INTRODUCTION TO TROPICAL ALGEBRAIC
GEOMETRY - EXERCISES

DIANE MACLAGAN

Lecture 1

(1) Download gfan from
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html,
and play with it. Warning: Gfan uses the max-plus convention,
and requires homogeneous ideals.

(2) Write the arrangement $\mathbb{P}^2 \setminus \{x = 0, y = 0, y = x, y = -x\}$ as a
closed subvariety of a torus. Prove the general description for
how to do this described in the lecture.

(3) Compute $\text{trop}(Y)$ for the following Y, where $K = \mathbb{C}\{\{t\}\}$:
 (a) $Y = V(x^3 + 3x^2y^2 + y^3 - x + 2y) \subseteq T^2$;
 (b) $Y = V((t^2 - t^{5/2})y^2 + 5x^2 - 7xy + 8y - tx + t^3)$;
 (c) $Y = V(3x^2y + 2x^2 y^2 - xy^3 + 5xz - z^2)$;
 (d) $Y = V(x_1 + x_2 + x_3 + x_4, x_2 - 2x_3 + x_4)$.

(4) Show that if $Y = V(f) \subseteq (\mathbb{C}^*)^n$ is a hypersurface then $\text{trop}(Y)$
is the inner normal fan to the Newton polytope (convex hull of
exponent vectors) of f.

(5) Illustrate the fundamental theorem of tropical geometry (ie
check the sets coincide) for the following varieties.
 (a) $Y = V(x^2 + (t^2 + 1)x + t^2)$
 (b) $Y = V(x^2 + 2y - 3)$
 (c) $Y = V(x + y + z)$

(6) Compute $\text{in}_w(I)$ for the following I, and your choice of w:
 (a) $I = \langle x^2 + 3xy + 5y^3 - x - 2y + 1 \rangle \subseteq \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$;
 (b) $I = \langle t^2 x^3 + x^2 y + xy^2 + t^2 y^3 + x^2 + t^{-1} xy + y^2 + x + y + t^2 \rangle \subseteq
\mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}]$;
 (c) $I = \langle x + y + z, x + 2y \rangle \subseteq \mathbb{C}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}]$.