Mohamed Abozaid: Symplectic Reflections on Tropical Geometry

Remarks: Going from tropical $\mathcal{V} \rightarrow \mathcal{V}_L$ Logargrian is hard currently.

Prop. → File:
- Show how to assign a logargrian to each tropical cell.

Conj. Tropical groups sketch consisting of smooth lines meeting cleanly.

Cor. arXiv:0904.1474 v3.

\[
\begin{align*}
\text{additional edge} & \quad \text{two edges have a} \\
& \quad \text{min at same} \\
& \quad \text{vertex.}
\end{align*}
\]

\[f = r^2 \text{ distance to origin.} \]

\[\text{index 1 cut point.} \]

\[\text{conormal construction everywhere.} \]

\[\text{Matrix factorization: category} \]

\[\text{regularity of hol. tons} \]

\[\text{Sing} (\mathcal{V}) = \text{cod lines, sing at origin.} \]
Lag's cycle is ∂ coamoeba (Nish).

$$(1 + x + y = 0 \subset \mathbb{C}^2) \rightarrow T^2 \rightarrow \mathbb{R}^2$$

by H"{a}k.

\[\text{Hf}^*(L) = \Lambda^4 \mathbb{C}^3 \]

Thas: ∂ coamoeba of a hyperplane in \mathbb{C}^2

is an immersed Lag sphere whose Floer

which is $\Lambda^4 \mathbb{C}^2$

A x sted not toral.

Dense: \exists "local" category

which is Is. to Fuk of \mathcal{B}^W.