"Tropical geometry are more than shadows of classical objects."

Basic notions:

1. Tropical semi-ring \(T \) is \(\mathbb{R} \cup \{-\infty, +\infty\} \) with \(+, \cdot \) rules instead of max.

\(x + y = \max \) \(x^y = x + y \) \(O(T^*) \) (almost constant sheaf, but some poly's, e.g. \(x^{-1} \) are not defined at \(-\infty \)).

Draw picture:

\[T^n = [-\infty, +\infty]^n \]

Affine line:

We can study \(O(T^n) \) as well:

- \(O \) is determined by \(\mathbb{Z} \)-affine structure on \(\mathbb{R}^n \subset T^n \)

\(\text{some we have a well-defined integrable notion of integer tangent vector.} \)

In addition to regular functions, we may want to consider rational functions

\(\frac{f}{g} \). Again we can build a sheaf out of them (Euclidean topology as before).

Each \(f \in O(U) \) defines a hypersurface, where \(\frac{1}{f} = -f \) is not locally regular.
Example: a rational function in \(\mathbb{T} \)

\[
\text{poles}
\]
\[
\text{zeros}
\]
\[
\text{all steps are integers.}
\]

If we consider the divisor of \(a + bx + cy \)

\[
\text{"abc"} = 0_{\mathbb{T}}
\]

This should also be an ellipse-like, but looks different from \(\mathbb{T} \)!

Any regular function \(f \in \mathcal{O}(U) \) defines its principal open set \(D_f \)

\[
f(x) = "x+a"
\]

this is the set theoretic graph, hence \(f \in U \).

But consider tropical completion,

look at "\(y + f(x) \)" fills in dotted line, with \(-\infty\):

In the Zariski topology,

\[
D_f \rightarrow \text{"tropical modification along } V_f\text{"}
\]

Equivalence means differ by maps that locally look like step modifications.
To rephrase:

Define tropical modification. Given \(f \in C(U) \), consider

\[U \times \mathbb{T}, \text{ and with its sheaf of regular \(C(U \times \mathbb{T}) \) \text{ look at \(y + f(x) \)}} \]

\[\Gamma_{y + f(x)} = \tilde{U} \subset U \times \mathbb{T} \]

This map \(\Gamma \) is called tropical modification along \(f \).

Two important features of this. Suppose we have

[Diagram of a chart here, homo to a subset of \(\mathbb{R}^n \) homeo to an equivalence].

Then:

- \(\tilde{U} \subset \mathbb{T} \), polyhedral complex of full dim. n.
- \(\tilde{U} \) satisfies the balancing property on codim-1 skeleton.

Balancing condition:

\[\sum v_i = 0 \]

(Smooth)

Tropical manifolds in the narrow sense:

- locally given, by modifications of \(U \subset \mathbb{T} \) with smooth centers which are
- tropical manifolds in the narrow sense, in dimension \(n - 1 \).

And a single point or \(\emptyset \) is smooth.

Examples: \(\dim 1 = \text{codim} 1 \).
\[TP^n = \bigcup_{n+1} \]

Hypersurfaces in \(TP^n \)

primitive triangulations

(\text{In dinc. 1, phylogenetic trees --- just get finite graphs})

compactness & balancing criteria \(\rightarrow \) all edges leaves adjacent to 1-valent vertices have \(\infty \) length.

Get length from \(\mathbb{Z} \)-alpha scheme.

c.e.g.

Grassmannians + Flag varieties?

\(\text{We'll return to } G_{\mathbb{R}_n} \text{ when we relax our def'n of topological manifold more.} \)

Remark by audience member:

\[\text{is smooth, but it's not a hypersurface? (why?)} \]

\(\text{The only smooth hypersurfaces arise from primitive triangulations} \)

\(\text{These things can locally be written as a limit of complex analytic manifolds.} \)

\(\text{One more example: abelian varieties} \)

in \(\mathbb{R}^n \times TP^n \)

typical torus
One condition for this torus to be projective: can find words for this so that
first word of \(v_2 \) = second word of \(v_1 \), etc.

Maps \(T^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^M \)
are locally given by affine map with \(\mathbb{Z} \)-linear part.

These are locally given by affine map \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) of \(\mathbb{Z} \)-linear part.

Example:

\[
\begin{array}{c}
\downarrow \\
\text{scale by } 2
\end{array}
\begin{array}{c}
\downarrow \\
\text{isometric}
\end{array}
\]

This is a tropical map, tropicalization of \(\mathbb{R}^1 \rightarrow \mathbb{R}^2 \)

(need to scale one branch by 2 to preserve balance, condition on primitive vectors).

Example:

\[
\begin{array}{c}
\downarrow \\
\text{elliptic curve branched at 4 points.}
\end{array}
\]

Remark: integrality of maps required because we want to see integer-exponent polynomials.)
Another example:

Build a K3 surface:

24 special points on each prism, get Z-affine structure on complement of points.

(ref. Kaledovich-Soibelman, Gross-Siebert)

Given $X^k \rightarrow \mathbb{TP}^N$, can define degree as intersection with $(n-k)$-face of simplex.

Now, $\tilde{U} \subset T^N$ enlarge regular functions f if it comes from a rational function in T^N and convex on (some 1 skeleton). (Heavily uses get a balancing condition in codim 2 only.)
The resulting objects are described by nefroides. Sometimes these objects are not locally pliable, or there's an obstruction to finding global phases, even for curves.