Review:
1. $B_{\infty} -$ nested sequence of B-spaces
 - sc^0, l, k, ∞ maps preserve levels, and sc^∞ maps whatever it needs to be to make shift maps (smooth reformulations) sc-smooth.

2. Certain function spaces can be "compactified" by adding in broken trajectories or nodal curves, via retractors/splicings.

Today:

Def'n: Retractors/splicings.

M-polyfields \rightarrow strong-bundles

Define $q_r = [0, 1] \times \Phi^q_r \times \| \rightarrow [0, 1] \times \Phi^q_r \times \Phi^q_r$.

Define

$\Pi : [0, 1] \times \Phi^q_r \times \Phi^q_r \\
\Pi(v, e, f) = \begin{cases}
\text{image} \\
(v, e, f) & \text{if } v = 0
\end{cases}$

Claim: Π is sc-smooth and satisfies $\Pi \circ \Pi = \Pi$.
\[k := \pi([0,1] \times \mathbb{R}^{q,b} \times \mathbb{R}^{b,c}) \text{ is our desired} \]

"compactification."

Defn: \(r \) is \(\text{s.c.-smooth} \) if satisfies \(r \circ r = r \) \(\text{or} \) \(\text{retract} \) \(k := r(E) \) is our desired "compactification." \(\uparrow \) partial open set in \(r \) (is) not just new \(r \).

Claim: retracts homotopy are the basic building blocks for poly. \(U \) is.

Consider \(\text{Rel. open set in a parameter space} \).

Defn: \(V = [0,\infty) \times W \) \(\uparrow \) \(B_{sc} \).

In practice \(\{0,3,7, R^n\} \).

\(\pi : U \times E \rightarrow E \) \(\text{sc.-smooth} \).

\(\pi_0(v,e) = \pi(v) \).

Then \(S = (\pi, E, U) \) is a splicing.

(NB: consider \(r : v,e \rightarrow (v,7i,v,e) \). Then this is a retraction.)

Defn: retraction \(R : U \rightarrow U \) \(\text{if} \) \(R(v,e) = (r(e), \pi(e,f)) \) \(\uparrow \) \(\text{linear in f.} \) \(\uparrow \) \(\text{retraction on E} \).

Claim: retracts are building blocks for "new" differential geometry.

How? 1 Topology: \(K^r = r(E) \).

We say \(0 \leq K^r \text{ is open} \) provided \(r^{-1}(0) \text{ is open in } E \).

2 sc-topology: \(0 \leq K^r \text{ is k-open} \) provided \(r^{-1}(0) \text{ is open in } E \) \(\text{in topology.} \)
3. Given \(U \subseteq C \subseteq E \) \(\forall u \in U \mapsto Y \) \(v(U) = 0 \).
\(\forall \subseteq Q \subseteq E \) \(\exists : Y \mapsto Y \)

\[f : \overline{Q} \mapsto \overline{Q} \subseteq K^n \]

Consider the regularity of \(f \) via the following:

\(f \) is \(sc^k \) \(\iff \) for \(v : \mathcal{U} \mapsto F \) is \(sc^k \).

Defn:

\[E / r \quad \overline{Y} \quad \text{top. space} \]

\[F / w \]

\(\Psi_0 \overline{\varphi}^{-1} \) a scale diffeo. \(\iff \Psi_0 \overline{\varphi} \text{ is } sc^- \).

4. Retracts have tangent bundles,

Suppose \(K \overline{r} = v(E) \overline{r} : 0 \) \((v : U \mapsto U) \).

\[v \overline{r} \overline{r} \]

\[T_r \circ T_r = T_r \] so \(T_r \) is a retraction.

Defn: \(T_0 = T_r(T_U) \).

Note: This defn is not arbitrary.

\[y : (-\infty, 3) \mapsto 0 \quad \text{if} \ (v, u) \in T_0 \]

\[T(y, v) \leq T_0 \].

Then:

\[y(t) = v(u + tv) \leq 0 \]
\[f: O \to O', \text{ then} \]
\[T_{f}: TO \to TO' \]

(Q: Is it easy to see that tangent space doesn't depend on choice of \(r\)?)

A: It's not too hard — we'll see this soon.)

Attempt: \((r, O, \mu, C, E)\)
\[U \subseteq C \subseteq E \]
\[r: \text{sc-smooth retraction} \]
\[r(U) = O, \text{open} \]

Turns out, we don't need \(r\) (or \(U\)?)!

\[\tilde{r}(\tilde{U}) = O = r(U) \]
\[\tilde{U}, U \subseteq C \subseteq E \]

Then sc-tp same, and \(T\tilde{r}(T\tilde{U}) = TO = T\tilde{r}(TU)\).

Local model: \((0, 0, E), C \subseteq E\),
\[0 \text{ image of some sc retr.} \]

Defn of \(M\)-polyfold: \(\mathcal{U}\) hol charts.

NB: \(\mathcal{U}\) depends on \(E\).

Lies in regards to boundary structure.

Claim: (normally have \(C^{\infty}\) compactness, \(H^{1,p}\) discrete.
\[\text{need to consider } C^{2} (L^{2} \text{ energy must to get compactness in}) \]