Reduction & completeness group problems together

NP vs. P
Completeness + Reduction

Language: a family of sets
input size n
For a fixed n, $L(n) \subseteq \{0,1\}^n$
e.g. $x \in \{0,1\}^n$ means $x = (x_1, \ldots, x_n)$ where $x_i \in \{0,1\}$

Decision
Membership Problem
given $y \in \{0,1\}^n$ (given an instance, tell if it
decide if $y \in L(n)$ belongs to a language)
e.g. Prime $= \{0,1\}^*$
$x \in \text{Prime}$ if x is a prime $\neq 2$ bits
$5 \in (101)_2 \in \text{Prime}$ (3)
$6 \in 110$ does not belong to Prime

Decision Problem for Language L is a unary relation

$m+n$ Binary relations $\times \{0,1\}^{m+n}$
(x, y) where $x \in \{0,1\}^n$
y $\in \{0,1\}^m$

$B \in \{0,1\}^n \times \{0,1\}^m$ 1st component 2nd component
$= B \in \{0,1\}^{n+m}$
What is P?

Polynomial function

\(f(n) \) is a polynomial fn. in \(n \) if \(\exists \) a constant \(c \) such that \(f(n) = O(n^c) \)

- \(c \) cannot depend on \(n \) but it could be 1000
- \(n^{\log n} \) is not polynomial in \(n \)
 \[\log f(n) = \Theta(\log n) \]

So what is \(P \?
\(L \) is in \(P \) if \(\exists \) an algorithm \(A \) whose running time is polynomial in \(n \) to determine the decision problem for language \(L \)

What is NP?

A binary relation \(B \subset \{0,1\}^* \times \{0,1\}^* \) is in \(P \) if \(m \) is in polynomial in \(n \) and \(\exists \) an Algorithm \(B \) whose running time is polynomial in \(m+n \).
To determine the following question:
Given \((x, y) \in \{0,1\}^* \times \{0,1\}^* \)
 determine if \((x, y) \in B \)

This is a polynomial binary relationship:
\((x, y) \in B \) if \(x \) is a factor of \(y \)
that is \(\exists \) \(z \) such that \(y = x \cdot z \)
For every binary relation \(B \) we can define another language \(L_B \) as:
\[
L_B = \{ x \mid \exists y \in \{0,1\}^m, (x,y) \in B \}
\]

For example, \((x,y) \in \text{Factor}\) if \(y \) is a factor of \(x \):\(^1\)
\[
(\exists \ z \text{ such that } x = y \cdot z)
\]
\[
\text{composite} = L_{\text{factor}} \\
\text{not prime} = L_{\text{factor}} - \text{composite}
\]

If a binary relation \(B \) is a polynomial binary relation then \(L_B \in \text{NP} \).

Like teaching: Prof. Teng shows us proofs from others (Dijkstra, etc.), we verify

NP is a language that someone else can give you evidence;

you just have to verify it.

Zero knowledge proof: Prof. Teng teaches us, we understand.

are "happy" but we can't explain / do the proof by ourselves.

\(L \) is in \(\text{NP} \) if \(\exists \) a polynomial binary relation \(B \)
such that \(L = L_B \).

\[
(\text{Polynomial-time) Reduction})
\]
\[
L_1 \leq_p L_2 \\
\{0,1\}^n \to \{0,1\}^m
\]

\[
\exists \text{ polynomial-time function } f : \{0,1\}^n \to \{0,1\}^m \text{ such that } x \in L_1 \iff f(x) \in L_2
\]

In order to solve \(L_1 \) efficiently, you must be able to solve \(L_2 \)
efficiently — like such optimal substructure
If you can solve L_2 in polynomial time, you are already
given a polynomial-time algorithm to solve L_1.

Undirected graph

Input $G = (V, E)$

Facebook networks

- **clique**

4-clique b/c middle 4 nodes are all friends w/each other

Does G have a k-clique? (this is an NP problem)

Independent sets: A collection of nodes that are completely isolated i.e., they have no edges between them.

E.g., in the 4-color theorem, countries of the same color are independent - not next to each other.

(n, k)-clique $\leq_p (n, k)$-independent set

$(G, k) \searrow$ like a friend graph to a non-friend graph

(V, E) compliment of a graph (\overline{G}, k)

compliment is the f for polynomial-time reduction

(V, \overline{E})

$$\overline{E} = \{ (u, v) \in \overline{E} \iff (u, v) \notin E \}$$

can compute compliment in n^2 polynomial time.
If S is a clique in G \implies S is an independent set in G

Cook-Levin Theorem

3-SAT

Input $\phi \in C_1 \land C_2 \land \ldots \land C_m$

$C_i = x_{i_1} \lor x_{i_2} \lor x_{i_3}$

- May or may not have negation

Options

$C_i = \neg x_{i_1} \lor \neg x_{i_2} \lor \neg x_{i_3}$

Find an assignment of $x_i \in \{T, F\}$ such that ϕ is true

Cook-Levin:

$NP \leq_P 3\text{-SAT}$