John Jones

(joint w. John McCleary)

(Exercise: show manifold $V_2(\mathbb{R}^{2n+1})$ (sphere bundle over $T S^{2n}$).

Prove it has only many geodesics!)

Old problem: Does a Riemannian manifold have an ∞ # of closed geodesics?

(Morse theory on LM (free loop space of M). \(\phi \) maps $\mathbb{R}/\mathbb{Z} \to M$.

Gromoll-Meyer: Suppose M is s.c. & \(\{ b_i(LM,F) \} \) is unbounded (for some field F). Then, any metric on M has an ∞ # of closed geodesics.

Sullivan, Vaug-Poirier: Suppose $\dim Q H^\ast(M,\mathbb{Q}) \geq 2$.

Then, $\{ b_i(LM,\mathbb{Q}) \}$ is indeed unbounded. (app. of cat's hpy theory).

\textbf{Btw. Gneiss metric:}

Morse-Theory: $E:LM \to \mathbb{R}$, $E(x) = \int_0^{\delta_n} g_\delta(\dot{x}(t),\dot{x}(t)) dt$.

A closed geodesic (parametrized by arc-length) critical point, as is δ_n, where $\delta_n(t) = x(nt)$. Multiplicity:

(Thus is why need $b_i \to \infty$.)

If π_1 finite, apply to universal cover.

If π_1 infinite; # of isometry classes; take one & rep. in each class.

\textbf{McCarther:} Suppose X is a finite CW cplx. (simply connected); and $\dim Q (H^\ast(X,F)) \geq 2$. Then, $\{ b_i(S^X,\mathbb{F}) \}$ is unbounded. (What about EX? ?)

\textbf{McCarther} (1987) study this for the usual symmetric spaces.
String homology: (Chas-Sullivan).

\[M \mapsto HL_{x}(M) \text{ string homology ring} \]

with property
\[HL_{x+d}(M) = H_{*}(LM) \quad \text{if } d = \dim M. \]

\(HL_{x}(M) \) graded commutative; finitely generated.

Therefore \(\beta_{*}(HL_{x}(M)) \) is unbounded \(\iff \) \(HL_{x}(M) \) contains a poly. algebra on two variables.

N.B. \(H_{*}(LM, F) \) is a ring, but not a general graded commutative, so doesn't apply.

String product:

\[H_{s}(LM) \times H_{t}(LM) \to H_{s+t-d}(LM) \]

Say family of loops \(\mathbb{S}^{1} \times Y \)

\(\mathbb{S}^{1} \times Y \to M \subseteq Q \)

\[\mathbb{S}^{1} \times Y^{*} \]

Assuming some transversality, etc., can make this work.

Cohen-J: Formalize using methods of homotopy theory into string product

\[HL_{p}(M) \times HL_{q}(M) \to HL_{p+q}(M), \]
To first approximate, this looks like

\[H^*(M) \otimes H_*(SM) \]

\[\xrightarrow{\text{intersect}} \quad \xrightarrow{\text{compose loops}} \]

CJY: Construct a spectral sequence

\[E^r_{s+t}, d^r: E^r_{s+t} \rightarrow E^r_{s-r, t+r-1} \]

\[E^2_{-a,b} = H^a(H) \otimes H_b(S^2M) \] (working over field \(F \)).

\[H^0M \rightarrow H^2M \rightarrow H^1M \rightarrow H^0H \]

\[\xrightarrow{\text{stops at 2, so finite # of obstructions + lifting}} \]

\[H_0SM \rightarrow H_0LM. \]

N.B.:

\[H_*(SM) \rightarrow H_*(SM) \] edge homomorphism of spectral sequence.

N.B. Not sure special sequence. (Involves mixed homology & cohomology)

(b) Really uses manifold structure on \(X \), just fancier Duality.
N.B.: \(H^k LM \) and \(H^k(\Sigma M) \) are very different.

Typically this is pretty trivial products, but this may have different non-trivial (e.g. poly products).

Fix prime \(p = 2 \). Work over \(\mathbb{Z}/2 \).

Results derived from the CSY spectral sequence.

Theorem 1: There exists an integer \(N \) (power of 2 \(\equiv p \) with following properties:

(a) If \(x \in H^k(\Sigma M) \), then \(x^N \) is in the image of \(F \).

(b) If \(x, y \in H^k(\Sigma M) \), then \(x^N \) and \(y^N \) (graded) commute.

(LPC)

Argument for (a): Simple:

\[d_2(x) \text{ may not equal } d_2(0) \text{, but} \]

\[d_2(x^2) = 2d_2(x) = 0 \text{ so } \]

\[x^2 \text{ survives } \rightarrow \text{ page } 3 \text{. Repeat.} \]

(b) follows.

Theorem 2: \(H^k(\Sigma M) \) carries a polynomial algebra on two generators

iff \(H^k(\Sigma M) \) does. (Uses Theorem 1).

(Really relies on manifold structure!)

Apply to Stiefel manifolds:

\[V_n = V_2(\mathbb{R}^{2n+1}) \]

\[H^*(\mathbb{R}^n), \mathbb{Z}/2 = \mathbb{Z}[u, v] \text{ with } |u| = 2n-1, |v| = 2n, V_n = V_2(\mathbb{R}^{2n+1}). \]

(cohomology is graded polynomial.)
Hopf Algebra Techniques

- We know \(H_c(2M) \) is doubly infinite (meaning by \(\to \infty \)).
 if \(\dim (Q H^*(M)) \neq 2 \).
- \(H_c(2M) \) satisfies LPC condition.
- \(H_c(2M) \) is a connected Hopf algebra, co-commutative Hopf algebra.

A Hopf algebra \(H \) is solvable if \(\exists \) a finite filtration:

\[
0 = A[0] \subset A[1] \subset \cdots \subset A[s] \subset A[\infty] = H
\]
by normal sub-Hopf algebras, (i.e. quotient is Hopf alg. too)
such that

\[
\]
is an abelian Hopf algebra. (comm. & cocomm.),
(i.e. analogous to fr. iter. extension by abelian gps.)

Theorem: Suppose \(H \) is a connected, finitely generated commutative solvable Hopf algebra, satisfying LPC. Then, \(H \) is doubly infinite

\[\iff \] \(H \) contains a polynomial algebra on two generators.

Two tricks for this:

* Milnor-Moore: \(A \otimes B \) Hopf algebras; \(C = F A \otimes B = B / A \).
 \(B \cong A \otimes C \) as \(A \)-modules & \(C \) comodules.
Use this iteratively (+ doubly infinite rnkhe) to construct a surjective
\[\Gamma \rightarrow F[x,y] \]

Pick \(v \rightarrow x \)

Then \(u, v \) commute, map onto \([x^w, y^w]\),

so \(v \).

Claim this seems to explain exactly \text{in McCleary--Ziller!}

(should be that \(\Gamma \) solvable).

Factual:
- \(A \) Hopf algebra, s.t. all \(x \in A \) have finite height.
 \((\text{i.e. } x^n = 0 \text{, s.o.e } x) \).

Is \(A \) finite? (Don't know this)

(Recall Burnside problem: doesn't work for graphs)

Known that \(H_n(\Omega M) \text{ are very special Hopf alg} \).

(Feit, Halpern, --)

Is it possible that this is enough to finish off the problem??

Non-s.c. case? Generally Hurewicz may not apply??

Q: Does \(H_* M \) always have fin. rank? (Known for s.c.)
(Dunno known by Scarf).