Janko Latschev, Symplectic homology and Lagrangian submanifolds of \mathbb{C}^n

1. Motivation

Fukaya's work in Lagrangians in \mathbb{C}^n:

$L \subset \mathbb{C}^n$ closed, oriented, rel-spin

For each $d \in H_2(\mathbb{C}^n, L)$,

$$M(d) = \{ u : (D, \partial D) \to (\mathbb{C}^n, L) | \bar{\partial} u = 0, [u] = d \} / \text{Aut}(D, \partial D)$$

that fix L.

Claim 1: $M(d)$ is a collection of chains on \mathbb{L}. Consider $a = \sum_d M(d) \otimes d$ on some complete chain on \mathbb{L}.

Claim 1: a should satisfy some equation like

$$a + \frac{1}{2} \bar{\partial} a + \frac{1}{2} \partial a = 0$$

(maybe not strict id, maybe higher order terms in sense of C^0 eqn).

Next, consider the perturbed equation:

$$\bar{\partial} u = \eta_k \quad \eta_0 = 0, \quad \eta_k \to L \quad (i.e. \text{pick } \eta_k \text{ so no cohomology + eqn}$$

$$N_t(d) = \{ u | \bar{\partial} u = \eta_k \} : [u] = t^d \quad \dim N_t(d) = n + \mu(d)$$

$$N(d) = \bigcup_{t \in [0,1]} N_t(d), \quad b : = \sum_d N(d) \otimes d$$

Claim 2: b satisfies something like $\star \star : \bar{\partial} b + \partial b = [L]$ (this generalizes Gromov's original argument)

*Note: thought of as sequence of constant loops in L.

we know $[L]$ is non-trivial, but if no discs, $[L] = 0$ something.
Claim 3: HPT:

The dg Lie structure descends as an Loo structure to $H_c(L,L)$.

a descends to a Maurer-Cartan element a' here, i.e.

$$\sum_{k \geq 2} \frac{1}{k!} \bar{f}(a,\ldots,a) = 0$$

$\lambda_1 = 0$ on homology.

b descends to an element b' satisfying

$$\sum_{k \geq 2} \frac{1}{(k-1)!} \bar{f}(b,a,\ldots,a) = [L]$$

Note:

(generic degrees of a, b are dimensions of M, N, degree of f, \bar{f} is $1-n$)

Calculation:

- $|a| = n + 1 + m(d)$
- $|b| = n + 2 + m(d)$

for $d = 0$, this last equation says

$$\partial b + \sum_{d \in \partial \mathbb{N}} b = [L]$$

Assume L is a $K(n,1)$, $H_c(L,L)$ lives in degrees $0 \leq -\leq n$.

\Rightarrow by (\ast), $0 \leq n + 2 + m(d) \leq n$, $0 \leq n + 1 = q(d) \leq n$.

(already implies m can't vanish completely, needs to be positive.)

$\Rightarrow q(d) \neq 0$ for some d with $m(d) = 2$ (Fukaya's theorem)

(this is oriented case, so m can't be 1).

Cor: $n = 3$, L closed, oriented, prime, $L \subset C^3$ Lagr. submanifold,
then $L \simeq S^1 \times \Sigma_3$, and all such actually realize by a fairly simple construction known for a long time.
Goal: Translate this into the language of symplectic homology.

If successful, we would:
- avoid chain-level string topology
- avoid relative spin assumption.
- get a generalization to other Weinstein domains.

(b/c before, we were really embedding $DT^{*}N$ into C^{n})

2) Algebraic structures: (should eventually work w/o S^{2}-equiv.)

Prop: W Liouvillian domain, $\Omega W = V$

(a) $SH^{S'}(W)$ carries an L_{0} structure of degree $(2-S')$ (conjecturally same as string bracket) (coefficients are in center, so descends to $SH^{S'}$)

(b) $SH(W)$ is an L_{0} module over $SH^{S'}(W)$.

(c) Any concave filling \widetilde{W} of V
gives rise to a MC elt., α, in $SH^{S'}(W)$ Nov = Novikov completion.

(if \widetilde{W} exact, α will be trivial.)

Rem: together, these realize \otimes

(c) Bourgeois - Oancea: \[SH^{S'}(W) = CH(W) \]
boundary operator counts formal index 1 cylinders which can consist of 2 levels,
on in $IR \times V$, one in W.

\[\begin{array}{c}
1 \\
\quad
\end{array} \]
\[IR \times V \]
\[\cdots \]
\[\theta_{0}, \theta_{0} \]
\[\text{rigid-energiness planes in filling} \]

\[\lambda \text{ counts} \]
\[\quad \]
\[\text{formal rational curves with k pcts. punctures and} \]
\[\quad \]
\[1 \text{ neg. puncture, with 2 levels...} \]
Point: It's hard to prove geometrically that Loo relations hold. Use alg. framework of EGH to prove this. Idea is that an augmentation augments all structures that one has.

for 6. BO: $SH(W)$ can be computed from SFT pictures by using the Morse-Bott formalism.

M is an Loo module over an Loo algebra L, $E^k \otimes \mathbb{L}^k_\mathbb{Z}$, means that there are maps

$M_k : M \otimes L^{\otimes k-1} \rightarrow M$

satisfying

$$\sum_{k_1+k_2=k}^{\pm 1} M_{k_2} (m, l_2, \ldots, l_k) \cdot l_k \rightarrow l_{k_1+k_2-1}$$

$$+ \sum_{k_1+k_2=k}^{\pm 1} \cdots M_{k_1} (m_1, l_2, l_2, \ldots, l_k) \cdot l_{k_2} \rightarrow l_{k_1+k_2-1}$$

(See 6. for L_0, can reorder.)
M_k counts

For M_k:

Analyzing $d \neq 0$ is subtle b/c have all these contributions.

Funny cancellation.

(C) For the MC elf. a,

\tilde{a} is the generating fan. Counting rigid finite energy planes is \tilde{W}, augmented in W.

Really this means things like:

all index 0
the MC equation comes from looking at how index 1 configurations of this type back
(don't want to do by hand, want to formulate algebraically)

(3) Have analogue of \(\mathcal{X} \)

Want analogue of \(\mathcal{X} \) (in prow box, we took some sort of ham. perturbation to get it)

Idea: use Gromov's graph trick to translate back into an honest hol. curve eg.

\[S' \times L \subset C \times C^n. \]

\[CH(T^*(S' \times L))^0 \cong H(S') \otimes CH(T^*L) \]

up to a compact which doesn't wrap around \(S' \)

\[CH(T^*(S' \times L))^{1,*} \cong SH(T^*L) \]

(claim: the embedding \(CH(T^*L) \hookrightarrow CH \) is an embedding of C0 algebras)

Hope: get the analogue of \(b \) by doing a deformation of the contact structure,

i.e. a deformation argument as before.

If this works, it translates to general embeddings of \(\mathcal{X} \) in Liouville domains in \(C^n \) or any other guy (we used displaceability to construct deformation)

E.g. Suppose have contact \(Y \) i.e. \(F \cup \partial \) all \(SF \) indices even

Suppose \(Y \) has stability w/ \(SF \neq 0 \). Then, this cannot have an embedding in \(C^n \)

(only interesting if not simply connected, otherwise we already knew it)

Other approach: If \(V \) CW exact embedding, have Viterbo functoriality

In the non-exact case, can do some twisting to still get a map, using fact that \(SF = 0 \).

(by these a, b).