Tobias Ekholm, Legendrian Contact Homology and symplectic homology in dimension 4

Two joint projects:
- Joint w/ Bourgeois-Elashvili
- Joint w/ Murphy-Ng

Surgery formulas for Fisker homologies

Legendrian homology in \(\#(S^2 \# S^2) \) (empty connect sum is \(S^3 \))

Examples and applications.

Setup:

\[\omega = d\lambda \quad (Y \times \mathbb{R}, \lambda = e^{t\alpha}) \]

\[d\lambda_{|X} = 2\alpha \]

\[H: X \to \mathbb{R} \text{ Morse Gen.} \]

Critical points have index \(\leq n \).

(By Gielisch, if no index \(\geq n \) at crit. points, then \(X = X \times \mathbb{C} \) symplectically).

\[\text{Ex: dim } X = 4 \]

Symplectic invariants:

(Assume \(c_1(X) = 0 \) for talk)

- Contact homology:
 \[R \text{ Reeb v.f. on } Y, \quad d\lambda(R, \cdot) = 0, \quad \alpha(R) = 1 \]
 \[P(Y) = \{ \text{proper orbits} \} \]
 \[\text{CH}(X) = \mathbb{Q} < P_{\text{good}}(Y) > \]

Fix an acs \(J \) on \(X \) compatible w/ \(\omega \).

\[d_{\text{CH}}(Y) = \sum_{\beta \in \{ \beta: |\beta| = 1 \}} K_{\beta} \left(\left[\left(\beta \right| \text{in } Y \times \mathbb{R} \right) \right] \beta \]

(Pink: Alternatively, could use \(\frac{1}{K_{\beta}} \) here).

Explanation of dots in \(\mathbb{N} \): Actually, our picture looks like:

\[Y \times \mathbb{R} \]

\[\text{Then: } d_{\text{CH}}^2 = 0, \]

\[\text{CH}(X) = H_0(\text{CH}(X), d_{\text{CH}}) \]

bad orbits: multiples, s.t. the parity of the CH index is different from the underlying simple one.
Symplectic homology (as defined by Banyaga–Ozora)

\[\text{Symplectic homology} \]

\[\mathcal{S}H^+(X) = \mathbb{Q} \langle p(y) \rangle \oplus \mathbb{Q} \langle p(y) \rangle [1] \]

Geometric interpretation:

\[\begin{array}{c}
\text{max} \\
\text{min}
\end{array} \]

\[d_{\text{Morse}} \delta = \begin{cases}
2 \delta & \text{if } \gamma \text{ is bad} \\
0 & \text{if } \gamma \text{ is good}
\end{cases} \]

\[\Theta(\gamma) = \sum_{|\beta| = 2} \# \left(\begin{array}{c}
\gamma \\
\beta
\end{array} \right) \delta \]

Two more pieces to differential/p ordinary Morse differential, and

\[\mathcal{Q}(p(y)) \to \text{Morse } (-H) \]

\[d_{\text{Morse}} (\gamma) = \sum_{|\beta| = 0} \# \left(\begin{array}{c}
\gamma \\
\beta
\end{array} \right) \delta \]

Example:

\[\mathbb{R}^2 = \mathbb{R}^2 - \{a_1, a_2, \ldots, a_n\} \]

In the limit, all Reeb chords become very long except \(y_1 \).

So \(\text{CH}^+ \) is done.

\[\text{SH}^+ \]

\[y_1, y_2, \ldots, y_n \]

So \(\text{SH}^+ \) has rank 1.
For SH, so $SH = 0$.

In fact, with a more subtle argument, for any smooth manifold, $SH = 0$, $SH^+ = H^+_o$ (or H^+_2), $CH =$ some equivariant version.

Relative counterparts:

$CL = X$

$H^+ = \{ \alpha \in C^*(\Gamma) \}$

$LH(\Gamma) = Q < C(\Gamma) >$

$\partial_{LH}(c) = \sum \pm \left(\begin{array}{c}
\partial_c \in (Y \times \mathbb{R}, \Gamma \times \mathbb{R}) \\
b \end{array} \right) b$

What do these really look like?

$\Lambda \subset Y$ Legendrian submanifold

$LHA(\Lambda) = T(LH(\Lambda))$

$LCH(\Lambda) = \ldots$

Attach an n-handle:

$CH(Y)$

$LCH(\Lambda) = CH(Y_0) \oplus LH_{\text{cyc}}(\Lambda)$,

where

$LH_{\text{cyc}}(\Lambda) = LHA(\Lambda) / \sim$

where $c_1 \sim \cdots \sim c_m \sim (-1)^{\ell c_2 + \ell c_m}$

$w \rightarrow (w)$
If l is odd, then $(a^3) = 0$.

Differential on $LH^{cyc}(\Lambda)$ is induced by d_{LHA}.

$L_{SH}(X) = SH(X_0) \oplus LH^0(\Lambda)$.

So to calculate SH, it's enough to know

Handle: c co core sphere

Then $LH(c) \cong LHA(\Lambda)$.

Example:

One can prove that it suffices to stay in \mathbb{R}^3 to compute differential (ellipsoid / long Reeb chord argument again)

X^2 projection

Chee handles are attached, Kirby diagram.
\[C(A) = \begin{cases} \text{double points in diagram, chords inside handle 3} \\
\text{n-strands through handle} \\
x_{ij}^0 & 1 \leq i < j \leq n \\
x_{ij}^k & 1 < i, j \leq n, \ k \geq 1. \end{cases} \]

\[\partial_n x_{ij}^0 = \sum_{m=1}^{n} x_{im}^0 x_{mj}^0 \]

(convention that \(x_{ij}^0 = 0 \) if \(i \geq j \))

\[\partial_n x_{ij}^1 = \delta_{ij} + \sum_{m=1}^{n} x_{im}^0 x_{mj}^1 + \sum_{m=1}^{n} x_{im}^1 x_{mj}^0 \]

\[\partial_n (x_{ij}^k) = \sum_{l=0}^{k} \sum_{m=1}^{n} x_{im}^l x_{mj}^{k-l} \]

Integral difference
Outo differential:
Count polygons like:

Test cases:

$T \times T^2$:

([Diagrams of topological structures with labels and arrows indicating attaching 1-spheres])

Exotic \mathbb{R}^6 (after some doubling?)
Can get an exotic \mathbb{R}^6 w/ this technique.