Q: How many non-diffeomorphic contact 3-manifolds are there on a given manifold? In particular S^{2n-1}?

- Given (M, ξ) compact, can one say anything about the normal bundle of geodesic periodic Reeb orbits $V \subset \ker \xi \in \xi$ (possibly on a submanifold)?

Tool: $S^1 \subset S^3$; [Viterbo, Schwarz, Bourgeois-Oancea (more? when C^1 bounds)]

Def: A Liouville domain is a pair (W, Ω): Ω symplectic, $\partial W = M$ inwards (on M), $\Omega|_M = \omega$ for a contact form ω. Let $\hat{\omega} = \omega \wedge \Omega$, $\hat{\omega} = \frac{\xi^\perp}{\xi^\perp}$. $\omega = \Omega^\perp|_M$.

\[\hat{\omega} = \hat{\omega} \wedge \Omega^\perp, \quad \omega = \frac{\xi^\perp}{\xi^\perp} \wedge d(\frac{\xi^\perp}{\xi^\perp}) \wedge \Omega^\perp. \]