Solution to Exercise 4.5-2

We need to find the largest integesuch that loga < g 7. The answer ig = 48.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observesithet the graph
is connected and all edge weights are distinct, then thexaisque light edge
crossing every cut. By Exercise 23.1-6, the minimum spantrige is unique.

To see that the second-best minimum spanning tree need nioidpge, here is
a weighted, undirected graph with a unique minimum spanmeejof weight7
and two second-best minimum spanning trees of welght

1 1 1
3 5 3 5 3 5
2 4 2 4 2 4
minimum second-best second-best
spanning tree minimum minimum
spanning tree spanning tree

b. Since any spanning tree has exad¢#yf — 1 edges, any second-best minimum
spanning tree must have at least one edge that is not in tk8 féimum
spanning tree. If a second-best minimum spanning tree haglgxone edge,
say(x, y), that is not in the minimum spanning tree, then it has the ssehef
edges as the minimum spanning tree, except(that) replaces some edge, say
(u, v), of the minimum spanning tree. Inthis ca%é,= T —{(u, v)}U{(x, y)},
as we wished to show.

Thus, all we need to show is that by replacing two or more edfdise min-
imum spanning tree, we cannot obtain a second-best mininpamnéng tree.
Let T be the minimum spanning tree 6f, and suppose that there exists a
second-best minimum spanning tré&é that differs fromT by two or more

Solutions for Chapter 23: Minimum Spanning Trees 23-13

edges. There are at least two edged'in- 7', and let(u, v) be the edge in
T — T’ with minimum weight. If we were to ad@, v) to 7/, we would get a
cyclec. This cycle contains some edge, y) in 7’ — T (since otherwise]
would contain a cycle).

We claim thatw(x,y) > w(u,v). We prove this claim by contradiction,
so let us assume that(x,y) < w(u,v). (Recall the assumption that
edge weights are distinct, so that we do not have to concerselves with
w(x,y) =w(u,v).) If we add(x, y) to T, we get a cycle’, which contains
some edgéu’,v’) in T —T' (since otherwisel” would contain a cycle). There-
fore, the set of edgeB” = T — {(u/, v')} U {(x, y)} forms a spanning tree, and
we must also have (u',v') < w(x, y), since otherwisd”” would be a span-
ning tree with weight less tham (7). Thus,w(u’,v") < w(x,y) < w(u,v),
which contradicts our choice ¢f, v) as the edge iff — T’ of minimum weight.

Since the edgeé&t, v) and(x, y) would be on a common cycle if we were

to add (u,v) to T’, the set of edge§”’ — {(x,y)} U {(u,v)} is a spanning
tree, and its weight is less than(7’). Moreover, it differs fromT" (because

it differs from T’ by only one edge). Thus, we have formed a spanning tree
whose weight is less than(7") but is notT. Hence, T’ was not a second-best
minimum spanning tree.

c. We canfillinmaxu, v] forallu,v € V in O(V?) time by simply doing a search
from each vertex:, having restricted the edges visited to those of the spgnnin
treeT. It doesn’'t matter what kind of search we do: breadth-firepth-first,
or any other kind.

We'll give pseudocode for both breadth-first and depth-Amiroaches. Each
approach differs from the pseudocode given in Chapter 22aitwvie don’t need
to computed or f values, and we'll use thmaxtable itself to record whether a
vertex has been visited in a given search. In particater{u, v] = NIL if and
only if u = v or we have not yet visited vertexin a search from vertex. Note
also that since we're visiting via edges in a spanning tresmafmdirected graph,
we are guaranteed that the search from each verewhether breadth-first or
depth-first—will visit all vertices. There will be no needtestart” the search
as is done in the DFS procedure of Section 22.3. Our pseudasslimes that
the adjacency list of each vertex consists only of edgesarsgianning tre&'.

Here’s the breadth-first search approach:

23-14 Solutions for Chapter 23: Minimum Spanning Trees

BFS-ALL-MAX (G, T, w)
let maxbe a new table with an entrpaxu, v] for eachu,v € G.V
for each vertexx € G.V
for each vertex € G.V
maxu, v] = NIL
0=9
ENQUEUE(Q, u)
while Q # ¢
x = DEQUEUE(Q)
for eachv € G.Ad|[x]
if maXu,v] ==NIL andv # u
if x ==uorw(x,v) > maxu, x|
maXu, v] = (x,v)
elsemaqu, v] = maxu, x]
ENQUEUE(Q, v)
return max

Here’s the depth-first search approach:

DFS-ALL-MAX (G, T, w)

let maxbe a new table with an entrpaXu, v] for eachu,v € G.V
for each vertex € G.V
for each vertex € G.V
maxu, v] = NIL
DFS-RLL-MAX-VISIT(G, u,u, max
return max

DFS-HLL-MAX-VISIT(G,u, x,may

for each vertew € G.Adj[x]
if maxu, v] == NIL andv # u
if x ==wuorw(x,v)>maxu, x|
maxu, v] = (x,v)
elsemaxu, v] = maxu, x|
DFS-HLL-MAX-VISIT(G,u, v, max

For either approach, we are filling i'| rows of themaxtable. Since the
number of edges in the spanning tre¢lig — 1, each row take® (1) time to
fill in. Thus, the total time to fill in thenaxtable isO(V?).

d. In part (b), we established that we can find a second-bestmimi spanning
tree by replacing just one edge of the minimum spanning Treley some
edge(u,v) notinT. As we know, if we create spanning tré&e by replacing
edge(x, y) € T by edge(u,v) € T, thenw(T’) = w(T) —w(x, y) + w(u, v).
For a given edgéu, v), the edgdx, y) € T that minimizesw(7") is the edge
of maximum weight on the unique path betweeandv in 7. If we have al-
ready computed theaxtable from part (c) based dh, then the identity of this
edge is precisely what is storednmaXu, v]. All we have to do is determine an
edge(u,v) ¢ T for which w(maxu, v]) — w(u, v) is minimum.

Solutions for Chapter 23: Minimum Spanning Trees 23-15

Thus, our algorithm to find a second-best minimum spannieg goes as fol-
lows:

1. Compute the minimum spanning tréeTime: O(E +V Ig V), using Prim’s
algorithm with a Fibonacci-heap implementation of the ptyoqueue. Since
|E| < |V|?, this running time is0(V2).

2. Given the minimum spanning trd& compute thenaxtable, as in part (c).
Time: O(V?).

3. Find an edgdu,v) ¢ T that minimizesw(maxu, v]) — w(u,v). Time:
O(E), which isO(V?).

4. Having found an edg@t, v) in step 3, retur?”’ = T —{maxu, v]}U{(u,v)}
as a second-best minimum spanning tree.

The total time isO(V?).

Solution to Exercise 16.1-4
This solution is also posted publicly

Let S be the set ofi activities.

The “obvious” solution of using @EEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size sef, of compatible activities fron$ for the first lecture hall, then using
it again to find a maximume-size s8f of compatible activities frony — S, for the
second hall, (and so on until all the activities are assipgnedjuires®(n?) time
in the worst case. Moreover, it can produce a result that os®e lecture halls

16-12

Solutions for Chapter 16: Greedy Algorithms

than necessary. Consider activities with the interyfls4), [2,5),[6,7), [4,8)}.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals, 4)
and [6, 7) for the first lecture hall, and then each of the activitieshwittervals
[2,5) and[4, 8) would have to go into its own hall, for a total of three halleds
An optimal solution would put the activities with intervdls 4) and[4, 8) into one
hall and the activities with intervalg, 5) and[6, 7) into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptoti@ timjust the time
needed to sort the activities by time3n Ign) time for arbitrary times, or pos-
sibly as fast a®)(n) if the times are small integers.

The general idea is to go through the activities in order aftdime, assigning
each to any hall that is available at that time. To do this, entbwough the set
of events consisting of activities starting and activifiegshing, in order of event
time. Maintain two lists of lecture halls: Halls that are Y& the current event-
time ¢ (because they have been assigned an activithat started at; < ¢ but
won't finish until /; >) and halls that are free at time (As in the activity-
selection problem in Section 16.1, we are assuming thatitgctime intervals are
half open—i.e., that if; > f;, then activitiess and j are compatible.) When
is the start time of some activity, assign that activity taeefhall and move the
hall from the free list to the busy list. Whenis the finish time of some activity,
move the activity's hall from the busy list to the free lisThe activity is certainly
in some hall, because the event times are processed in ardeh& activity must
have started before its finish timghence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a Inatlttas already had
an activity assigned to it, if possible, before picking aerewsed hall. (This can be
done by always working at the front of the free-halls list-#mg freed halls onto

the front of the list and taking halls from the front of thetdisso that a new hall

doesn’t come to the front and get chosen if there are prelyiased halls.)

This guarantees that the algorithm uses as few lecture dml®ssible: The algo-
rithm will terminate with a schedule requiring < n lecture halls. Let activity
be the first activity scheduled in lecture hall The reason that was put in the
mth lecture hall is that the first — 1 lecture halls were busy at timg. So at this
time there aren activities occurring simultaneously. Therefore any scihednust
use at least: lecture halls, so the schedule returned by the algorithrptisnal.

Run time:

» Sort the2n activity-starts/activity-ends events. (In the sortedepr@n activity-
ending event should precede an activity-starting eventshat the same time.)
O(n Ign) time for arbitrary times, possibl@ (n) if the times are restricted (e.qg.,
to small integers).

* Process the events i(n) time: Scan th@n events, doing) (1) work for each
(moving a hall from one list to the other and possibly asgsoajaan activity
with it).

Total: O(n + time to sorj

[The idea of this algorithm is related to the rectangle-amialgorithm in Exer-
cise 14.3-7.]

Solution to Exercise 16.2-2
This solution is also posted publicly

The solution is based on the optimal-substructure obgervat the text: Leti
be the highest-numbered item in an optimal solutfbfor W pounds and items
1,...,n. ThenS” = § — {i} must be an optimal solution fo¥ — w; pounds
and itemsl,...,i — 1, and the value of the solutio$i is v; plus the value of the
subproblem solutiors’.

Solutions for Chapter 16: Greedy Algorithms 16-15

We can express this relationship in the following formulafiDec|i, w] to be the
value of the solution for items, . .. ,i and maximum weighiv. Then

0 ifi=0orw=0,
cli,w]= ¢ cli —1,w] if w; >w,
max(v; +cli — 1, w —w;],c[i —L,w]) ifi >0andw > w; .

The last case says that the value of a solutioni faems either includes item,

in which case it isv; plus a subproblem solution far— 1 items and the weight
excludingw;, or doesn'’t include item, in which case it is a subproblem solution
fori — 1 items and the same weight. That is, if the thief picks iterhe takes);
value, and he can choose from items..,i — 1 up to the weight limitw — w;,

and geftc[i — 1, w — w;] additional value. On the other hand, if he decides not to
take itemi, he can choose from itenis. .., i — 1 up to the weight limitw, and get

c[i — 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightthe number of items, and
the two sequences = (v, v,, ..., v,) andw = (wy, w,, ..., w,). It stores the
cli, j] values in a table[0..n,0.. W] whose entries are computed in row-major
order. (That is, the first row af is filled in from left to right, then the second row,
and so on.) At the end of the computatietiz, W] contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK(v, w,n, W)
letc[0..n,0.. W] be anew array

forw =0to W
cl0,w] =0
fori =1ton
c[i,0] =0
forw =1toW
if w, <w
ifv, +cli—1,w—w]>c[i —1,w]
ci,w]=v; +cli =1, w—w;]

elsecli,w] = c[i — 1, w]
elsecli,w] = c[i — 1, w]

We can use the table to deduce the set of items to take by starting-at] and
tracing where the optimal values came frome|[if, w] = c[i — 1, w], then itemy is
not part of the solution, and we continue tracing with— 1, w]. Otherwise itemi
is part of the solution, and we continue tracing wifh— 1, w — w;].

The above algorithm take’(n W) time total:
« OmW)tofillinthec table: (n + 1) - (W + 1) entries, each requirin@(1) time
to compute.

* O(n) time to trace the solution (since it starts in ravof the table and moves
up one row at each step).

Solution to Exercise 16.2-7
This solution is also posted publicly

Sort A and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solutioon€§lder any indices
and; such that < j, and consider the terms® anda;% . We want to show that
it is no worse to include these terms in the payoff than taidek; % anda;%, i.e.,
thata;% a;% > a;%7a;%. SinceA and B are sorted into monotonically decreasing
order andz < j,we haveal > a; andb; > b Smcea, anda; are positive
andb; — b; is nonnegatlve we have? =t/ > q;%=b; Multiplying both sides by

a;ba; /yleldSa ia;% > abiabi

Since the order of multiplication doesn’t matter, sortidgand B into monotoni-
cally increasing order works as well.

	page1
	page2
	page3
	page4
	page5

