Equation defined by
\((S^1)^3\) homotopy
of \(T^3\).

\((1 - x_1 \otimes x \otimes x)^{2}(I) = 0\).

Solving converges to orbits of \(x_1 \otimes x \otimes x\) as \(x \to 0\).

\(x_1, x_2, x_3 \in \mathbb{R}\), \(x_2, x_3 < 0\).

At 1st & 2nd marked pts.

Two solutions to \(S^2 \times I\).

\(M = \text{aut}(\mathbb{R}^3)\).

\(x_1 + x_2 + x_3 = 2\).

\(\text{What is allowed?} \quad \nabla = \vec{\nabla}\).

Riemann surfaces equipped with one form.

\(M = M^+ / (S^1)^3\).

What if \(\vec{M} \times \vec{M}\)

\(T^3 \rightarrow \vec{\nabla}\)

Stokes through constants
\(i, j, k\)

\(\text{no important boundary}\)

\(\text{facts through coarse for } S^1\).
\[H_x^{(S^1)^3} (M^*) = H_x^{(S^1)^3} (S^1 \times S^3) \]
\[= H_x^{(S^1)^2} (S^3) \text{, where } (S^1)^2 \text{ acts trivially on } S^3. \]

Compute by \(H - V^3 \)

\[Z \rightarrow H^x_1 (OP^\infty) \times H_2 (OP^\infty) \rightarrow H^x_1 (S^3) \]

\[\text{what is this?} \]
Need to prove operator vanishes on boundary

\[H^+ \rightarrow S H_5/ \]

\[\uparrow \quad \text{look at these maps as} \]

\[S H_5^+ \quad S H_5^+ \rightarrow S H_5 \oplus S H_5^+ \]

\[\text{evolve} \]

\[\text{of boundary} \quad S H_5^+ \otimes S H_5^+ \]

\[\text{idently vanishes,} \]

so operator defined by relative chain vanishes

vanishes on cochains by energy?? maybe

\[\text{constantly} \]

\[\text{constantly} \]

\[\text{entire} \]

\[\text{family} \]

\[\text{entire} \]

\[\text{family} \]

\[\text{vanishes out of } S H^+ \text{ family} \]

Can do same thing in non-compact theory, but not on the level of \(S H_5 \)

Not part of CPT package

Colored operators take same input to from one to another.
In TQFT, state $C_0(L)$, considered things on Hochschild homology.

Not enough to know what manifold is for operators to be

considered?

But (signature unique for simply connected)

for most X need to look at all signatures.

Adams cobordism $\text{Ext}^3(C_0(L), C)$ moves $C_0(A)$.

In TQFT, I on vector space on what operators we defined, we

we have this,

(but be very careful here).

$C^0(L)$ of A to C_0.

for cobordism/detect in

is very

degenerate

operators on $H_0 C_0(L)$. But you know and this can only come from

Hochschild or monoidal.

$H_0 = H_1(A)$. The only

operators come.

Is this desired invariant? Probably not.

This map

squid or one

tentacle.
Closed TCFTs have more symmetries than one might expect since they're a part of an open-closed TCFT.

Should be able to take many limits of open, need with from Kevin, i.e. many TCFTs been done.

When we pinch, stuff is reduced to intersecting cycle on X, i.e. it's not necessarily commutative.

If we have this, can make by higher operations, identify stack, etc.

A non-equivalent exact homology SFT by REE-

closed smooth, inside it, category

multicat

the dyson coherent:

What does this induce on this column?

In TFT, can reverse any picture, (homomorphism)

Not so much here, this is an extended field theory.

Need to decide what it has, what it doesn't (existence of one-form)

In TFT, relation between ϕ and ψ, we know them, but they're not related.

So this is not a Calabi-Yau algebra.
Q: The homology of queer corresponds to S^1 action.
What basis? (expect nothing on S^1.)

CH

What about at root of unity? (only defined over \mathbb{Q}?)
ought S^1 instead.

What for Lie algebra of O? Whirlwind outlined by
this open.
Are these insights do, gee?

(Expect to 5 90cm and house in 01)

on relative GW theory, there are operads as well.

no only problems in yours 0 10c of exactness.

Chilean

Can you split this apart is SST?

on reconstruction theorem, but a restriction function.

operads

topology? things of concave/convex boundary

Can you fit into a glass? issues.

operation is a thing contained of a colored opera.

maybe an answer is gives 0, never from BV.

How can we use this structure?? Too hot.