Day 1, Nadler — Overview

Theme: Unity of Quantum Geometry of Symplectic Manifolds

Warmup: Cohomology of a manifold X

Ex.: $X = S^2$.

3 viewpoints:

Topological

$C^*(X) = \{ \text{sing. cochains} \}$

Algebraic

$\Omega^*(X)$

"fulfills" terms

Analytic

Morse complex = $\mathcal{M}^*(X)$

Let:

\[s_i = \text{cost.} \]

\[x(i) \]

\[(0) \]

\[x(1) \]

\[(1) \]

\[1 \rightarrow \] cell

\[\rightarrow \]

\[\rightarrow \]

\[\rightarrow \]

\[\text{cell} \]

\[H^*(S^1) = 0 \] k.

pos: uses as little structure as possible

use smooth manifold

use metric, ODE, etc., but get very finite object.

"expected in exact structure, e.g., metric"

1) "Quantum" is already here: linearity (e.g., superposition)

8) Cohomology should mean the chain complex.

picture to keep in mind:

$S^3 \text{ that } S^2$. classical easier problems with easier problems abstract.

S^2
usual spectral sequence:

\[H^*(S^1) \xrightarrow{k} H^*(S^2) \xrightarrow{k} \cdots \]

connecting map: extra information - comes from chains, not cohomology.

\[H^*(S^2) \]

Symplectic fields:

\[H, \omega \]

\(\omega \) : closed, non-deg. 2-form.

Darboux: locally, \(\mathbb{R}^2 \), \(\omega = \sum_i x_i \, dy_i \).

"quantum" means noncommutative deformation.

For coordinates \(x_i, y_i \):

\[x_i \cdot y_j - y_j \cdot x_i = \delta_{ij} \]

Want to study: submanifolds & other geometric objects:

quantum means they make sense after this noncommutative definition.

\(\rightarrow \) Uncertainty principle: NCM must be coisotropic.

In particular, smallest submanifolds are \(\mathbb{C} \)M lagrangians.

(\(\mathbb{C} \)M cut out by quantum braids. i.e. braids kill off \(x_i, y_i \)).

Ex. \(\mathbb{R}^2 \):

\(\{(0,0)\} \) cut out by \(x = 0 = y \).

In noncommutative world, \(x \cdot y - y \cdot x = 1 \), impossible.

But \(y = 0 \) works!

(need one-sided ideal... etc.)
need a left ideal \(\langle y \rangle \)

not necessarily interested in \(\phi_y \) of funs. on \(\mathfrak{g} \).
interested in module, \(\Phi_y \) of funs.
left quotient \(\langle y \rangle \)

Associativity:

\(\mathfrak{g} \) would like:

\((M, \omega) \rightarrow \) quantum category whose \(\text{objects} \) are \(\omega \)-vanes general co-isotopic sub-

\(\text{morphisms} \): quantum interactions.

Basic case: \(M = T^* X \) e.g. \(X = S^1 \)

\[\text{Toric}
\]

Const. sheaves

on \(X \)

"Lag'n theory"

\(U \)

(coisotropic sheaves)

\(X \) complex.

\(D \)-modules on \(X \)

"Coisotropic theory"

\(\text{Fix} \) sub-

\(\text{Analytically} \)

Inf. Fukaya category

"Lag. theory."

Replacement: wrapped Fukaya category.

Two outside are equivalent, \(\text{middle is richer but contains "Lag." subcategory.} \)

"Yes and I will intersect if at some point in the future we ever cross paths."

Why success here? \(\mathfrak{g} \) a dilatation:

1) attracting dilatation. (exact structure)

2) polarized: \(\text{Lag'n foliation by fibers of } T^* X \rightarrow X \)

Towards end of week: try to remove \(\Phi_y \).
Ex: 1) $M \text{ Kähler } \subset \mathbb{CP}^n$

$V \quad H = \mathbb{CP}^n.$

$M \setminus (M \setminus H)$

exact (we have trivialized the Kähler class)

so e contracting dilatation.

2) \leq Kleinian surface singularities

$\xrightarrow{\text{Day 4}}$

\subseteq symplectic resolution.

$\xrightarrow{\text{?}}$ orthogonal bundle if this is true!

Day 4. Torsion examples:

1) $\mathbb{R}^2 \xrightarrow{\phi} M = T^* (S^1)^n \longrightarrow (S^1)^n$

$\xrightarrow{\text{(IR)}^n}$

2) $M = T^* \mathcal{O}_Y = \mathcal{O}_X \times \mathcal{O}_Y \longrightarrow \mathcal{O}_X$

Fourier transform.

Gen. principle: Quanta geometry of \rightarrow classical geometry.

$H_{\text{nucl.}}$

$H_{\text{phys.}}$

Is this plausible? Can relate them via this picture?

Today: Smooth geometry is wild.

1) \rightleftharpoons

Time geometry (finite type)

b) chain complexes \rightarrow homological algebra

"reasonable way"

3) Topology of subspace of $X \rightarrow$ constructible sheaves.

(?) Topological quantization of \mathbb{R} $\rightarrow X.$