scalablecao®ncy analysis.
Our method builds on the partial-order theory and a unifieayesis framework;
therefore, it is more generally applicable than existinghuds based on simple
syntactic rules anéd hocheuristics. We have implemented and evaluated the
proposed method in the context of runtime verification oftituieaded Java and
C programs. Our experimental results show that lock remec&al significantly
speed up symbolic predictive analysis for detecting cartury bugs. Besides
runtime verification, our new method will also be useful irpbgations such as
debugging, performance optimization, program understan@nd maintenance.

1 Introduction

Concurrent programs are notoriously difficult to analyze ttheir behavioral com-
plexity resulting from the often extremely large number lafead interleavings. This
renders comprehending all the possible ways in which tleregdract a difficult prob-
lem. As a result, programmers often take a defensive startébel large sections of
code as critical sections. This may result in the additiadtindant locks, both degrad-
ing performance and making program modeling, analysisusgrstanding difficult.
The situation is particularly severe in trace-based caraiprogram analysis. When
focusing on a concrete execution trace rather than theeeptogram, we often find
significantly more redundant locks, i.e. locks that are mohpletely redundant in the
whole program may become redundant when the analysis i&ctedtto a trace.
Although there exist some methods for identifying reduricggmchronizations in
Java and C programs [3, 4, 6, 22,1, 30], e.g. as part of the itensperformance opti-
mization, they are all based on very simple syntactic ruhekaal hocheuristics. Since
these methods are based on matching patterns rather tHgmiag#he program seman-
tics, they do not lead to a generally applicable frameworllekd, most of them handle
only the simple case ddffectively thread-locabbjects, i.e. locks that are declared as
globally visible but are accessed only by one thread througthe execution. For the
many truly shared but still redundant locks, these existireghods are not effective.
We address this limitation by introducing a new and more galyeapplicable lock
removal algorithm. Our method is generally applicablesilhcan remove not only the

* Chao Wang was supported in part by the NSF CAREER award C@B4EH4.

effectively thread-locdbcks but also theéruly sharedredundant locks. Our method is
also efficient since it is based on a compositional analyisisihvolves only thread-local
computation. Our method is sound in that it can guarantesepvation of the behavior
of the original computation.

In formulating our lock removal strategy, we start from thassical notion of a
concurrent computation as a happens-before relation ashtdred variable accesses or,
equivalently, as a set of partial orders. Two interleaviagsequivalent if they induce
the same partial order of shared variable accesses. Simowirgy locks lifts the corre-
sponding mutual exclusion constraints, some previousgesible thread interleavings
may become feasible. Thus there is a danger for lock removatiroduce new program
behaviors. To address this problem, we make sure that newaavings are added by
lock removal only if they do not add new partial orders. Tleiads to the formulation
of thebehavior preservatiotheorem, which is a main contribution of this paper.

Another main contribution is the set efficiently checkableonditions under which
the behavior preservation is guaranteed. They reduce tharge check of behavior
preservation to a simple static check of the feasibility rahsitions between global
control states. This is significant because it allows us tmdaenumerating the often
astronomically large number of thread interleavings. Osthud is thread-modular in
that it does not require inspecting the interleaved pdratienposition of threads. In
addition, our focus on a concrete execution trace is alsoarin keeping the method
scalable. The concrete execution trace provides the exactary addresses that are
accessed by each thread, thereby giving us the precisesgoimformation of lock
pointers, together with information about the actual afielgs accessed, etc.

Trace-based concurrent program analysis has obviousapiplis not only in run-
time verification, but also in debugging, just-in-time (J@ptimization, program un-
derstanding, and maintenance. An important feature oéttmsed analysis is that the
trace program has finitely many threads and a fixed set of ndmekd. Although the
whole program may have pointers, loops, recursion, andrdimthread creation, in
the trace program, each thread is reduced to a boundedhdtlimig path. Most of the
complications common to static program analysis are addideause, during the con-
crete execution, branching decisions at if-else statesifeave been made, function calls
have beeninlined, loops have been unrolled, and recurkmresbeen applied. The only
remaining source of nondeterminism comes from threadl@#eing.

We have implemented the proposed method in a runtime veidficplatform called
Fusion where the underlying bug detection algorithm uses an SkBet symbolic
analysis. Since redundant locks can introduce a large ssthahronization constraints
during the modeling and checking phases, their presenea significantly increases
the cost of the symbolic analysis. Our lock removal methcgllbeen used to remove
these redundant locks. Our experiments on a set of publécalad C programs showed
a significant reduction in the number of locks, which in tued to a significant speedup
in the subsequent symbolic analysis.

To sum up, this paper has made the following two contributigfh) formulating
the general framework of behavioral preservation to sgurethove redundant locks;
and (2) proposing a set of efficiently checkable conditioasel on the thread-local
computation of lock access patterns.

The remainder of this paper is organized as follows. In $aci, we use two ex-
amples to illustrate both the benefit and challenges of leakaval. In Section 3, we
illustrate our main ideas. In Section 4, we present a setfafi@ftly checkable con-
ditions. In Section 5, we demonstrate the application ofalgorithm on the running
example. Our experimental results are presented in Se6tidve review the related
work in Section 7 and give our conclusions in Section 8.

2 Motivation

The main driving application in this paper is runtime préigiee analysis [12, 25,5, 11,
23,29, 19], which is a promising method for detecting conenecy bugs by analyzing
an execution trace. In other words, even if the given testi@n is not erroneous,
but if an alternative interleaving of the events of thatéraan trigger a failure, runtime
predictive analysis will be able to detect it. Since a corenirprogram often has a very
large number of sequential paths and thread interleavitagscally analyzing the whole
program is often extremely difficult. In such cases, runtpredictive analysis offers a
good compromise between runtime monitoring and full-fletigedel checking.

Runtime predictive analysis typically has three stepsrih)a test of the concur-
rent program to obtain an execution trace; (2) run a sourtit staalysis of the trace
to compute all thgotentialviolations, e.g. deadlocks and race conditions; (3) foheac
potential violation, build a precise predictive model ta@idie whether the violation is
feasible. The main scalability bottleneck is step 3 whetleanfeasibility check needs
to explore all possible interleavings of the trace eventthaugh the problem in step
3 can be solved by an efficient symbolic analysis [29, 19]uneldnt locks in the trace
program can unnecessarily increase the cost of this asakisice they can lead to a
large number of locking constraints that need to be modetedchecked. Our lock
removal method can cut down on the number of unnecessarytpcknstraints, there-
fore resulting in significant performance improvement ie sfubsequent analysis.

70 70 { 70 { 73014 IO 1504
Oa: —; Ob: —; Oa: —; Ob: —; 0a: —; Ob: —;
1a: lock(A); 1b: a[10]++; la: lock(A); 1b: —; la:—; 1b: —;
2a: a[1]++; 2b: a[11]++; 2ar—; 2b: —; 2ar—; 2b: —;
3a: unlock(A); 3b: lock(A); 3a: unlock(A); 3b: lock(A); 3a:—-; 3b: —;
4a: a[2]++; 4b: lock(B); 4 —; 4b: lock(B); 4a; —; ab; —;
5a: lock(A); 5b: a[12]++; 5a: lock(A); 5b: —-; S5a; —; 5b: —;
6a: lock(B); 6b: unlock(B); 6a: lock(B); 6b: unlock(B); 6a: —; 6b: —-;
7a: a[3]++; 7b: unlock(A); T7ar—; 7b: unlock(A); 7ai—; 7b: —;
8a: unlock(B); 8b: sh++; 8a: unlock(B); 8b: sh++; 8a: —; 8b: sh++;
9a: unlock(A); 9a: unlock(A); 9a: —;
10a: sh++; 10a: sh++; 10a: sh++;
} } } } } }

(a) original (b) intermediate (c) final

Fig. 1. Example: removing redundant lock statements from a coantitrace program.

Consider the concurrent trace program in Fig. 1 (a), which i straight-line
paths in thread%; and7s, respectively. The global variables afle and arrayu. Sup-
pose that the goal is to check whether locatibhwsand8b are simultaneously reachable
(e.g. a data race), we need to decide whether there existglantarleaving of these
trace statements along whi@h and7, can reach 0a and8b, respectively.

First, note that precise knowledge of the memory accessagaitable since the
trace program is derived from a concrete execution. The kedye can be used to cut
down the number of shared accesses that need to be intetléareexample, although
ali] is a global variable, the entries afaccessed by the two threads in this particular
trace program are all disjoint and can be treated as thiezad-In other words, we can
use the runtime information &lice awaythe redundant statements. This can reduce the
trace program in Fig. 1 (a) to the one in Fig. 1 (b).

Next, consider the program in Fig. 1 (b). Since locksand B now protect only
thread-local statements, some of these lock statementsbmagdundant. We shall
show in later sections that, for this particular examplesthlock statements are all
redundant and therefore can be removed while preservingrimal program behav-
ior. This reduction yields the simple trace program showfim 1 (c) with only the
shared variable accesses. Consequently, it becomes edggite the simultaneous
reachability ofl0a and8b.

Challenges in Lock Removal.The example in Fig. 1 may give a false impression
thatlocks protecting only thread-local operations can alwagsréemovedThis is not
true, as demonstrated by Fig. 2. In this example, variab#® initially. The assertion
at b7 holds because, to get value 2, one has to exdgutés — ay...ag — by...b7,
which is impossible since locH is held by threads at b3, which prevents thread;
from acquiring the same lock at locatien. However, if we remove the lock/unlock
statements at, anday — since they protect only thread-local operations — therisae

at by may fail because the aforementioned interleaving is noanedtl. This example
highlights the fact that locks may play a key role in defining set of allowed program
behaviors even if they do not guard any global operationisti ahows that, without a
rigorous concurrency analysad hocheuristics are often susceptible to subtle errors.
We address this problem by proposing a generally applidableremoval framework.

() { Ta() { ay: sh++ Y [E—

aq : sh++; byt

az : lock(A) bz : lock(A) ; by: sh=0

as ... bs : sh=0; '

a4 : unlock(A) by : x=sh; ' - by: x=sh

as ... bs : unlock(A) : B

ag : Sh++; be i

a7 i br : assert(x!=2); ag: sh++ ‘

} } \j br: assert(x!=2)

Fig. 2. Example: Assuming thath=0 initially. The lock statements at. andas cannot be re-
moved despite that they do not protect any shared accessividle, assertion & may fail.

3 Lock Removal: the Core Idea

We say that a prograr®’ results from another prograf® via lock removal if P’ is
obtained fromP by converting some of the lock statementsitgp. A lock statement

in P is considered as redundant if removing that statement dutesiter the program
behavior. Here the program behavior is defined as the seterféaved computations
that are allowed by the program semantics. Since lock s&t&mimpose mutual ex-
clusion constraints, they restrict the thread interastidy removing lock statements
from P, in general, we may allow the new progrdMto have more interleavings; on
the other hand, it is impossible to remove any previouslgvadld interleavings irP.
Therefore, to preserve the program behavior, we only needgare that every newly
added interleaving (allowed iR’ but not inP) is equivalent, in some sense, to an exist-
ing interleaving inP. In other words, lock removal is sound as long as it does nat ad
new equivalence classes (of interleavings).

3.1 The Lock Removal Strategy

Since characterizing interleavings directly is cumbers@md computationally expen-
sive, we rely on the standard notion of concurrent companatas happens-before re-
lations on the shared variable accesses [20, 14]. Thatésuéixg two operations from
different threads that update the same memory locatiorfierdnt orders may lead to
different results. Therefore, instead of preserving ietarings of all the statements, we
focus on preserving the partial orders of shared varialdesses (reads and writes).
For a programP comprised of the: threadsT?, ..., T),, a global control state is
a tuple(cy, ..., c,) Wheree; is a control location off; for all i € [1..n]. In contrast
to aconcreteprogram state, denotede s, the global control stateis moreabstract
in that it tracks only the program counters but not the vabfdbe program variables.
Therefores can be viewed as a set of concrete states. Since threadbslo@altions are
invisible to the other threads, in the sequel we shall asswiti®ut loss of generality
that the locations iricy, ..., ¢,,) are all starting points oflobal operations i.e. either
shared reads/writes or lock acquisitions. This restmctian drastically cut down the
number of global control states that need to be consideredglour analysis. Note
that if a thread is at locatios, it means that the operation gthas not been executed
yet.

Definition 1 (Visible Successor)For global control states, s’ in programP, we say
thats’ is a visible successor 6fiff there exist states € s ands’ € s’ such that

— s’ is reachable frons via a valid concurrent computation, and
— along this computation, the first operation is the only gliofyzeration.

Our lock removal strategy can be phrased as follows: Rengaliock statements such
that no new visible successor is introduced to any globatrobstate that is reachable
from the initial state ifP. In other words, for eac) if we can preserve the set of global
control states thatcan transit to, the program behavior will be preserved.

Consider Fig. 2 as an example. For all transitions betweergtabal control loca-
tions, e.g. from(az, bs) to (ae, bs), our lock removal strategy says that, if the transition

is not allowed byP before lock removal, it should not be allowed BY either. Based
on this strategy, the lock statementsiatanda, will be preserved, because removing
them would make the infeasible transitiorinfrom (a2, b3) to (ag, b3) feasible inP”’.

3.2 Conservative Static Check

Although the lock removal strategy proposed so far is sosndedl as generally appli-
cable, computing the visible successors of a global costaté is a challenging task,
because the conditions in Definition 1 are semantic conditi@hecking the reachabil-
ity between two concrete statesainds’ would be too expensive in practice. To avoid
this bottleneck, we introduce a set of checks based on themot static or control-
statereachability.

Lets = (c¢1,...,¢,) ands’ = (¢, ..., ¢},) be two global control states, where for
eachi € [1..n], the local pathe’ of T; leads from location; to ¢;. We say that’ is
statically reachable frons if and only if there exists an interleaving of , ..., 2" that
obeys the scheduling constraints imposed by the locks vgnigring data (which is the
consistency between shared variable accesses).

Definition 2 (Static Visible Successor)For global control states, s’ in programP,
we say that’ is a static visible successor offf

— s is statically reachable froma via some interleaved computation, and
— along this computation, at most one global operation is erés

Here the second condition ensures #iatan be immediately reached franthence a
successor). Lefuccp(s) be the set of static visible successors af programP. Our
static lock removal strategy is stated as follows.

Theorem 1 (Behavior Preservation)Let programP’ result from programP via lock
removal. If for each global control stateof P, we haveSuccp (s) = Succp: (s), then
the two programs have the same behavior as defined by theapartiers of global
operations.

Intuitively, if no new global control state becomes readbdiom the initial state, then
there is certainly no new program behavior. For brevity, wdtahe proof. A crucial
property of Theorem 1 is that the static reachability chearkloe turned into a concep-
tual lock removal procedure as follows:

1. Enumerate the sétof global control states of the given trace program.

2. For each € S, compute the séiuccp (s)of static visible successors.

3. For each lock statemelktstmtin threadT;, if there exists a global control location
s such that, removintk-stmtwould add a new successdrthat is not inSuccp (s),
we must retairk-stmtelselk-stmtis removed.

There are two remaining problems. First, given two globalto statess, s’, how to
efficiently decide whethef is a static visible successor @fSecond, how to efficiently
compute the set of static visible successors while avoiding the naive enumeration
of all global control states. We will address these two peaid in the next section.

4 Compositional Lock Removal

We present a compositional analysis for static lock remavalvoid the exponential

blowup incurred by naively enumerating the global conttaless. Our method is thread-
modular in that the lock removal computation involves ohisetad-local reasoning, and
therefore has a linear worst-case time complexity in thgm size.

4.1 Deciding Static Reachability

We leverage an existing procedure [18] to decide the statichability between two
global control states. The procedure is both sound and ampdr 2-threaded pro-
grams with nested locks. For programs with more than twoatlgethe procedure re-
mains sound but is not complete. This is acceptable becasi$eng as it shows that
is staticallyunreachabldrom s, the unreachability is guaranteed to hold.

The procedure in [18] can be viewed as a generalization of
the standardocksetanalysis [24]. The key insight is that, to
decide whethes’ = (¢}, ¢c)) is statically reachable frors = T T

(c1,c2), for example, in a 2-threaded program, merely checking .
the disjointness of the set of locks heldByandT; atc) ande;, A.—lj c

is not enough (see the figure on the right). Although oveiltagpp

locksets prove that is not reachable from, the disjointness of ' a’
the locksets is not sufficient to prove thdtis reachable from g

s. Instead, reachability can be decided more accurately By fir¢ o o d
computing adock access pattern (LARpr each path frone; to | |

¢, wherei € [1..2], and then checking whether the LAPs are
consistent.

Definition 3 (Lock Access Pattern).The lock access pattern for patf from¢; to ¢/
in threadT;, denoted AP (¢;, ¢}), is atuple(Ly, Lo, bah, fah, Held, Acq) where
— Ly and L, are the set of locks held W at ¢; andc}, respectively;
— bah andfah are the backward and forward acquisition histories, redjpety:
e foreachlock € L, held atc}, bah(l) is the set of locks acquired (and possibly
released) after the last acquisition b&long pathz! from¢; to ¢/;
e for each lock € L, held atc;, fah(1) is the set of locks released (and possibly
acquired) since the last releaseldh traversingz? backward fronx; to c;.
— Held is the set of locks that are held in every state along patfiom¢; to ¢};
— Acq is the set of locks that are acquired (and possibly releassag pathz’.

A key feature of this LAP-based static analysis proceduthas all computations are
local to each individual thread, which is crucial in ensgratalability.

Decomposition ResultThe static reachability fromto s’ can be decided by checking
whether the corresponding lock access patterns are cemisifor ease of exposition,
we present the result for programs with two threads. Howekrerresult, as well as all
the other subsequent results, is applicable to progranhsitireads.

Lets = (¢1,c2) ands’ = (¢, ¢) be two global control states, ahd\P(c;, ¢}) =
(L1, LY, bah', fah', Held", Acq') andLAP(co,) = (L3, L3, bah?, fah? Held?, Acg?)
be the lock access patterns. Thérs statically reachable fromiff

1. LinL?=0,andLinN L3 = 0;

2. there do not exist locksc L} andl’ € L? such that € fah®(I’) andl’ € fah'(1);
3. there do not exist lockse L} andl’ € L3 such that € bah?(I’) andl’ € bah'(1);
4. Acq' N Held? = (), andAcq® N Held' = ().

For n-threaded programs, the only significant difference wowdrbconditions 2 and
3, wherein one has to account for the cases in whittireads form a cyclic dependency
that may span multiple threads instead of just two.

4.2 Compositional Analysis

To avoid the expensive enumeration of global control stasedescribed in Theorem 1,
we compute for each individual thread, all pairs of localtcoinstates that may cor-
responds to some static visible successors. More spelyifiagbair (¢;, ¢;) of control
locations in thread’; is called apair of interest (POIff

— ¢; and¢, correspond to either shared variable accesses or locksittojs, and
— there exists a local pattf in T; from ¢; to ¢, such that no other shared variable
access or lock acquisition occurs betwegandc;.

Our compositional lock removal procedure is given in Algfom 1. After computing
the POls of each thredl, it traverses that thread to collect the lock access patfem
all POls. LetLP; denote the set of all lock access patterng;inNote thatLP; can be
computed via a single traversal pass of thréalstep 4).

Algorithm 1 Compositional Lock Removal

1: Input: ThreadsTy, >

2: for each thread; do

3 Enumerate all pairs of intereBOI(73).
4: Traverse the local path ifi;, to computeLAP(¢;, ¢;) for each pair(c;, ¢;) € POI(T3).
5: LetLP; be the set of lock access patterns of all POIEin
6
7
8

. end for
: for each paif(lap:, lap2) wherelap; € LP; for all thread index € [1..2] do
if lapi,lap2 are inconsistenthen

9: Identify the set of lock statements that are the root caos@consistency.
10: endif
11: end for

12: Remove lock statements that are not the root causesmfsistency for any pair.

Instead of iterating through the set of all global contrates, Algorithm 1 considers
all pairs (lap1,laps) of lock access patterns that are inconsistent (step 7). tiate
lap; corresponds to some pdit;, ¢;) € POI(T;) and the inconsistency dfip; and
lap, means that there exist some lock statements that préwgnt,) from reaching
(¢}, ch). In this case, we need to identify a minimum subset of loctestants that are
sufficient to establish this inconsistency, and retaingHesk statements. Finally any
lock statement that is not responsible for causing an irstargy between any pair of

lock access patterns does not impact the reachability leetary pair of global control
states, and is therefore removed.

It is worth pointing out that the lock statements (to be retd) can be identified
from the lock access patterngif; andlaps) alone, without considering the global
control states or the POls that generate these lock accéssnsaln other words, we
can implicitly isolate the set of non-reachable pairs ofbglocontrol states without
explicitly enumerating them. The algorithm can also be eolézl to programs with
threads, by changing step 7 to check for inconsistent tugflde form(laps, ..., lapy,),
as opposed to the inconsistent p@itp; , laps).

4.3 Identifying the Locks to be Retained

If s’ is not statically reachable fromin the original progran, according to Sec-
tion 4.1, at least one of the conditions in the decompositesult must be violated.
From these conditions, we can isolate the root causes teaépis from reachings’
statically. Our observation is thatsf is not statically reachable fromin P, then we
need to make sure thsltis not reachable from in the transformed prograf’. The
behavior preservation can be guaranteed if we retain at $ease (but not all) of the
lock statements that prevenfrom reaching’.

Given an inconsistent palnp; andlaps of lock access patterns, we can define a
reachability barrier by isolating the locks causing theoimgistency. To this end, for
each pair(s,) of global control states wheee= (c1, c2) ands’ = (¢}, ¢;), we define
areachability barrier, denotecRB(s, s’), which is the set of all locksetd.j for which
at least one of the following conditions holds:

— L = {I}, wherel is held at both:; andc, or at bothc; andc, (violating condition
1 of the decomposition result);

— L = {l,I'}, wherel andl’ are held at; andc,, respectively, such thate fah(l’)
and!’ € fah(l) (violation of condition 2);

— L ={I,I'}, wherel and!’ are held at} andd}, respectively, such thate bah(l’)
and!’ € bah(l) (violation of condition 3);

— L = {l}, wherel is held throughout* (or z2) and is acquired along? (or z)
(violation of condition 4).

Note that in order to ensure thst remains unreachable from it suffices to retain
the locks belonging to some lockset RB(s,s’) as that will ensure that at least one
condition of the decomposition result is violated.

5 Applying Lock Removal to the Running Example

We now use our new method to remove all locks in the trace praghown in Fig. 1 (b)
while preserving the program behavior.

We start by identifying the pairs of interest. In the pathshown in Fig. 1 (b),
there are three lock acquisition statements, i.e. locatian5¢ and6a, and two shared
variable accesses, i.€¢ and10a (the initial state is always treated as a shared vari-
able access). This leads to the pairs of inteP&litz') = {(0a, 0a), (0a, 1a), (1a, 1a),

(1a,5a), (5a,5a), (5a, 6a), (6a, 6a), (6a,10a)}. Similarly, POl(z?) = {(0b, 0b), (0b, 3b),
(30, 3D), (3b,4b), (4b, 4b), (4b, 8b), (8b,8b)}.

Next, we compute the lock access patterns generated byiiaigianterest in paths
z! andz?. Toward that end, we compute the2POI function forz? that maps each
lock access patteriap that is encountered to the set of POlsadfthat generate that
pattern. For eaclics,) in the set{(0b, 0b), (0b,3b), (3b,3b), (8b,8b)}, no lock is
held at either, or ¢, and no lock is acquired along the sub-sequence’dfom c; to
5. Thus all the entries in the lock access pattern tuples fselpairs are empty (note
that if a thread is at locatiosb it means that the statement3ithasn’t been executed
yet, i.e., lock held at locatioBb is ().

Consider now the pair of intereétb, 8b). We show thal. AP (4b,8b) = ({4}, 0,
{(A,{B})}, 0, 0, {B}). The first two entries in the tuple are the locksets heldbat
and8b which are{ A} andf), respectively. Since no lock is held at the final stitethe
forward acquisition histories, i.e., the fourth entry oéttuple is empty. On the other
hand, lockA is held at the initial statéb. This lock is released &b. However before it
is released, also release® at6b. ThusB is in the backward acquisition history df
which is reflect in the third entry of the tuple. Also, sincekaB is acquired at location
4b, we haveAcq = {B} (6th entry). Finally, since there exists no lock that is hetd
all states, we havéleld = () (5th entry). Similarly, we may compute the lock access
patterns for the remaining pairs of interest (see Fig. 3 @ilarly, we compute the
lap2POI function forz! (see Fig. 3 (a)).

From Fig. 3 (a) and 3 (b), we compute the inconsistent gairs-) of lock access
patterns where

1. p1 = ({4}, {A},0,0,{A},0), p2 = (0, {A},0, {(A, {}}, 0, {A}): Held and Acq fields
of p; andp., respectively, have the common logk

2. p1 = (0,0,0,0,0,{A}) andp> = ({A}, {4}, 0, 0, {A},0): Acqg and Held fields of p;
andp2, respectively, have the common logk

3. b1 = (®7 {A}7®7 {(A7 {})}7 (07 {A}) andp2 = ({A}7 {A}7 ®7 (07 {A}7 @) ACq and Held
fields ofp; andps, respectively, have the common logk

4. p1 = ({A}.{A}.0,0,{A},0) andp> = ({A},{A}, 0, 0, {A}, 0): L fields have the
common lockA

5. p1 = ({A},{4},0,0,{A},0) andp> = ({A},0, {(A,{B}}, 0, 0, {B}): L1 fields have
the common lockA

6. p1 = ({A},0,{(A, {B})}.0,0,{B}) andpz = ({A},{A}, 0, 0, {A}, 0): L, fields have
the common lockA

7m0 = ({A}0,{(A {B})}.0,0,{B}) andp2 = ({4}, 0, {(A,{B})}, 0, 0,{B}): Ly
fields have the common lock

8. p1 = (0,{A},0, {(A, {})}.0,{A}) andpz = (8, {A},0,{(A,{})},0, {A}): Lo fields
have the common locH.

Note that in each of the above cases, the only lock occumitigd reachability barriers
of the non-reachable pairs of global control stated.isSince lockB does not occur
in any of the reachability barriers, in the first iteratiore wan remove all statements
locking/unlockingB.

Now we repeat the lock removal procedure again on the traagram in Fig. 1 (b),
by converting statementsu, 8a, 4b and 6b to nop. These new traces generate the
lap2POI functions shown in Figs. 3 (c) and (d). Note that now all paifsaccess

patterns are mutually consistent. Thus the reachabilityidya for all pairs of global
control states are empty. Hence all locks in the originatésacan now be removed
giving us the traces with no lock statements.

— {(0a, 0a), (0Oa, 1la), (1a, 1la), (5a, 5a), (10a, 10a)}
} (la,5a)}
{A}) — {(5a,6a)}
) — {(6a, 6a)}
,0,{B}) — {(6a,10a)}

@
0b), (0b, 3b), (3b, 3b), (8b, 8b)}
{A}) — {(3b,4b)}
(4b, 4b)}
}) — {(4b,80)}

(b)
(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
{(1a, 5a), (5a, 10a)}
©

(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
{(3b, 8b)}

sq@@ﬁ

s
~
o~

=
oA
=

=
=l
1=

s ¥y

(d)

Fig. 3. Thelap2POl function forz! (left) andz? (right)

Generalizations.So far, for ease of exposition, we have presented all therithigus
using concurrent trace programs with two threads. Howewgmesults can be extended
to programs with an arbitrary but fixed number of threadssHaneralizations do not
require additional insights. The only difference from ththZead case is that we need
an efficient technique to decide static reachability betwglebal control states which
are nown-tuples of the forn{cy, ...c,,), where each; is either a shared variable access
or alock acquisition in thread;. This is achieved via a straightforward extension of the
decomposition result in Section 4.1. That is, for each piinieads, we check whether
their lock access patterns (LAPs) are consistent.

So far we have discussed only mutex locks. A typical realldvooncurrent program
in Java or C (with POSIX threads) may have additional coranay primitives such as
thread creation and join operations, wait/notify/notifyas well as reentrant locks. The
presence of these synchronization primitives does nottidtfie soundness of our lock
removal algorithm. The reason is thatsifis statically unreachable fromaccording
to locks (while ignoring data and other concurrency priveis), it is guaranteed to be
unreachable when more synchronization constraints argidemred. At the same time,
if there is a way to incorporate the causality constraingsased by other concurrency
primitives, one can more accurately determine the reatityalbétween global control
states, therefore leading to the identification and remafyabtentially more redundant
lock statements. To this end, we have incorporated the tsaleausality graph based
analysis in [19] during our implementation of the proposmaklremoval method. How-
ever, we note that this UCG-based analysis is orthogonaldio lemoval, and can be
carried out once in the beginning of the computation.

6 Experiments

We have evaluated the lock removal method in the context @Mii-based runtime
predictive analysis [28, 29], to quickly remove the locktstaents that are redundant
and therefore ease the burden of modeling and checking yNfiesolvers.

We now provide a brief overview of the symbolic predictivabssis. Given a multi-
threaded Java or C program and a user-defined test casegtlietipe analysis proce-
dure first instruments the program code to add self-loggagability, and then uses
stress tests to detect concurrency failures. However, auket scheduling nondeter-
minism and the astronomically large number of interleasjngis often difficult to
uncover the concurrency bugs. If testing fails to detectlary; we start a post-mortem
analysis of the logged execution trace.

In this subsequent analysis, first we use a simple control dloalysis to compute
the potential bugsConsider the one-variable three-access atomicity vandP1, 11]
as an example. In this case, a potential bug is a sequenge...t., of program state-
ments such that: (k). andt. are intended to be executed atomically by one thread, (2)
t, is in another thread and is data dependent with bbotind¢... Then we use a more
precise static analysis based ontiméversal causality graph (UCG [19]p prune away
the obviously bogus violations.

For each remaining potential violation, we call the SMTdzhsymbolic procedure
to decide if there exists a valid interleaving under whiahfolation is feasible. In this
context, an interleaving is feasible if it satisfies both siyachronization consistency
(e.g. locks) and the shared memory consistency. Pleasetoef28, 29, 26] for more
information about the symbolic encoding. Here we assumedie@ential consistency
(SC) memory model. We have used the YICES solver from SR[8Lir experiments.
Since having more lock statements generally leads to mgredbconstraints and there-
fore a higher cost for SMT solving, we have used lock remoeébie the SMT-based
analysis, to remove the redundant lock statements.

We conducted experiments using the following benchnlarkse Java programs
come fromvarious public benchmarks [16, 17, 15, 27]. Thedgmms are the PThreads
implementation of two sets of known bug patterns. The firstAg mimics an atomicity
violation in the Apache web server code (c.f. [21]), whAt& is the original program,
while AtlaandAt2aare generated by adding code to the original programs tovemo
the atomicity violations. The second sba(k) is a parameterized version of thank
example [10], where the original progrdmank-avhas a well-known atomicity viola-
tion and the remaining two are various attempts of fixing itdlr experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB menuonying Fedora.

Table 1 shows the results. The first five columns show thesttatiof the trace
program, including the name, the number of threads, thé notaber of events, the
number of lock/unlock events, and the number of named lodke.next nine columns
show the statistics of the lock removal computation. Inipalar, Columns 6-9 show
the total number of pairs of interest (POI), the number of @ithout any held lock
(POIl-e), the number of POIs with non-trivial lock acquisitihistories (POI-h), and the
maximum nesting depths of locks (max-h). The fact thaix-his often zero helps to

! The benchmarks are available at http://www.nec-labs.caméowang/pubDOC/LnW.tar.gz

make our analysis scale to real-life programs. ColumnsiL8kbw the total number of
relevant pairs of global control states, and the number n§ pégherein one state is un-
reachable from the other. Columns 12 and 13 show the numioeitioal sections (pairs
of lock-unlock statements) in the original and transformpearams, respectively. Col-
umn 14 shows the total time (in seconds) taken for the loclokatcomputation.

Table 1.Results: Using lock removal to improve symbolic analysiemmeans memory-out.

Concurrent Trace Program Lock Removal Computation Symbolic Analysis
name [thrddeventjlk-evsfik-v] POIPOI-gPOI-Hmax-H vis-ndvis-ch[lk-rirm-rltime(s}[p-avgr-avdpre(s]post(s
ra.Main 3 55] 12| 3| 23 7 0 0 65| 0 5[3 0.0 2 0| 0.0 0.9
connect | 4 97| 16| 1) 43 29 0 0| 1526 o 8 O 0.0 6 of 0.3 0.1
hedcex 1 1220 35 7 1 0 0 0 0 o O O 0.0 0f 0 0.0 0.0
liveness | 7 283 44 9|l 105 68| 0 0| 10272 0| 15 O 0.2| 36 Of 0.4 0.4
BarrierBl 10 | 653 108 2| 307, 168 0 0| 69498 0| 35 14 0.9 102 0] 105 3.0
BarrierBZ 13 | 805 136 2| 409 217 0 0[120659 0| 49 21 1.6| 87 0| 545 7.4
accountl| 11 902 146 21| 230 134 0 0| 43690Q 0| 72| 30 0.7| 140 2| 1.8 0.9
philo 6 | 1141 126 6| 433 260 0 0147294 0| 63| 10 2.2| 81 0| 42.5 194
account2| 21 | 1747 282 41| 442 260 0 0|171400 0/140 60 2.6]| 280 3| 8.7 2.4
Daisyl 3 | 2998 422 10| 843 105 29 1 17249 141)204 175 0.3 7 0l mem 21.3
Elevatorl 4 | 3004 370 11| 893 28 0 0| 1453 0/184f 174 0.1 4 0| 29.9 0.7
Elevator2 4 | 5001 610 11//1992 116 0 0| 25435 0|304f 257 0.7 8 0l mem 4.3
Elevator3 4 | 8004 1128 11||2369 214 0 0| 8189Q 0|563 468 1.9 12 0| mem 28.2
Tsp 4 (45653 20| 5| 87 4 0 0 20 O 8 6 0.0 0f 0 0.0 0.0
Atl 3 88| 6| 1| 14 7 0 0 60 0 3| 0 0.0 3 0] 1.0 0.9
Atla 3 100 8 1| 17| 10 0 0 126 0 4 0O 0.0 4 0 1.0 0.9
At2a 3 462 126| 2| 156 149 32 1| 38208 9216 52| 16 0.6 52 16| 2.0 0.6
Bank-av | 3 748 20| 3|l 160 104 0 0| 28776 0| 40, 8 0.4| 40 8/ 8.0 0.4
Bank-sav] 3 852 28 3|l 195 139 0 0| 5151Q 0| 56| 8 0.7| 56/ 8/ 8.0 0.7
Bank-fix | 3 856 32| 3| 204 147, 16 1{ 5761212540 64 8 0.8| 64 8/ 9.0 0.8

Finally, the last four columns in Table 1 show the impact akieemoval on the
performance of a runtime verification procedure. Recall, tfea each of the potential
atomicity violations, we use symbolic analysis to decidesthier it is a real atomicity
violation. Here we first show the total number of potentialnaicity violations (p-avs)
that are collected by a simple static analysis, and then shemumber of real atom-
icity violations found by the precise symbolic analysisags). Please refer to [29, 19]
for more details on predicting atomicity violation. Thetlaso columns compare the
runtime of symbolic analysis with and without lock removgte results clearly show
that lock removal has made the predictive verification stepenefficient. Note that for
Daisyl(which is file system) anétlevator2 without lock removal, symbolic execution
would run out of the 2GB memory limit, whereas after lock rerdpthey were able to
finish in short time.

7 Related Work

Existing work on automatically removing unnecessary syocizations has concen-
trated mostly on performance optimization and on elimimmgathread-local locks [3, 4,
6, 30], i.e. locks that have been acquired or released bygéedinread or used to protect

an object accessed by a single thread. The difference arhesg ethods lies in how
they identify shared/escaped objects. For example, Betri@huses a flow-insensitive
escape analysis both to allocate thread-local objects®sttk and to eliminate syn-
chronization from stack-allocated objects. Bogda et.4la[so use a flow-insensitive
escape analysis to eliminate synchronization from threeal lobjects, but the analysis
is limited to thread-local objects that are only reachalyig@aths of one or two refer-
ences from the stack. Choi et al. [6] perform an inter-proicabdpoints-to analysis to
classify objects as globally escaping, escaping via armaegit, and not escaping. When
synchronizing, the compiler eliminates synchronizatimnshread-local objects, while
preserving Java semantics by flushing the local processbeca

Ruf[22] combines a thread behavior analysis with a unificeiased alias analysis
to removal unnecessary synchronizations. Aldrich et dlpfbpose three analysis to
optimize the synchronization opportunities: lock anaysinshared field analysis, and
multithreaded object analysis. Lock analysis computessergeion of the monitors
held at each synchronization point so that reentrant loocksemclosed locks can be
eliminated. Unshared field analysis identifies unshareddisb that lock analysis can
safely identify enclosed locks. Finally, multithreadedealb analysis identifies which
objects may be accessible by more than one thread. Thisesnidial elimination of all
synchronization on objects that are not multi-threade@. &ied Rinard [30] present a
static program analysis for removing unnecessary writeidrarin Java programs that
use generational garbage collection.

In contrast, the focus of our work is not to identify which etls areeffectively
thread-local which objects are shared, or when they are shared, by neuttipeads,
but to identify more optimization opportunities on the yrshared objects and yet re-
dundant locks. To the best of our knowledge, this is the fuishdock removal algo-
rithm. It is generally applicable, based on a rigorous anflachconcurrency analysis
framework. It is also practically efficient, due to the usdaak access patterns, which
involves only thread-local computation.

In the formulation of our efficient check for behavior prasgion, we have lever-
aged the lock access patterns [18], since our trace program fixed number of threads
interacting with only nested locks. To extend the methodhftcace programs to whole
programs, one might need to leverage the more advanced meaghm [13, 9] to deal
with locks interacting with dynamic thread creation.

In the literature, there has also been some work on redubmgun-time cost of
synchronizations, e.g. by making their implementation engfficient (e.g. [2]) rather
than removing the unnecessary ones. These techniques et ours. Our local
removal algorithm is also different from lock coarsening {¥hich optimizes the nec-
essary synchronizations, e.g. those arising from acquéimd releasing a lock multiple
times in succession. Converting multiple lock operatiaris bne, in general, changes
the program behavior, and therefore one must take care mutéaluce deadlock.

8 Conclusions

In this paper, we have presented an efficient and fully auticrieck removal technique
for concurrent trace programs. A key feature of our methdtas it is compositional

in nature, i.e., hinges on a thread local analysis, whicharakapplicable to large,
realistic programs. Furthermore, our technique guararteepreservation of program
behaviors, i.e., partial orders induced on shared varitdesses. These features make
it a standalone utility with many wide ranging applicatipimeluding performance op-
timization as well as improving the efficacy of concurremagnam analysis like run-
time verification, model checking and dataflow analysis. &swcrete application, we
demonstrated the use of our lock removal technique in enihgutite scalability of pre-
dictive analysis in the context of runtime verification ohcarrent programs.

References

1.

10.

11.

12.

13.

14.

15.

J. Aldrich, C. Chambers, E. G. Sirer, and S. J. EggersicZtaalyses for eliminating unnec-
essary synchronization from Java programslinternational Symposium on Static Analysis
pages 19-38, 1999.

. D. F. Bacon, R. B. Konuru, C. Murthy, and M. J. Serrano. Thicks: Featherweight syn-

chronization for Java. IMCM SIGPLAN Conference on Programming Language Design
and Implementatiorpages 258-268, 1998.

. B. Blanchet. Escape analysis for object-oriented laggsiaApplication to Java. IACM

SIGPLAN Conference on Object Oriented Programming, Systeanguages, and Applica-
tions pages 20-34, 1999.

. J. Bogda and U. Hdlzle. Removing unnecessary synchatioizin Java. IIACM SIGPLAN

Conference on Object Oriented Programming, Systems, laayegy and Applicationpages
35-46, 1999.

. F. Chen and G. Rosu. Parametric and sliced causalitylnternational Conference on

Computer Aided Verificatigmpages 240-253. Springer, 2007.

. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and Bidkiff. Stack allocation and

synchronization optimizations for Java using escape ar®lA\CM Trans. Program. Lang.
Syst, 25(6):876-910, 2003.

. P.C. Diniz and M. C. Rinard. Lock coarsening: Eliminatiogk overhead in automatically

parallelized object-based progrands Parallel Distrib. Comput.49(2):218-244, 1998.

. B. Dutertre and L. de Moura. A fast linear-arithmetic solfor DPLL(T). InInternational

Conference on Computer Aided Verificatipages 81-94. Springer, 2006. LNCS 4144.

. J. Esparza and P. Ganty. Complexity of pattern-basediozion for multithreaded pro-

grams. InACM SIGACT-SIGPLAN Symposium on Principles of Programrhaniguages
pages 499-510, 2011.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns aow to test them. IrParallel and
Distributed Processing Symposiupage 286, 2003.

A. Farzan and P. Madhusudan. Meta-analysis for atomi@tations under nested locking.
In International Conference on Computer Aided Verificatipages 248262, 2009.

C. Flanagan and S. N. Freund. Atomizer: A dynamic atdgnidiecker for multithreaded
programs. IrParallel and Distributed Processing Symposil2004.

T. M. Gawlitza, P. Lammich, M. Muller-Olm, H. Seidl, a®d Wenner. Join-lock-sensitive
forward reachability analysis for concurrent programswdiynamic process creation. lim-
ternational Conference on Verification, Model Checkingi &bstract Interpretationpages
199-213, 2011.

P. Godefroid. Partial-Order Methods for the Verification of ConcurrentsB&gms - An Ap-
proach to the State-Explosion Proble®@pringer, 1996.

K. Havelund and T. Pressburger. Model checking Javaranag using Java PathFinder.
Software Tools for Technology Transfé(4), 2000.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. http://research.microsoft.com/qadeer/cav issta.lbint cav/issta special even on specifica-
tion, verification, and testing of concurrent software.
http://www2.epcc.ed.ac.uk/computing/ reseaactivities/javagrande/indext.html. The
java grande forum benchmark suite.

V. Kahlon. Boundedness vs. unboundedness of lock ch@hmracterizing decidability of
pairwise cfl-reachability for threads communicating viaks. In Symposium on Logic in
Computer Sciencgages 27-36, 2009.

V. Kahlon and C. Wang. Universal Causality Graphs: A igeebappens-before model for
detecting bugs in concurrent programs. Iiternational Conference on Computer Aided
Verification pages 434-449, 2010.

L. Lamport. Time, clocks, and the ordering of events instributed system.Commun.
ACM, 21(7):558-565, 1978.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atcityiviolations via access in-
terleaving invariants. Ii\rchitectural Support for Programming Languages and Ofiata
Systemgspages 37-48, 2006.

E. Ruf. Effective synchronization removal for Java AldiM SIGPLAN Conference on Pro-
gramming Language Design and Implementatioeges 208—218, 2000.

C. Sadowski, S. N. Freund, and C. Flanagan. Singlettacinamic determinism checker
for multithreaded programs. |Buropean Symposium on Programmimmages 394—409,
20009.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and @lefson. Eraser: A dynamic data
race detector for multithreaded program&M Trans. Comput. Sysii5(4):391-411, 1997.
K. Sen, G. Rosu, and G. Agha. Detecting errors in muttébded programs by generalized
predictive analysis of executions. Formal Methods for Open Object-Based Distributed
Systemgspages 211-226, 2005.

N. Sinha and C. Wang. On interference abstraction8CIM SIGACT-SIGPLAN Symposium
on Principles of Programming Languaggsages 423-434, 2011.

C. von Praun and T. R. Gross. Static detection of atoyniddlations in object-oriented
programs.Object Technology3(6), 2004.

C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic ptegicanalysis for concurrent
programs. Innternational Symposium on Formal Methogsges 256—272, 2009.

C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-basetbslic analysis for atomic-
ity violations. InInternational Conference on Tools and Algorithms for Camsgion and
Analysis of Systempages 328-342, 2010.

K. Zee and M. C. Rinard. Write barrier removal by statialgsis. InACM SIGPLAN
Conference on Object Oriented Programming, Systems, laayggy and Applicationpages
191-210, 2002.

