\(Q = \infty \)

1. Is this part of the TQFT package?
 (Use for all fields, a hypothesis test)
 \(\text{products} \)

2. How does this relate to operations on \(S^4, H^\ast \)?

3. Knots in Jet bundles & \(S^4 \) vs. general manifold

 standard, stable finite, non-surjecting symplectomorphic?

 (Any base, like oriented knot structures).

Yasha:

\[T^2 \times S^2 \times C \]
\[S^2 \times \mathbb{R}^4 \text{ boundary} \]
\[S^2 \times S^2 \]

Remove on \(S^2 \), it is \(J^1(S^2) \)

Line submanifold path

unstable null for subcrit side = \(S^3 \times \mathbb{R}^3 \) here

\[2 \text{ dim } 0 \text{ dim } 1 \]

Then can cancel

Construct a leg, a fold, that can be made disjoint

Conj: All produce exotic \(\mathbb{R}^4 \)
can write down \(SL_\mathbb{R} \)

Different of points, non-coincidences

And something w/ vanishing \(SL_\mathbb{R} \)

Prove something stable under stabilization/undershoot
\[J^1(M) = \left. \frac{\partial}{\partial s} \right|_{s=0} \left(\left. g_{s} \right|_{s=0} \right) \times \mathbb{R}^2, \]

\[\text{Suppose we have} \quad F : M \times V \rightarrow \mathbb{R} \]
\[F_\xi : V \rightarrow \mathbb{R} \quad g \in M. \]

\[\begin{cases} p = \frac{\partial F_\xi}{\partial g} \\ \xi = F \quad \text{Cerf diagram} \\ \frac{\partial F}{\partial x} = 0 \end{cases} \]

at every \(p \), make cont. value.

get \(\text{Cerf's} \) projection, not \(\text{necessarily} \) embedded \(\log \).

IF \(F \) has at least 2 \(\text{crit. points} \), then this
\[\text{intersects \(\sum_{\partial M} \text{crit. points} \)} \]
\(\text{less, permits under \(\log \), crit. part} \) (maybe stabilize that).

\[V \rightarrow V \times \mathbb{R}^n \]
\[F \rightarrow F + \xi(F) \]
\(\text{non-deg. good form} \)

"Stable Morse theory"

Examples:

- \(\mathbb{M} = S^2 \)
- \(V = S^1 \)

Do this over \(S^2 \).
High dimension, need $\nabla \Delta f = 2$.

Take V non-compact.

Add one section (over S^2), but over S^3 here, want something to not be knotted topologically.

Lemma: $T^2(S^2)$

$S^2 \subset \mathbb{R}^3 \subset \mathbb{C}^3$

$U(S^2) \subset \mathbb{C}^3.$

$S^2 \times S^1 \subset \mathbb{R}^3 \twoheadleftarrow \mathbb{C} \cup (S^2)$

Claim: Remove any leg, re-implant or knot into $\Sigma(S^2)$

and $S^2 \neq 0$ section.

Need to prove it's not leg, isotopic to $S^2 \times S^3$.

non-trivial Floer homology.

Take $S^2 \times S^2$, do connected sum.

In high dimension, makes sense.

Can try to write down Σ, computer cannot stabilize by growing fan.

Do something more clever.

Do a way that kills S^2, intersect fiber @ 3 points.