
4-22 Solutions for Chapter 4: Divide-and-Conquer

Since1=2 � ˛ < 1 and0 < 1�˛ � 1=2, we have that lg̨ < 0 and lg.1�˛/ < 0.
Thus,˛ lg ˛ C .1 � ˛/ lg.1 � ˛/ < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality:

d � �c

˛ lg ˛ C .1� ˛/ lg.1� ˛/

or

d � c

�˛ lg ˛ C�.1� ˛/ lg.1 � ˛/
:

The fraction on the right-hand side is a positive constant, and so it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show thatT .n/ � dn lg n for a suitable
constantd > 0. We can use the same proof as for the upper bound, substituting �
for �, and we get the requirement that

0 < d � c

�˛ lg ˛ � .1 � ˛/ lg.1� ˛/
:

Therefore,T .n/ D ‚.n lg n/.

Solution to Exercise 4.5-2

We need to find the largest integera such that log4 a < lg 7. The answer isa D 48.

Solution to Problem 4-1

Note: In parts (a), (b), and (d) below, we are applying case 3 of the master theorem,
which requires the regularity condition thataf .n=b/ � cf .n/ for some constant
c < 1. In each of these parts,f .n/ has the formnk . The regularity condition is
satisfied becauseaf .n=b/ D ank=bk D .a=bk/nk D .a=bk/f .n/, and in each of
the cases below,a=bk is a constant strictly less than1.

a. T .n/ D 2T .n=2/C n3 D ‚.n3/. This is a divide-and-conquer recurrence with
a D 2, b D 2, f .n/ D n3, andnlogb a D nlog2 2 D n. Sincen3 D �.nlog2 2C2/

and a=bk D 2=23 D 1=4 < 1, case 3 of the master theorem applies, and
T .n/ D ‚.n3/.

b. T .n/ D T .9n=10/ C n D ‚.n/. This is a divide-and-conquer recurrence with
a D 1, b D 10=9, f .n/ D n, andnlogb a D nlog10=9 1 D n0 D 1. Since
n D �.nlog10=9 1C1/ anda=bk D 1=.10=9/1 D 9=10 < 1, case 3 of the master
theorem applies, andT .n/ D ‚.n/.

c. T .n/ D 16T .n=4/ C n2 D ‚.n2 lg n/. This is another divide-and-conquer
recurrence witha D 16, b D 4, f .n/ D n2, andnlogb a D nlog4 16 D n2. Since
n2 D ‚.nlog4 16/, case 2 of the master theorem applies, andT .n/ D ‚.n2 lg n/.

23-12 Solutions for Chapter 23: Minimum Spanning Trees

spanning treeT for G. We compute a minimum spanning tree forG0 by creating
the graphG00 D .V 0; E 00/, whereE 00 consists of the edges ofT and the edges
in E 0 � E (i.e., the edges added toG that madeG0), and then finding a minimum
spanning treeT 0 for G00. By the lemma, there is a minimum spanning tree forG0

that includes no edges ofE � T . In other words,G0 has a minimum spanning tree
that includes only edges inT andE 0�E; these edges comprise exactly the setE 00.
Thus, the the minimum spanning treeT 0 of G00 is also a minimum spanning tree
of G0.

Even though the proof of the lemma uses Kruskal’s algorithm,we are not required
to use this algorithm to findT 0. We can find a minimum spanning tree by any
means we choose. Let us use Prim’s algorithm with a Fibonacci-heap priority
queue. SincejV 0j D jV j C 1 and jE 00j � 2 jV j � 1 (E 00 contains thejV j � 1

edges ofT and at mostjV j edges inE 0 �E), it takesO.V / time to constructG00,
and the run of Prim’s algorithm with a Fibonacci-heap priority queue takes time
O.E 00 C V 0 lg V 0/ D O.V lg V /. Thus, if we are given a minimum spanning tree
of G, we can compute a minimum spanning tree ofG0 in O.V lg V / time.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observe thatsince the graph
is connected and all edge weights are distinct, then there isa unique light edge
crossing every cut. By Exercise 23.1-6, the minimum spanning tree is unique.

To see that the second-best minimum spanning tree need not beunique, here is
a weighted, undirected graph with a unique minimum spanningtree of weight7
and two second-best minimum spanning trees of weight8:

1

2 4

3 5

minimum
spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

b. Since any spanning tree has exactlyjV j � 1 edges, any second-best minimum
spanning tree must have at least one edge that is not in the (best) minimum
spanning tree. If a second-best minimum spanning tree has exactly one edge,
say.x; y/, that is not in the minimum spanning tree, then it has the sameset of
edges as the minimum spanning tree, except that.x; y/ replaces some edge, say
.u; �/, of the minimum spanning tree. In this case,T 0 D T �f.u; �/g[f.x; y/g,
as we wished to show.

Thus, all we need to show is that by replacing two or more edgesof the min-
imum spanning tree, we cannot obtain a second-best minimum spanning tree.
Let T be the minimum spanning tree ofG, and suppose that there exists a
second-best minimum spanning treeT 0 that differs fromT by two or more

Solutions for Chapter 23: Minimum Spanning Trees 23-13

edges. There are at least two edges inT � T 0, and let.u; �/ be the edge in
T � T 0 with minimum weight. If we were to add.u; �/ to T 0, we would get a
cycle c. This cycle contains some edge.x; y/ in T 0 � T (since otherwise,T
would contain a cycle).

We claim thatw.x; y/ > w.u; �/. We prove this claim by contradiction,
so let us assume thatw.x; y/ < w.u; �/. (Recall the assumption that
edge weights are distinct, so that we do not have to concern ourselves with
w.x; y/ D w.u; �/.) If we add.x; y/ to T , we get a cyclec 0, which contains
some edge.u0; � 0/ in T �T 0 (since otherwise,T 0 would contain a cycle). There-
fore, the set of edgesT 00 D T �f.u0; � 0/g[f.x; y/g forms a spanning tree, and
we must also havew.u0; � 0/ < w.x; y/, since otherwiseT 00 would be a span-
ning tree with weight less thanw.T /. Thus,w.u0; � 0/ < w.x; y/ < w.u; �/,
which contradicts our choice of.u; �/ as the edge inT �T 0 of minimum weight.

Since the edges.u; �/ and.x; y/ would be on a common cyclec if we were
to add .u; �/ to T 0, the set of edgesT 0 � f.x; y/g [f.u; �/g is a spanning
tree, and its weight is less thanw.T 0/. Moreover, it differs fromT (because
it differs from T 0 by only one edge). Thus, we have formed a spanning tree
whose weight is less thanw.T 0/ but is notT . Hence,T 0 was not a second-best
minimum spanning tree.

c. We can fill inmaxŒu; �� for all u; � 2 V in O.V 2/ time by simply doing a search
from each vertexu, having restricted the edges visited to those of the spanning
treeT . It doesn’t matter what kind of search we do: breadth-first, depth-first,
or any other kind.

We’ll give pseudocode for both breadth-first and depth-firstapproaches. Each
approach differs from the pseudocode given in Chapter 22 in that we don’t need
to computed or f values, and we’ll use themaxtable itself to record whether a
vertex has been visited in a given search. In particular,maxŒu; �� D NIL if and
only if u D � or we have not yet visited vertex� in a search from vertexu. Note
also that since we’re visiting via edges in a spanning tree ofan undirected graph,
we are guaranteed that the search from each vertexu—whether breadth-first or
depth-first—will visit all vertices. There will be no need to“restart” the search
as is done in the DFS procedure of Section 22.3. Our pseudocode assumes that
the adjacency list of each vertex consists only of edges in the spanning treeT .

Here’s the breadth-first search approach:

23-14 Solutions for Chapter 23: Minimum Spanning Trees

BFS-FILL -MAX .G; T; w/

let maxbe a new table with an entrymaxŒu; �� for eachu; � 2 G:V
for each vertexu 2 G:V

for each vertex� 2 G:V
maxŒu; �� D NIL

Q D ;
ENQUEUE.Q; u/

while Q ¤ ;
x D DEQUEUE.Q/

for each� 2 G:AdjŒx�

if maxŒu; �� == NIL and� ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

elsemaxŒu; �� D maxŒu; x�

ENQUEUE.Q; �/

return max

Here’s the depth-first search approach:

DFS-FILL -MAX .G; T; w/

let maxbe a new table with an entrymaxŒu; �� for eachu; � 2 G:V
for each vertexu 2 G:V

for each vertex� 2 G:V
maxŒu; �� D NIL

DFS-FILL -MAX -V ISIT.G; u; u; max/
return max

DFS-FILL -MAX -V ISIT.G; u; x; max/

for each vertex� 2 G:AdjŒx�

if maxŒu; �� == NIL and� ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

elsemaxŒu; �� D maxŒu; x�

DFS-FILL -MAX -V ISIT.G; u; �; max/

For either approach, we are filling injV j rows of themax table. Since the
number of edges in the spanning tree isjV j � 1, each row takesO.V / time to
fill in. Thus, the total time to fill in themaxtable isO.V 2/.

d. In part (b), we established that we can find a second-best minimum spanning
tree by replacing just one edge of the minimum spanning treeT by some
edge.u; �/ not in T . As we know, if we create spanning treeT 0 by replacing
edge.x; y/ 2 T by edge.u; �/ 62 T , thenw.T 0/ D w.T /�w.x; y/Cw.u; �/.
For a given edge.u; �/, the edge.x; y/ 2 T that minimizesw.T 0/ is the edge
of maximum weight on the unique path betweenu and� in T . If we have al-
ready computed themaxtable from part (c) based onT , then the identity of this
edge is precisely what is stored inmaxŒu; ��. All we have to do is determine an
edge.u; �/ 62 T for which w.maxŒu; ��/ � w.u; �/ is minimum.

Solutions for Chapter 23: Minimum Spanning Trees 23-15

Thus, our algorithm to find a second-best minimum spanning tree goes as fol-
lows:

1. Compute the minimum spanning treeT . Time: O.ECV lg V /, using Prim’s
algorithm with a Fibonacci-heap implementation of the priority queue. Since
jEj < jV j2, this running time isO.V 2/.

2. Given the minimum spanning treeT , compute themaxtable, as in part (c).
Time: O.V 2/.

3. Find an edge.u; �/ 62 T that minimizesw.maxŒu; ��/ � w.u; �/. Time:
O.E/, which isO.V 2/.

4. Having found an edge.u; �/ in step 3, returnT 0 D T �fmaxŒu; ��g[f.u; �/g
as a second-best minimum spanning tree.

The total time isO.V 2/.

Solutions for Chapter 16: Greedy Algorithms 16-11

mutually compatible. Thus, an optimal solution forS maps directly to an optimal
solution forS 0 and vice versa.

The proposed approach of selecting the last activity to start that is compatible with
all previously selected activities, when run onS , gives the same answer as the
greedy algorithm from the text—selecting the first activityto finish that is compat-
ible with all previously selected activities—when run onS 0. The solution that the
proposed approach finds forS corresponds to the solution that the text’s greedy
algorithm finds forS 0, and so it is optimal.

Solution to Exercise 16.1-3

� For the approach of selecting the activity of least durationfrom those that are
compatible with previously selected activities:

i 1 2 3
si 0 2 3
fi 3 4 6
duration 3 2 3

This approach selects justfa2g, but the optimal solution selectsfa1; a3g.
� For the approach of always selecting the compatible activity that overlaps the

fewest other remaining activities:

i 1 2 3 4 5 6 7 8 9 10 11
si 0 1 1 1 2 3 4 5 5 5 6
fi 2 3 3 3 4 5 6 7 7 7 8
of overlapping activities 3 4 4 4 4 2 4 4 4 4 3

This approach first selectsa6, and after that choice it can select only two other
activities (one ofa1; a2; a3; a4 and one ofa8; a9; a10; a11). An optimal solution
is fa1; a5; a7; a11g.

� For the approach of always selecting the compatible remaining activity with
the earliest start time, just add one more activity with the interval Œ0; 14/ to
the example in Section 16.1. It will be the first activity selected, and no other
activities are compatible with it.

Solution to Exercise 16.1-4
This solution is also posted publicly

Let S be the set ofn activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size setS1 of compatible activities fromS for the first lecture hall, then using
it again to find a maximum-size setS2 of compatible activities fromS �S1 for the
second hall, (and so on until all the activities are assigned), requires‚.n2/ time
in the worst case. Moreover, it can produce a result that usesmore lecture halls

16-12 Solutions for Chapter 16: Greedy Algorithms

than necessary. Consider activities with the intervalsfŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervalsŒ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals
Œ2; 5/ andŒ4; 8/ would have to go into its own hall, for a total of three halls used.
An optimal solution would put the activities with intervalsŒ1; 4/ andŒ4; 8/ into one
hall and the activities with intervalsŒ2; 5/ andŒ6; 7/ into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptotic time is just the time
needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-
sibly as fast asO.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set
of events consisting of activities starting and activitiesfinishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activityi that started atsi � t but
won’t finish until fi > t) and halls that are free at timet . (As in the activity-
selection problem in Section 16.1, we are assuming that activity time intervals are
half open—i.e., that ifsi � fj , then activitiesi andj are compatible.) Whent
is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. Whent is the finish time of some activity,
move the activity’s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its finish timet , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list—putting freed halls onto
the front of the list and taking halls from the front of the list—so that a new hall
doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture hallsas possible: The algo-
rithm will terminate with a schedule requiringm � n lecture halls. Let activityi
be the first activity scheduled in lecture hallm. The reason thati was put in the
mth lecture hall is that the firstm � 1 lecture halls were busy at timesi . So at this
time there arem activities occurring simultaneously. Therefore any schedule must
use at leastm lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O.n lg n/ time for arbitrary times, possiblyO.n/ if the times are restricted (e.g.,
to small integers).

� Process the events inO.n/ time: Scan the2n events, doingO.1/ work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O.nC time to sort/

[The idea of this algorithm is related to the rectangle-overlap algorithm in Exer-
cise 14.3-7.]

16-14 Solutions for Chapter 16: Greedy Algorithms

and that the activities are sorted by monotonically increasing finish time. The
array� specifies the value of each activity.

MAX -VALUE-ACTIVITY-SELECTOR.s; f; �; n/

let �alŒ0 : : nC 1; 0 : : nC 1� andactŒ0 : : nC 1; 0 : : nC 1� be new tables
for i D 0 to n

�alŒi; i � D 0

�alŒi; i C 1� D 0

�alŒnC 1; nC 1� D 0

for l D 2 to nC 1

for i D 0 to n � l C 1

j D i C l

�alŒi; j � D 0

k D j � 1

while f Œi � < f Œk�

if f Œi � � sŒk� andf Œk� � sŒj � and
�alŒi; k�C �alŒk; j �C �k > �alŒi; j �

�alŒi; j � D �alŒi; k�C �alŒk; j �C �k

actŒi; j � D k

k D k � 1

print “A maximum-value set of mutually compatible activities has value ”
�alŒ0; nC 1�

print “The set contains ”
PRINT-ACTIVITIES.�al; act; 0; nC 1/

PRINT-ACTIVITIES.�al; act; i; j /

if �alŒi; j � > 0

k D actŒi; j �

print k

PRINT-ACTIVITIES.�al; act; i; k/

PRINT-ACTIVITIES.�al; act; k; j /

The PRINT-ACTIVITIES procedure recursively prints the set of activities placed
into the optimal solutionAij . It first prints the activityk that achieved the maxi-
mum value of�alŒi; j �, and then it recurses to print the activities inAik andAkj .
The recursion bottoms out when�alŒi; j � D 0, so thatAij D ;.
Whereas GREEDY-ACTIVITY-SELECTOR runs in‚.n/ time, the MAX -VALUE-
ACTIVITY-SELECTOR procedure runs inO.n3/ time.

Solution to Exercise 16.2-2
This solution is also posted publicly

The solution is based on the optimal-substructure observation in the text: Leti
be the highest-numbered item in an optimal solutionS for W pounds and items
1; : : : ; n. ThenS 0 D S � fig must be an optimal solution forW � wi pounds
and items1; : : : ; i � 1, and the value of the solutionS is �i plus the value of the
subproblem solutionS 0.

Solutions for Chapter 16: Greedy Algorithms 16-15

We can express this relationship in the following formula: DefinecŒi; w� to be the
value of the solution for items1; : : : ; i and maximum weightw. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

max.�i C cŒi � 1; w � wi �; cŒi � 1; w�/ if i > 0 andw � wi :

The last case says that the value of a solution fori items either includes itemi ,
in which case it is�i plus a subproblem solution fori � 1 items and the weight
excludingwi , or doesn’t include itemi , in which case it is a subproblem solution
for i � 1 items and the same weight. That is, if the thief picks itemi , he takes�i

value, and he can choose from items1; : : : ; i � 1 up to the weight limitw � wi ,
and getcŒi � 1; w � wi � additional value. On the other hand, if he decides not to
take itemi , he can choose from items1; : : : ; i �1 up to the weight limitw, and get
cŒi � 1; w� value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightW , the number of itemsn, and
the two sequences� D h�1; �2; : : : ; �ni andw D hw1; w2; : : : ; wni. It stores the
cŒi; j � values in a tablecŒ0 : : n; 0 : : W � whose entries are computed in row-major
order. (That is, the first row ofc is filled in from left to right, then the second row,
and so on.) At the end of the computation,cŒn; W � contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK.�; w; n; W /

let cŒ0 : : n; 0 : : W � be a new array
for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w

if �i C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D �i C cŒi � 1; w � wi �

elsecŒi; w� D cŒi � 1; w�

elsecŒi; w� D cŒi � 1; w�

We can use thec table to deduce the set of items to take by starting atcŒn; W � and
tracing where the optimal values came from. IfcŒi; w� D cŒi �1; w�, then itemi is
not part of the solution, and we continue tracing withcŒi � 1; w�. Otherwise itemi

is part of the solution, and we continue tracing withcŒi � 1; w � wi �.

The above algorithm takes‚.nW / time total:

� ‚.nW / to fill in the c table:.nC1/ � .W C1/ entries, each requiring‚.1/ time
to compute.

� O.n/ time to trace the solution (since it starts in rown of the table and moves
up one row at each step).

Solutions for Chapter 16: Greedy Algorithms 16-17

� Otherwise (WG C WE < W), then after taking all the items in setsG andE,
recurse on the set of itemsL and knapsack capacityW �WG �WE .

To analyze this algorithm, note that each recursive call takes linear time, exclusive
of the time for a recursive call that it may make. When there isa recursive call, there
is just one, and it’s for a problem of at most half the size. Thus, the running time is
given by the recurrenceT .n/ � T .n=2/C‚.n/, whose solution isT .n/ D O.n/.

Solution to Exercise 16.2-7
This solution is also posted publicly

SortA andB into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indicesi
andj such thati < j , and consider the termsai

bi andaj
bj . We want to show that

it is no worse to include these terms in the payoff than to includeai
bj andaj

bi , i.e.,
thatai

bi aj
bj � ai

bj aj
bi . SinceA andB are sorted into monotonically decreasing

order andi < j , we haveai � aj andbi � bj . Sinceai andaj are positive
andbi � bj is nonnegative, we haveai

bi �bj � aj
bi �bj . Multiplying both sides by

ai
bj aj

bj yieldsai
bi aj

bj � ai
bj aj

bi .

Since the order of multiplication doesn’t matter, sortingA andB into monotoni-
cally increasing order works as well.

Solution to Exercise 16.3-1

We are given thatx: freq� y: freqare the two lowest frequencies in order, and that
a: freq� b: freq. Now,

b: freq D x: freq

) a: freq � x: freq

) a: freq D x: freq (sincex: freq is the lowest frequency) ,

and sincey: freq� b: freq,

b: freq D x: freq

) y: freq � x: freq

) y: freq D x: freq (sincex: freq is the lowest frequency) .

Thus, if we assume thatx: freqD b: freq, then we have that each ofa: freq, b: freq,
andy: freqequalsx: freq, and soa: freqD b: freqD x: freqD y: freq.

Solution to Exercise 16.4-2

We need to show three things to prove that.S; 	 / is a matroid:

1. S is finite. That’s becauseS is the set of ofm columns of matrixT .

	page1
	page2
	page3
	page4
	page5

