Then there is a ray of all t for each cell t and to each $k.$ Finally, any for each $k.$

$$R = C[x^a, y^b][t]$$ prime on $t.$

$$M = \mathbb{Z}^2, \quad M_R = \mathbb{R}^2$$

Def: Ray (line) (or fol)

$$r = R \circ \tilde{m}, \quad m \in M,$$

$$(R - \tilde{m})$$

$$f = 1 + t^a \cdot g(t^b).$$

Def: Scotts day $\mathbb{D} = \bigcup D_k$

D_k is a ray or line s.t.

$$f_k = \mathcal{O}_{m_k} + t^n.$$ for all but finit of rays or lines.
\[\Theta_t(z) \rightarrow 2\mathbb{H}(x, y) \]

Support \(D = \bigcup \sigma \)

\[D_0 = (0, f_0) \]

\[y : (0, 1) \rightarrow \mathbb{H}_{\mathbb{R}} \setminus \mathbb{S}_0 \]

\[y(0), y(1) \in \text{supp} \, D \]

\[\Theta_t(0) = \prod_{x(t) \in \mathbb{R}_+} \theta_t \]

Well-defined even if too many or five.

\[x(t) \in \mathbb{R}_+ \]

For \(n \in \mathbb{N} = \mathbb{H}(\mathbb{R}, \mathbb{Z}) \) primitive, s.t.-

\[\begin{cases} m_1 = n \times t \setminus \Theta \times \Theta \left(\frac{1}{t} \right) \left(\frac{1}{n} \right) \leq \Theta . \end{cases} \]

Then, \[\Theta_t(z) = z^k f \bigg|_0 \]

\[0 < z = m_{\leq 0} \]

\[0 < k \text{ or } m_{\leq 0} \]
\[D = \left((\mathbb{R}(-1, 0), (1+t)x^{-1}) \right), \quad (\mathbb{R}(0, -1), (1+t+y^{-1})x) \right) \]

\[x \mapsto x \left(1+y^{-1} \right) \]
\[y \mapsto y \left(1+tx^{-1} \right) \]
\[\gamma \mapsto \gamma \left(1+t^2x^{-1}y^{-1} \right) \]

\[\rho \left(\sigma, D \right) = 0, \quad \gamma(x) \left(1+tx^{-1} \right) \]

\[\frac{1}{1+tx} = \frac{1}{\gamma(x)} \]

\[\Theta_{\sigma, D} = 0 \]

Proof: [125]. By semigroup \(G \), \(G : S(D) = 1 \).

\[S(D) \] only \(e \) is \(G \), \(A \& \delta \left(\omega : \right) = 0 \).

Then: \(D = D_1, D_2, D_3, ... \), \(\Theta_{\sigma, D} = 0 \) and \(t^k \).
\[k = 1 \]

\[\Theta \]

\[\gamma \rightarrow y \left(1 - \sum_{i=1}^{n} c_i \cdot q_i \cdot t^k \cdot x_i \cdot y_i^f \right) \mod t^{k+1} \]

\[b/\gamma \rightarrow \frac{\partial x}{\partial y}, \frac{\partial y}{\partial y} \]

\[\text{dlog}(a b) = \text{dlog} a + \text{dlog} b \]

\[(a^i, b^i) \in \mathbb{A}^2 \times \mathbb{A}, c_i \in \mathbb{C} \]

\[\text{add} \quad (R \circ o (a^i, b^i)) \quad \gamma \rightarrow y \left(1 + q_i \cdot c_i \cdot t^k \cdot x_i \cdot y_i^f \right) \mod t^{k+1} \]

\[x_i \rightarrow x \left(1 + b_i \cdot c_i \cdot t^k \cdot x_i \cdot y_i^f \right) \mod t^{k+1} \]

\[y_i \rightarrow y \left(1 + q_i \cdot c_i \cdot t^k \cdot x_i \cdot y_i^f \right) \mod t^{k+1} \]

\[\delta, \gamma \]

\[(1 + t^2) \cdot (1 + a \cdot x + b \cdot y) \cdot (1 - t^2 \cdot x \cdot y - 1)^4 \]

\[r \left(n, n^2, n^3 \right), f = \left(1 + \frac{2n+1}{6} \cdot x - n \cdot 1 - y \right) \]

\[2 = 3 \]

\[3 + \sqrt{5}/2 \]

\[\sum_{i=0}^{\infty} \left(\frac{1}{3 \cdot i+1} \cdot \left(\gamma \cdot t \cdot \left(y \right) \right) \right) \]

\[(\cdot 3 + \sqrt{5}/2) \]
A side image figure.

The fiber on the wall.

extra ray

(2,5)

that gets lost. This is (2,5) by this R^2 fiber.

There's also a 6W for data:

Rays \(n \cdot (a + t \times bi) \)

\((a, b) = n \cdot \)

If for

\(a = \) \(t + e^{ni} \)

\((t + e^{ni}) \)

consider the fan:

\(R_{50} \) \(R_{50} \)

\(a \)

\(D_1 \)

\(D_2 \)

\(D_2 \)

\(a \)

\(-k(a) \)

Then \(\log f_a = \sum_{\beta} \sum_{\text{p}} N_{\beta}(\beta) k(\beta) \times \log \| a \| = a \cdot -k(a) \cdot \log a \).

Spheres class \(\beta \). \(\beta \cdot D_1 = a_1 \) \(\beta \cdot D_2 = a_2 \) \(\beta \cdot D_0 = k \).

Note: multiplying a measure by a scale.