Mclean, On the Symplectic Invariance of log Kodaira Dimension.

X projective variety, study there up to birational isomorphism.

- Numerical properties of the canonical bundle K_X.
 - e.g., $H^0(X, mK_X)$.
 - More simply, $P_m := \text{rank} \left(\frac{H^0(X, mK_X)}{\text{sections of } K_X^m} \right)$, m-th plurigenus.

Even more coarsely, look at rate of growth:

$$\text{Kodaira dimension} := \limsup_{m \to \infty} \frac{\log P_m}{\log m} \in \{-\infty, 0, \ldots, \dim X\}$$

If P_m grows like a poly. of degree k, this number is k.
 - if 0, then $-\infty$.

Examples:

- \mathbb{P}^1:
 - $k(\mathbb{P}^1) = -\infty$

- E:
 - $K(E) = 0$

- Higher genus:
 - $K(C) = 1$.

Related also to curve C: positive, zero, negative:

- k (low deg. hypersurfaces in \mathbb{P}^n) = $-\infty$

- k (high degree) = $n - 1$.

- Study rational curves on X.
 - Uniruled varieties: \exists a non-constant map from \mathbb{P}^1 to each pt. in X.
Globally connected varieties: \exists \text{ a map from a rect' curve joining any 2 pts in } X.

\rightarrow \text{ study these from a topological/symplectic pt. of view.}

e.g., \dim X > 2 \text{ \
Donaldson theory \
SW theory} \quad K_X \text{ deformation invariant, } K(X) = 2.

(Witten '84)

\text{Poincare are deformation invariant}

(Friedman, Morgan '97).

\underline{Gromov-Witten theory}. \quad \underline{Kollar-Ruan: uniruledness is an sympl. invariant.}

\text{natural connectedness is a symplectic invariant, if } \dim X \leq 3.

(Voisin '08, Z. Tian '10).

\rightarrow \text{ less is done for open varieties.}

\rightarrow \text{ less is done in higher dimensions.}

\underline{Smooth affine varieties}

\[A \longrightarrow \mathbb{C}^N \quad \omega_A := \text{cst div} \sum_{i,j} \frac{dx_i \wedge dy_j}{x_i \wedge y_j} \]

This is an invariant up to modulus (Euler characteristic)

(Gromov)

Define log \text{ kappa dimension of } A \text{ by } X \text{ (an alg. variety).} \quad D = X \setminus A = \text{ union of transversely intersecting hypersurfaces}

\text{Then A). Let } A, B \text{ be symplectomorphic affine varieties.}

1) If \dim A > 2, \quad H^*_X (A, Z) = H^*_X (pt, Z) \text{ then}

\[\bar{K}(A) = \bar{K}(B). \]

Define \(\bar{K}(A) \) (by log dim.)

\[\text{len sup} \log \text{ rank } H^0(X, k_X + D) \]

\text{Claim: if } A, B \text{ symplectomorphic affine varieties, then } C \times A \text{ is symplectomorphic to } C \times B.
(1i) if dim $A = 3 + \text{technical conditions}$

then $\mathbb{R}(A) = 2 \Rightarrow \mathbb{R}(B) \leq 2$.

Theorem 3: If P and Q are projective, and $A \leq P$ and $B \leq Q$ are symplectomorphic open affine subsets, then P is uniruled if Q is uniruled.

M. Lavelle domain

Θ = 1 form

(1) $d\Theta = \omega$ symplectic

(2) χ_{ω} vanishes along ∂M

Dual of Θ.

M is (k, Λ) uniruled if:

- $p \in M$, an open and a symplectic almost complex structures J on M with $\Theta \circ J = dr$ at near ∂M where r is a function whose highest level set is ∂M, open Riemann surface.

Then: A proper holomorphic map $u : S \to M$ branched passing through p with

- \mathcal{O} genus 0 ($\text{top} \ to \ \omega \leq k-1$ cycles?)

- $|H_1(S, \mathbb{Q})| \leq k-1$

- $\int u^* \omega \leq \Lambda$

Complete $M = M \cup \partial M \times [0, \infty)$

Lemma: If $M \cong S$ then if M is (k, Λ) uniruled, $F \cong L$ uniruled if $N \cong (k, \Lambda')$ uniruled.
\(A \hookrightarrow \mathbb{C}^N \)

affine variety

\[
\begin{align*}
\text{Define} \quad A &:= A \cap \text{very large ball in } \mathbb{C}^N \\
\Theta_A &:= \sum_j r_j^2 \partial \partial^* z_j \quad |A| \\
\hat{z}_j &= r_j e^{i\theta_j}
\end{align*}
\]

This is a Liouville domain.

Another theorem is that \(A \sim \hat{A} \).

Defn: \(A \) is \(k \)-uniruled if \((k, x) \) uniruled for some \(x \).

Def 2: \(A \) is algebraically \(k \)-uniruled if through any \(P \) \(f: \mathbb{P}^1 \setminus \{ \text{at most } k \text{ points} \} \to A \) passing through \(P \).

Thm: If \(A \) is \(k \)-uniruled then it is algebraically \(k \)-uniruled.

Idea of proof: use degeneration to normal cone ("alg. neck stretching") + compactness result by Joel Fish.

Diagram:

\[
\begin{align*}
\text{non-zero fibers are isomorphic to } A \\
\text{central fiber } &= X \times E \\
\text{constriction of } A.
\end{align*}
\]

Choose compact subset \(\hat{A} \) (to get finite value), pull \(A \) into \(\hat{A} \).

Push to \(A \), restrict to \(A \), push into central fiber, get some compact piece in \(X \).
You have a curve passing through each point in every non-zero fiber (hence domain)

\[\Rightarrow \text{ (by compactness)} \]

Each curve passing through every point is the central fiber with a compact component mapping to X.

(One part restarts \(A \) still has right \(H \) \(\rightarrow \) technical arg, maximum principle, etc.)

Proof of Theorem H (ii): \(\dim \mathbb{C} A = 3 \), + technical conditions.

\[\overline{k}(A) = 2 \Rightarrow \overline{k}(B) \leq 2. \]

(Kodaira) \(\Rightarrow \) A has a \(C^1 \) fibration.
compactify A to X, extend to a \(P^1 \)-fibration.

Use GW theory on X to show that \(A \) is (2, 3) uniruled.

(\(GW \) with corresponds to class of \(P^1 \) fiber in X).

This means \(A \) is 2 uniruled.

So by our lemma, \(B \) is 2-uniruled.

\[\Rightarrow B \text{ algebraically 2 uniruled} \]

Our theorem

\[\Rightarrow \overline{k}(B) \leq 2. \]

[I: take]

sub result.