Fabert - Fish - Colovers

User's Guide to Polyfolds

Classical $\mathbf{\varepsilon} \to \mathbf{\varepsilon} \text{ Ant.} \subset \mathbf{\varepsilon} \to \mathbf{\varepsilon} \text{ Polyfolds}$

$\mathbf{\varepsilon} \to \mathbf{\varepsilon} \text{ Ant.} \subset \mathbf{\varepsilon} \to \mathbf{\varepsilon} \text{ Polyfolds}$

Classical same as Polyfolds

- Proving \rightarrow charts
- Using indicator label/circular/effilence (easy)

Brain: Q: Can apply polyfolds to other than GW, SFT & formal?

Q: What need to prove, basic polyfolds?

- Basic

- Derived body phase a

These are not covered

Brain: smile also

Core: This is a ghost disk, so already there
Flow chart:

1. Composed + C*, + R *
2. Check for missing key phrases:
 - Basic + Edel + (to be collected in co-lecture)
 - Derived (if necessary)
 - Give reference to HWZ & Weltlin
3. Have an influence on definite doubtful chart & point out that operator is an X-Bi-Product reaction
4. Ask: symmetry?
 - No
 - Yes
 - Collect relevant facts with symmetry

Retracts given by identity + ap.

Body points: need to use what happens here. Normally let it be.
Feel: Cool. Convince you that in "non-degenerate" cases, putting your problem into polyfold framework is no more difficult than constructing a pre-glimm map (that exists).

Reason: Transversality comes for free.
Nice to pay is cheating definition.

Polyfold recipe:
1) Weak notion of sections. (To see how things can break)
2) Define polyfold/polydisk (w) inner - strictly defined.
 ...they make

Suffices to understand local models.
sc - B, r: U → U s.t. r|\partial U = r. Local models built on r(U)

\[E_k = \sum_{k=1}^{\infty} \delta_k (R, R) \]

\[\mathcal{R} = \left. \mathcal{R} \right|_0 \left(v, e, f \right) = \left(v, e, 0 \right) \]

\[\mathcal{M} \left(v, m_1, m_2 \right) = \left(v, m_1 \Theta v m_2, m_1 \Theta v m_2 \right) \]

\[\partial \left(v, m_1, m_2, e_1, e_2 \right) = \left(v, m_1 \Theta e_1, m_2 \Theta e_1, e_1 \Theta e_2, e_1 \Theta e_2 \right) \quad \text{sc - diff} \]

Key Point: Defining local models is no more difficult than pregluing.

Q: polyfold Fredholm?

A: Yes, if regularizing (elliptic regularity):

1. At each \(x \in X \), polyfold (base), \((x, k) \) is Fredholm germ

\[\mathcal{F}_x (m_1 \Theta v, m_2), \mathcal{F}_x (m_1 \Theta v, m_2) \]

linearize \(\mathcal{J}(x, m_1 \Theta v, m_2) \) at every \(h \) when \(m_1 \Theta v m_2 = 0 \) and show this is surjective.

Hence: Open issue: show that pregluing to these trajectories with stable breaking base depends on other by which we glue pieces.

\(\{ \mathcal{F}_{x} \} \) is compact.

\(\forall x \in \mathcal{F}_{x} \) is a fixed looking \(\mathbb{R} \) \(\mathbb{R} \) canon.
1) Maxi-Bott bundle, say \mathcal{K}_V
2) Embedding of classical Transversality $\mathcal{K} \subset \mathcal{D}$
 1) SFT of polarization spaces $S^1 \to V$ with $c_1(V) = \xi \in H^2(M)$

The idea: (Bougeois, ECH):
*Under moduli assumptions (in choice of differentials), SFT(V) can be coupled from GW(\mathcal{K}).

Now, let V:

2) (Bougeois): SFT(V) \cong MB-SFT(V) (with cascades)

Problem: Transversality!

Need to prove 2 things:
 a) MB-SFT MB-SFT is well-defined
 b) MB-SFT \cong SFT

Local models:
 a)

Ko: need $\nabla B_{\mathcal{D}}$ even in natural case

b) $\xrightarrow{}$

1) Perturb $\mathcal{M}_{\text{MB-SFT}}$, lose S^1-symmetry. So, need to go through.

Take $S^1 \times B_{\text{MB-SFT}}(V)$ $\times \pi_{\mathcal{D}}$ $\in \nabla B_{\mathcal{D}}$

2 ways of MB-SFT:
 1) with drift form
 2) with cascades: not yet done!

Problem: Need a stabilization step. Not trivial, be moduli spaces of perturbed instantons S^1-symmetry

Need distinct perturbations for polyfolds for defying MB-SFT (with cascades)

Q: Does it destroy S^1-symmetry?
A: No! After general perturbation, moduli space of holes may get perturbed.

\[\text{unperturbed orbits} = \mathbb{P} \]

\[\text{moduli space was already regular with } S^1 \text{- symmetry} \]

\[\Rightarrow \text{still have } S^1 \text{- symmetry} \]

\[\Rightarrow \text{evaluation } B \to \mathbb{P} \text{ independent of } S^1 \]

\[\Rightarrow \text{still } S^1 \]

2) Embedding:

For gen - 1FT: need to prove Fredholm of gen onto of linearized.