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Class 13a: Random Forests, for Model (and Predictor) Selection 
 
1 WHICH ASPECTS OF OBSERVED DATA ARE IMPORTANT?  

WHAT PREDICTORS DO WE INCLUDE? 
 
[1] Substantive reasons! (Gelman and Hill 2007: 69 have a nice discussion of some criteria) 
[2] Via various methods of predictor selection 
 
 Strategies for regression/parametric models 

‒ step-up/step-down model building 
‒ log likelihood/AIC tests 
‒ AIC-based model averaging/selection (e.g., Burnham and Anderson 2004; in linguistics: 

Kuperman and Bresnan 2012) 
 
 Notable issues in model selection strategies for regression/parametric models 

‒ step-up/step-down model building misses interactions 
‒ higher-order interactions aren’t easy to capture (or interpret) 
‒ assumption of a certain probability distribution in the data (e.g., normal, Poisson, etc.) 
‒ data sparseness: severe limitations when it comes to small n, large p power (e.g., general rule 

of thumb for logistic regression is (min(n1, n0)/10–1).) 
‒ multicollinearity and overfitting 

 
 Outline 

‒ Classification (and regression) trees 
‒ Ensemble methods: Random forests and variable importance 
‒ An illustration: multicollinearity 
‒ Advantages, comparisons, and limitations 
 

 
2 CLASSIFICATION (AND REGRESSION) TREES (CART) 
 
 A non-parametric method of sorting data based on predictor variables. 
 An illustration: imagine you have a guest and want to serve them tea from your (extensive) tea 

collection. How do you help the guest narrow down what they’d like to try? 
‒ Method 1. So, what do you want?  ← highly inefficient 
‒ Method 2. A decision tree based on the most predictive variables, trying to eliminate as many 

tea choices as possible in each split.   ← more efficient 
 
(1) Tea tree 
 
 
 
 
 
 
 
 
 
 
 
 

Straight or flavored? 

Green or black tea? 

with milk? 

Earthy or floral? East or West? Straight or flavored? 

green black 

straight flavored yes no 

Chai 

earthy floral East West straight flavored 

Snow Mountain Jasmine Apricot  PG Tips Pu-erh Earl Grey 
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(2) Conditional inference tree for French –esque attachment 
 

 
 

> library(party) 
> set.seed(47) 
> d.ctree <- ctree(outcome ~ penultimate.sound + final.sound + syllable_count, 

data = data) 
> plot(d.ctree) 

 
 Upshot: CART can handle multinomial dependent variables. 
 How the tree works: 

‒ Splits, or branches of the tree, are made by trying to maximize the purity of the data partitions 
(= “impurity reduction”). 

‒ Predictor that is most strongly associated with the data partitions (i.e., makes the purist split 
with the smallest p value) is chosen as the basis of the split. 

 
(3) Impurity reduction of ctree in (2) 
 

       >  plot(d.ctree, inner_panel = node_barplot) 
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 Discuss: What does the tree in (2) tell us? How does it compare to the multinomial logistic regression 
results? 

 
(4) % correct of the ctree model: 70.07% 
 

> ctree_predict <- predict(d.ctree) 
> sum(data$outcome==ctree_predict)/nrow(data) 

 
 
2.1 AVOIDING OVERFITTING IN CARTS 
 
 Like regression models, CARTs can also be prone to over-fitting if you’re not careful.  
 Traditionally, this is done post-hoc by “pruning” the tree that you produce: 
 
(5) Unpruned/unlimited tree 

 
 

> d.ctree.unpruned <- ctree(outcome ~ penultimate.sound + final.sound + 
syllable_count, controls = ctree_control(mincriterion=0.01), data=data) 

> plot(d.ctree_unpruned) 
 
 But! the party package uses a different methodology to prevent overfitting = “conditional” CARTs 

‒ Splits in the tree are only implemented when a global null hypothesis cannot be rejected, as 
determined by a chosen p-value (by default, p=0.05 (mincriterion=0.95); see Hothorn et al. 
2006 for the math). 

 
 
2.2 THE PROBLEM WITH SINGLE CARTS 
 
 Tree structure is subject to high variability depending on data (i.e., depending on the sample of 

learning data) because subsequent splits further down the tree depend on previous ones. 
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(6) Variability of trees illustrated on random samples of –esque data 

 

 
 

> data.s1 <- data[sample(1:nrow(data), 80, replace=FALSE),] 
> ds1.ctree <- ctree(outcome ~ penultimate.sound + final.sound + syllable_count, 

controls = ctree_control(mtry=2), data=data.s1) 
> plot(ds1.ctree) 

 
 
3 CONDITIONAL RANDOM FORESTS 
 
 Conditional Random Forests – solution to problem laid out in §2.2 (Strobl et al. 2009a, 2009b; a.o.; 

in linguistics: Tagliamonte and Baayen 2012; a.o.) 
‒ Instead of using a single tree, use ensemble methods in a forest of trees. 
‒ Capitalize on the diversity of CART trees. 

 
 Conditional random forests use 

‒ random subsamples of data used to build each tree 
‒ random restricted set of predictor variables in each tree split 

 = diverse trees: variables have a greater chance of being included in the model when a stronger 
competitor is not (cf. regression models) 

 
(7) Setting up and running a random forest model 
 

STEP 1. Set up model control parameters. 
 

> data.controls <- cforest_unbiased(ntree=1000, mtry=2) 
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‒ ntree = number of trees in the forest 

Use a suitably large number of trees to produce more robust and stable results. For smaller 
datasets with a large number of predictor variables, you will need more trees. 

‒ mtry = number of randomly-selected variables used in each split 
Suggested value = √p (square root of the total number of predictor variables) 

‒ IMPORTANT: make sure to report model parameters. Because random forests are ‘random,’ 
model parameters are necessary for result replication. 

 
STEP 2.  Make sure response variable is a factor. If not, make it one. 

 
> is.factor(data$outcome) # if FALSE, use the next line of code. 
> data$outcome <- as.factor(data$outcome) 

 
STEP 3.  Set the random seed, then run the random forest, using preselected model controls. 

 
> set.seed(47) 
> d.cforest <- cforest(outcome ~ penultimate.sound + final.sound + syllable_count, 

data = data, controls=data.controls) 
 

‒ IMPORTANT: Random forests are ‘random.’ Always run the model at least 2x with different 
seeds to ensure the robustness and stability of the model. If the model results fluctuate (e.g., 
inconsistent variable importance rankings), increase the number of trees in the forest. 

 
(8) % correct of the random forest  model: 70.75%  
 (cf. ctree predictions in (4) and regression model results) 
 

> ctree_predict <- predict(d.ctree) 
> sum(data$outcome==ctree_predict)/nrow(data) 

 
 Advantages of a forest of diverse trees: 

‒ detects contributions and behavior of predictor variables otherwise masked by competitors. 
‒ useful for small n, large p problems 
‒ greater accuracy than simple/mixed effect regression models (Strobl et al. 2008; in 

linguistics: Shih and Grafmiller 2011; Tagliamonte and Baayen 2012) 
 

 Random forests are built on unpruned, large trees. Are they prone to overfitting? Breiman (2001) says 
no due to the Law of Large Numbers, but it’s still debated in the current literature. 

 
 
3.1 VARIABLE IMPORTANCE 
 
 Unlike CARTs, it’s not easy to read effects off a random forest model because a single predictor can 

show up in many different (non-nested) trees with different covariates. 
 But, random forests and ensemble methods make up for this shortcoming in being a great tool for 

model and predictor selection because we gain more information about how each variable behaves 
with respect to the observed data. 
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 Permutation Variable Importance1 
‒ In a random forest model, randomly shuffle values of a predictor variable to break the 

association between response and predictor values. 
‒ Calculate the difference in model accuracy before and after shuffling. (= a 

standardized/scaled % correct, averaged across all trees in the forest; see Strobl et al. 2009b: 
336 for the math). 

‒ If the predictor never had any meaningful relationship with the response, shuffling its values 
will produce very little change in model accuracy. On the other hand, if predictor was 
strongly associated with the response, permutation should create a large drop in accuracy. 

 Permutation variable importance covers the individual impact of each predictor in the random forest 
model, including its impact in interactions (which is much harder to assess in regression models). 

 
(9) Variable importance for –esque forest model  

 
 

> d.varimp <- varimp(d.cforest, conditional=TRUE)    
# Note that this step could take a long time, depending on the size of the 
forest and computational power. 

> d.varimp # prints the results to screen 
 

### to plot 
> dotplot(sort(d.varimp), panel=function (x,y){ 
> panel.dotplot(x, y, col=’darkblue’, pch=16, cex=1.1) 
> panel.abline(v=abs(min(d.varimp)), col = ‘red’, lty=’longdash’, lwd=2) 
> panel.abline(v=0, col=’blue) 
> } 
> ) 

 
 Interpreting variable importance 

‒ Interpret variable importance only as a ranking, not as absolute values (because random 
forests are random!). 

‒ Variables are informative and important if importance value is above the absolute value of 
the lowest negative-scoring variable (or zero, if there’s no negative variable). 

‒ Irrelevant variables will vary randomly approaching zero. 
 Discuss: compare variable importance results in –esque with results in regression models. 
                                                      
1 Previous work on random forests have used a number of other types of variable importance measures, most notably 
the Gini score, based on impurity reduction, but Strobl et al. 2009a show that these tests are biased towards 
correlated predictors. So don’t be fooled into working with the R package entitled randomforest. 
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4 MULTICOLLINEARITY AND THE POWER OF RANDOM FORESTS 
 
 If random forest results coincide with those of simpler, regression-based models, then regression-

based models may be sufficient for many of your modeling needs. 
 
 One thorny problem in regression modeling: multicollinearity 

‒ (Multi-)collinearity arises when two or more predictors are highly correlated, either because 
they measure the same thing or are attributable to a shared underlying explanation. 

‒ (Stephanie will draw a graphic on the board illustrating the effect of collinearity.) 
‒ Multicollinearity doesn’t necessarily affect overall model prediction, but it does increase 

potential overfitting and 
‒ If we want to make inferences and interpret the explanatory power of our predictor variables, 

we need to be able to tease them apart. 
 
 An illustrative linguistics example: measures of end weight (based on Grafmiller and Shih 2011) 

‒ Principle of End Weight: “Phrases are presented in order of increasing weight.” (Wasow 
2002: 3; following Behagel 1909; Quirk et al. 1985; a.o.) 

e.g., peas and carrots > carrots and peas 
e.g., the attitude of people who are really into classical music and feel that if it’s not 

seventy-five years old, it hasn’t stood the test of time > ?people who are really into 
classical music and feel that if it’s not seventy-five years old, it hasn’t stood the test 
of time’s attitude 

‒ What is “weight”? 
syntactic complexity (Hawkins 1994) 
processing load (Gibson 1998, 2000; Temperley 2007) 
phonological complexity (Selkirk 1984; Zec and Inkelas 1990; Anttila et al. 2010) 
phonological weight (McDonald et al. 1993; Benor and Levy 2006; a.o.) 
words (Wasow 2002; Szmrecsányi 2004; a.o.) 

‒ Problem: end weight measures are all highly correlated. Why? 
 
 Data: genitive construction choice in English. (the car’s wheel ~ the wheel of the car; data from Shih 

et al., to appear) 
‒ parallels some of the discussion last week on zero variants: a fix for dispreferred structure = 

using another construction altogether (e.g., dispreferred phonological structure = the church’s 
bell < the bell of the church) 

 
(10) Correlated predictors overlap in narrow spread in 3d space 
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Nodes
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Words
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(11) Uncorrelated predictors should have a wider spread in 3d space 
 

 
 
 Multicollinearity in regression models can cause unstable results. 
 
(12) Logistic regression model results for English genitive construction choice 
 

Factor Estimate Std. Error t value Pr (>|t|)  
Intercept 2.439 0.2111 11.56 <0.0001 *** 
Possessor animacy = inanim -3.862 0.1998 -19.33 <0.0001 *** 
Rhythm -0.189 0.1755 -1.08 0.2806  
Possessor sibilant = Y =1.317 0.2861 -4.60 <0.0001 *** 
Weight = words -0.825 0.4111 -2.01 0.0447 . 
Weight = stresses 0.494 0.4319 1.14 0.2523  
Weight = syllables -0.011 0.1673 -0.06 0.9490  
Weight = referents -0.417 0.172 -2.43 0.0153 . 
Weight = syn nodes -1.272 0.385 -3.30 0.0010 * 
Weight = content words 0.8139 0.4237 1.92 0.0547  
. significant at p < 0.05, * significant at p < 0.01, ** significant at p < 0.001, *** significant at p < 0.0001 

  
 Unexpected coefficient sign errors due to collinearity. In individual models, both highlighted 

predictors show negative coefficient values. 
 
 
4.1 RANDOM FORESTS FOR DEALING WITH COLLINEARITY 
 
 A random forest model for English genitive construction choice 

‒ ntree = 2000, mtry = 3 
‒ Model stability verified on >2 random seeds. 
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(13) Permutation variable importance for genitives forest model 

 
 Ranking of variable importance demonstrates, amongst weight measures: Syntactic nodes > Referents 

> Primary stresses > Words > Syllables. 
 These results have been replicated in a AIC-based model averaging/selection approach. 
 
(14) Accuracy of random forest model vs. regression model (n = 1123) 
 Forest:  C = 0.9441701, Dxy = 0.8883402  
 Regression: C = 0.898, Dxy = 0.796 
 
 
5 DISCUSSION 
 
 Advantages of random forests 

‒ handles small n, large p problems 
‒ deals well with correlation and high-order interactions 
‒ eliminates order effects found in single CARTs 
‒ shown to be more accurate than CARTS or parametric regression models 

 Drawbacks of random forests 
‒ long computing time 
‒ difficult to see size and direction of main effects 

 Use random forests when… 
‒ working with highly-correlated data, data with many interactions, and/or datasets with small 

n. (Though note that random forests ≠ magic forests, and you still need reasonably sufficient 
n and well-motivated p). 

‒ exploring the independent effect of predictor variables (for model selection or inference). 
‒ you have all the time in the world to wait for varimp results. 

 As always, choose the methodology that is best for the question at hand, but beware its weaknesses 
and pitfalls. Consistency of results across statistical methods and data can also be an indicator of 
robustness. 

Variable Importance in Genitives (animacy not shown)
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Syllable Count

Final Sibilant in Possessor

Word Count

Rhythm of s-genitive

Primary Stress Count

Referent Count

Node Count

0.0005 0.0010 0.0015 0.0020 0.0025



Shih  UCLA Ling 251: Variation in Phonology, Spring 2013 

 10 

6 SELECTED REFERENCES 
 
Anttila, Arto; Matthew Adams; and Michael Speriosu. 2010. The role of prosody in the English dative alternation. 

Language and Cognitive Processes. 25(7–9): 946–981. 
Behagel, O. 1909. Beziehungen zwischen Umfang und Reihenfolge von Satzgliedern. Indogermanische Forschungen. 25: 

110-142. 
Benor, Sarah Bunin and Roger Levy. 2006. The Chicken of the Egg? A Probabilistic Analysis of English Binomials. 

Language. 82(2): 233-278. 
Breiman, Leo. 2001. Random Forests. Machine Learning. 45(1): 5–32. 
Burnham, Kenneth P. and David R. Anderson. 2004. Multimodel Inference: Understanding AIC and BIC in Model 

Selection. Sociological methods and research. 33(2): 261–304. 
Gelman, Andrew and Jennifer Hill. 2007. Data analysis using regression and multilevel/hierarchical models. New York, 

NY: Cambridge University Press. 
Gibson, Edward. 1998. Linguistic Complexity: locality of syntactic dependencies. Cognition. 68: 1-76. 
Gibson, Edward. 2000. The dependency locality theory: A distance-based theory of linguistic complexity. in Y. Miyashita; 

A. Marantz; and W. O’Neil (ed). Image, Language, Brain. Cambridge, MA: MIT Press. 95-126. 
Grafmiller, Jason and Stephanie Shih. 2011. New approaches to end weight. Paper presented at Variation and Typology: 

New trends in Syntactic Research. 25–27 Aug 2011. Helsinki, Finland. 
<http://stanford.edu/~stephsus/GrafmillerShihHelsinki2011.pdf> 

Hawkins, John A. 1994. A Performance Theory of Order and Constituency. Cambridge: Cambridge University Press. 
Hothorn, Torsten; Kurt Hornik; and Achim Zeileis. 2006. Unbiased recursive partitioning: A conditional framework. 

Journal of Computational and Graphical Statistics. 15(3): 651–674. 
Hothorn, Torsten; Kurt Hornik; Carolin Strobl; and Achim Zeileis. 2013. Package ‘party’. R package version 1.0-6. 

<http://cran.r-project.org/package=party> 
Kuperman, Victor and Joan Bresnan. 2012. The effects of construction probability on word durations during spontaneous 

incremental sentence production. Journal of Memory and Language. 66: 588–611. 
McDonald, Janet L.; Kathryn Bock; and Michael H. Kelly. 1993. Word and World Order: Semantic, Phonological, and 

Metrical Determinants of Serial Position. Cognitive Psychology. 25: 188-230. 
Quirk, Randolph; Sidney Greenbaum; Geoffrey Leech; and Jan Svartvik. 1985. A Comprehensive Grammar of the English 

Language. London and New York: Longman. 
Selkirk, Elisabeth O. 1984. Phonology and Syntax: the Relation between Sound and Structure. Cambridge, MA: MIT 

Press. 
Shih, Stephanie S. 2011. Random forests for classification trees and categorical dependent variables: an informal quick 

start R guide. <http://www.stanford.edu/~stephsus/R-randomforest-guide.pdf> 
Shih, Stephanie; Jason Grafmiller; Richard Futrell; and Joan Bresnan. to appear. Rhythm’s role in predicting genitive 

alternation choice in spoken English. In Ralf Vogel and Ruben van de Vijver (eds). Rhythm in phonetics, grammar, 
and cognition. <http://stanford.edu/~stephsus/DGfS-Shihetal.pdf> 

Strobl, Carolin; Anne-Laure Boulesteix; Thomas Kneib; Thomas Augustin; and Achim Zeileis. 2008. Conditional variable 
importance for random forests. BMC Bioinformatics. 9: 307–317. 

Strobl, Carolin; Torsten Hothorn; and Achim Zeileis. 2009a. Party on! A new, conditional variable importance measure 
for random forests available in party package. The R Journal. 1(2): 14-17. 

Strobl, Carolin; James Malley; and Gerhard Tutz. 2009b. An introduction to recursive partitioning: rationale, application, 
and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods. 14(4): 
323–348. 

Szmrecsányi, Benedikt. 2004. On operationalizing syntactic complexity. Journées internationals d’Analyse statistique des 
Données Textualles. 7: 1031-1038. 

Tagliamonte, Sali A. and R. Harald Baayen. 2012. Models, forests, and trees of York English: Was/were variation as a 
case study for statistical practice. 

Temperley, David. 2006. Minimization of dependency length in written English. Cognition. 105: 300-333. 
Wasow, Tom. 2002. Postverbal Behavior. Stanford, CA: CSLI Publications. 
Zec, Draga and Sharon Inkelas. 1990. Prosodically Constrained Syntax. in Sharon Inkelas and Draga Zec (eds). The 

Phonology-Syntax Connection. Stanford, CA: Center for the Study of Language and Information. 
 
------- 
Contact: Stephanie S Shih | stephsus@stanford.edu 
Departments of Linguistics, Stanford University & UC Berkeley 
 
Accompanying lecture notes by Kie Zuraw and data are available for download here. 

http://stanford.edu/~stephsus/GrafmillerShihHelsinki2011.pdf
http://cran.r-project.org/package=party
http://www.stanford.edu/~stephsus/R-randomforest-guide.pdf
http://stanford.edu/~stephsus/DGfS-Shihetal.pdf
http://stanford.edu/~stephsus/
mailto:stephsus@stanford.edu
http://www.linguistics.ucla.edu/people/zuraw/251_2013/

	1 Which aspects of observed data are important?  What predictors do we include?
	2 Classification (and regression) trees (CART)
	2.1 Avoiding overfitting in CARTs
	2.2 The problem with single CARTs

	3 Conditional random forests
	3.1 Variable importance

	4 Multicollinearity and the Power of Random Forests
	4.1 Random forests for dealing with collinearity

	5 Discussion
	6 Selected references

