A map $A: \mathbb{R} \to \mathbb{R}$ is described. The notation \mathbb{R}^n is used for n-dimensional Euclidean space.

A pointed disc at every point all contracted.

Focus on this up to be a chain map. $A_0: \mathbb{R} \to \mathbb{R}$

Ideal push $Y^* k^* \in S^3$ off of S^3 using S^3 deformations.

Gopakumar-Vafa: page 48

Large N duality:

$\mathcal{O}(-1) + \mathcal{O}(-1)$

S^2 \leftarrow N

$p\,'$

$p\,'$ of size N

$X^* = T^* S^3$

$N \subset A \in Branes on S^3$.

Write: A-valued on $T^* S^3$ mod.

or N large brave in base the

by A-valued $= \text{su}(N)$ C-S theory on S^3.

and all hot, does to base degenerate graphs:

$\text{su}(N)$ clean supports theory on S^3.

A - yrs. can't perform \rightsquigarrow quiver problem. Then $\text{SU}(N)$

$A \to \mathcal{O}(N) \to \cdots \to \mathcal{O}(1)$ $\to \cdots$ $\mathcal{O}(1)$.

So C^3 theory \lhd Branes on $T^* S^3$.

Compatible if you know Homfly polynomial.
Chern-Simons \leftrightarrow A-model duality

\[T^* S^3 \]

$G\times G$-secting

[Diagram: A pentagon with labeled vertices and arrows]

Not just magic trees!

Problem is, it includes

\[\text{no marked points} \]

An:

\[(n = 7)\]

all edges in circle $1/tw$ n+1 vertices

\[(n^2) \text{ objects: edges, morphisms: vertices} \]

t-strokes: heap, abelian, a simple object, 3-stroke here

plus degree maps degree of heap between objects

Stability condition: t-stroke. \(n \)-numbers in upper half plane

\[E = 0 \]

\[E = \mathbb{C} / \mathbb{R} \]

Stability: \(T \) -preserved for homomorphism $\phi: \mathbb{C} \rightarrow T$

E.g. group, stable condition

\[\phi(f_i) = \phi(f_i) \]

\[\mathbb{Z} : T \rightarrow T \]

\[\phi(E) = \text{教研}(E) \in [0, n] \]

A T-best if called T-structure.

$A \in A$ is somehow 2-stack object in best $\mathcal{A} : \mathbb{C}(E) \in H U_{\text{Reg}, \text{spec}}$.

\[\text{any } \phi(F) \text{ satisfies Normah} \]

\[\text{support property} \]