Today we will cover the following 2 topics:

1. Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

2. Introduction to unsupervised learning and density estimation.

1 Learning Infinite Hypothesis Class

In the first lecture, we showed that a hypothesis class is PAC-learnable if it is finite. What about infinite hypothesis class? First we give a simple example showing the possibility of PAC-learning an infinite hypothesis class.

Consider the family of threshold functions defined on the real line. In particular, let the domain $\mathcal{X} = \mathbb{R}$ and the label set $\mathcal{Y} = \{-1, 1\}$. A threshold function $f_{\theta} : \mathbb{R} \rightarrow \mathcal{Y}$ is defined as,

$$f_{\theta}(x) = \begin{cases}
1 & \text{if } x \leq \theta \\
-1 & \text{otherwise}
\end{cases} \quad (1)$$

Given m samples in the form $\{(x_i, y_i)\}_{i=1}^{m}$ where $y_i = f_{\theta}(x_i)$, there exists a separator $\hat{\theta} \in \mathbb{R}$ that divides the samples (i.e., for all samples labeled +1 we have $x_i \leq \hat{\theta}$, for those labeled -1 we have $x_i > \hat{\theta}$). We output the following hypothesis h based on $\hat{\theta}$ and this defines our learning algorithm.

$$h(x) = \begin{cases}
1 & \text{if } x \leq \hat{\theta} \\
-1 & \text{otherwise}
\end{cases} \quad (2)$$

We need to show that $\Pr_{x \sim D}[f(x) \neq h(x)] \leq \epsilon$ with high probability. Let R be the interval between the rightmost +1 data point and the leftmost −1 data point. In other words, R is the set of valid choices for $\hat{\theta}$. Note that R is a random interval that depends on the samples. If R is narrow enough, then $\hat{\theta}$ would be very close to the true θ, implying a small error. In particular, one can see that if $\Pr_{x \sim D}[x \in R] \leq \epsilon$ then our algorithm works.
Choose θ_1 and θ_2 such that $\Pr_{x \sim D}[\theta_1 \leq x \leq \theta] = \epsilon$ and $\Pr_{x \sim D}[\theta \leq x \leq \theta_2] = \epsilon$. If we take m samples, the probability that no sample is inside $[\theta_1, \theta]$ is equal to $(1 - \epsilon)^m$ and likewise for $[\theta, \theta_2]$. Therefore, if we choose $m \geq O(\frac{1}{\epsilon} \log \frac{1}{\delta})$, then with high probability we would have at least one sample inside both $[\theta_1, \theta]$ and $[\theta, \theta_2]$. This would imply $\Pr_{x \sim D}[R] \leq 2\epsilon$ and we are done.

1.1 VC-Dimension

Let H be the hypothesis class over a domain \mathcal{X}. Assume $\mathcal{Y} = \{0, 1\}$. In the following, we might represent a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ by its support $\{x \in \mathcal{X} : h(x) = 1\}$.

Definition 1 (Shattering). A subset $S \subseteq \mathcal{X}$ is shattered by H if for all $T \subseteq S$, there exists $h \in H$ such that $h \cap S = T$ (where $h \cap S := \{x \in X : h(x) = 1\} \cap S$). The VC-dimension of H is the size of the largest subset $S \subseteq \mathcal{X}$ that is shattered by H.

To show H has VC-dimension d, we need to prove two things:

1. \exists set S with $|S| = d$ that is shattered by H;
2. No set S with size $d + 1$ is shattered by H.

Example 2. Let $\mathcal{X} = \{1, 2, 3, 4, 5\}$. Let $h_1 = \{1, 2, 3\}$, $h_2 = \{2, 4, 5\}$, $h_3 = \{3, 4\}$, $h_4 = \{1, 2, 5\}$, $h_5 = \{1, 3, 5\}$ and $h_6 = \{5\}$.

One can check that H shatters subset $S = \{2, 4\}$, so $VC(H) \geq 2$. In order to shatter a subset of size 3, you need at least $8 = 2^3$ hypotheses, so $VC(H) < 3$. Therefore, $VC(H) = 2$.

Also, we just proved $VC(H) \leq \log_2 |H|$.

Example 3. Let $\mathcal{X} = \mathbb{R}$ and H = all closed intervals $[a, b]$. We will show that $VC(H) = 2$. Given any subset $S \subseteq \mathbb{R}$ of size 2, say $\{c, d\}$. We can choose $[c, c]$, $[d, d]$, $[c - 2, c - 1]$ to shatter $\{c, d\}$, $\{c\}$, $\{d\}$ and \emptyset, respectively. This proved $VC(H) \geq 2$. However, if one has 3 points $S = \{c, d, e\}$ where $c < d < e$, the subset $T = \{c, e\}$ cannot be shattered by any interval. So $VC(H) < 3$ and $VC(H) = 2$. Note that the family of all intervals is an infinite hypothesis class, and yet it has finite VC-dimension.

1.2 VC-Dimension as a Lower Bound

In this section, we lower bound learnability by VC-dimension.
Theorem 4. Let H be any hypothesis class with $VC(H) = d$. Then any PAC-learner must use at least $\Omega(d^2)$ samples.

Proof. As a warm-up, we would prove this for constant ϵ and δ. As $VC(H) = d$, let $S = \{x^1, x^2, \cdots, x^d\} \subseteq X$ be shattered by H. Let D be the uniform distribution over S. Suppose our learner A uses only d^2 samples, then A knows at most d^2 values of $f(x^i)$ where f is the target function. Let $H_S = \{h_1, h_2, \cdots, h_{2^d}\}$ be the 2^d functions that shatter S. Let \mathcal{P} be the uniform distribution over H_S. Suppose that the target function f is drawn from \mathcal{P}, it would be hard for A to learn.

Fix any sample T of size $d/2$, suppose A output h_T. As there are at least $d/2$ unseen points from S, no matter how the (random) target function labels them A would still output the same hypothesis. So on the unseen half of S, any algorithm would make at least $d/4$ mistakes in expectation. Then $E[\text{error}(h)] \geq \frac{1}{4}$, thus by Markov’s inequality $\Pr[\text{error}(h) < \frac{1}{8}] \leq \frac{6}{7}$.

It turns out that VC-dimension exactly characterizes learnability, whether the hypothesis class is infinite or not.

Theorem 5. The following statements are equivalent to binary classification.

1. $VC(H) = d$;
2. H is PAC-learnable with $\frac{1}{\epsilon}(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta})$ samples;
3. H is agnostically PAC-learnable with $\frac{1}{\epsilon^2}(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta})$ samples;
4. H admit uniform convergence with $\frac{1}{\epsilon}(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta})$ samples.

1.3 VC-dimension as an Upper bound

Consider $S \subseteq X$, let $\pi_H(S) = \{h \cap S : h \in H\}$, which is equal to the set of subsets of S induced by H.

Example 6. Let $X = \mathbb{R}$, $H = \text{all intervals and } S = \{1, 2, 3\}$. $\pi_H(S) = 2^S - \{\{1, 3\}\}$

We are usually interested in the size of $\pi_H(S)$ rather than the set $\pi_H(S)$ itself.

Definition 7. The growth function $\pi_H(m) := \max_{S \subseteq X : |S| = m} |\pi_H(S)|$.

It is easy to see that H shatters $S \iff |\pi_H(S)| = 2^{|S|}$, so $VC(H) = \text{largest } m \text{ such that } \pi_H(m) = 2^m$. In the worst case, the growth function $\pi_H(m)$ can grow exponentially in m, where $\pi_H(S)$ contains all possible subsets of S. However, with small VC-dimension, the growth function would grow only polynomially after a certain point. In particular, we have the following lemma.
Lemma 8 (Sauer’s Lemma). If $VC(H) = d$, then

$$
\pi_H(m) = \begin{cases}
2^m & \text{if } m \leq d \\
O(m^d) & \text{otherwise}
\end{cases}
$$ (3)

In most cases, whenever union bound is applied over a set of hypothesis, one can replace it by a union bound over $\pi_H(m)$ many hypotheses, resulting in smaller sample complexity.

2 Rademacher Complexity

Recall the definition of a representative sample.

Definition 9. A sample $S = \{z_1, z_2, \ldots, z_m\}$ is ϵ-representative (w.r.t domain Z, hypothesis class H and loss function $l(h, z)$) if

$$
\sup_{h \in H} |L_D(h) - L_S(h)| \leq \epsilon,
$$ (4)

where $L_D(h) = E_{z \sim D}[l(h, z)]$ and $L_S(h) = E_{z \sim U(S)}[l(h, z)]$ ($U(S)$ is the uniform distribution over S).

For each hypothesis h, we can rewrite $l(h, z) = f_h(z)$ and $f_h : Z \rightarrow \mathbb{R}$. Let $F = \{f_h : h \in H\}$. Then

$$
Rep_D(F, S) = \sup_{f \in F} |L_D(f) - L_S(f)|.
$$ (5)

The problem is that we don’t know what the true distribution D is, so we can split the training samples into 2 equal-size sets S_1 and S_2.

$$
Rep_D(F, S) \approx \sup_{f \in F} |L_{S_1}(f) - L_{S_2}(f)| = \frac{2}{m} \sum_{i=1}^{m} \sigma_i f(z_i),
$$ (6)

where $\sigma_i = +1$ if $i \in S_1$ and $\sigma_i = -1$ otherwise.

Inspired by this observation, the Rademacher complexity of F (w.r.t sample S) is defined as

$$
R_S(F) = \frac{1}{m} E_{\sigma_1}[\sup_{f \in F} \sum_{i=1}^{m} \sigma_i f(z_i)],
$$ (7)

where each σ_i is an independent $\{-1, 1\}$ coin flip. The next lemma shows that the rate of uniform convergence is governed by Rademacher complexity.
Lemma 10.

\[
E_{S \sim D^m}[Rep_D(F, S)] \leq 2E_{S \sim D^m}[R_S(F)]
\]

As uniform convergence guarantees learnability of ERM, this implies an upper bound on the error of ERM learner.

3 Unsupervised Learning

In this section, we introduced an important unsupervised learning problem called ‘density estimation’.

Definition 11. Let \(F \) be a family of probability distribution. Given i.i.d samples from an unknown distribution \(p \in F \), output \(h \in F \) so that \(h \) is ‘close’ to \(p \) with high probability.

We have been vague about what ‘closeness’ means in the above definition and different notions of closeness will lead to different density-estimation problems.

3.1 Most basic setting

Here we consider what might be the most simple density estimation problem: learning discrete distribution under total variation distance.

Let \(F \) be the family of all distribution over \([n]\). The total variation distance is defined as \(d_{TV}(p, q) = \max_{A \subseteq S} |p(A) - q(A)| = \frac{1}{2} ||p - 1||_1 \).

Similar to the Empirical Risk Minimization learner, we can output the empirical histogram. In particular, let \(h_S(i) = \frac{|\{j \in [m] : s_j = i\}|}{m} \). Next we will discuss the performance of this empirical-histogram learner.

Theorem 12. Learning a discrete distribution over \([n]\) requires at least \(O(n) \) samples.

Theorem 13. Let \(h_S \) be the histogram for sample \(S \) and \(m \geq O\left(\frac{n + \log \frac{1}{\epsilon}}{\epsilon^2} \right) \). Then with high probability, \(d_{TV}(h_S, p) \leq \epsilon \).

Proof. To upper bound the total variation distance between \(p \) and \(h_S \), one only needs to upper bound \(|p(A) - h_S(A)| \) simultaneously for all \(A \subseteq [n] \).

Fix an arbitrary \(A \subseteq [n] \), one can use Hoeffding bound to prove \(Pr[|p(A) - h_S(A)| > \epsilon] \leq \frac{\delta}{m} \) when \(m \geq O\left(\frac{n + \log \frac{1}{\epsilon}}{\epsilon^2} \right) \). The proof follows from applying union bound over all \(2^n \) possible subsets. \(\Box \)