Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi
Outline

1 Convexity and Duality

2 Duality of Convex Sets

3 Duality of Convex Functions
There are two equivalent ways to represent a convex set:

- The family of points in the set (standard representation)
- The set of halfspaces containing the set (“dual” representation)
There are two equivalent ways to represent a convex set
- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.
There are two equivalent ways to represent a convex set:
- The family of points in the set (standard representation)
- The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a variety of “duality” relationships among convex sets, cones, and functions.

Definition

“Duality” is a woefully overloaded mathematical term for a relation that groups elements of a set into “dual” pairs.
Theorem

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.
Theorem

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Proof

- Clearly, $S \subseteq \bigcap_{H \in \mathcal{H}} H$
- To prove equality, consider $x \notin S$
- By the separating hyperplane theorem, there is a hyperplane separating S from x
- Therefore there is $H \in \mathcal{H}$ with $x \notin H$, hence $x \notin \bigcap_{H \in \mathcal{H}} H$
A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.
Theorem

A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

Proof

- For every non-homogeneous halfspace $a^T x \leq b$ containing K, the smaller homogeneous halfspace $a^T x \leq 0$ contains K as well.
- Therefore, can discard non-homogeneous halfspaces when taking the intersection.
A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.
Theorem
A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Proof
- \(\text{epi } f \) is convex
- Therefore \(\text{epi } f \) is the intersection of a family of halfspaces of the form \(a^\top x - t \leq b \), for some \(a \in \mathbb{R}^n \) and \(b \in \mathbb{R} \). (Why?)
- Each such halfspace constrains \((x, t) \in \text{epi } f \) to \(a^\top x - b \leq t \)
- \(f(x) \) is the lowest \(t \) s.t. \((x, t) \in \text{epi } f \)
- Therefore, \(f(x) \) is the point-wise maximum of \(a^\top x - b \) over all halfspaces
Outline

1 Convexity and Duality

2 Duality of Convex Sets

3 Duality of Convex Functions
Polar Duality of Convex Sets

One way of representing the all halfspaces containing a convex set.

Polar

Let $S \subseteq \mathbb{R}^n$ be a closed convex set containing the origin. The polar of S is defined as follows:

$$S^\circ = \{ y : y^T x \leq 1 \text{ for all } x \in S \}$$

Note

- Every halfspace $a^T x \leq b$ with $b \neq 0$ can be written as a “normalized” inequality $y^T x \leq 1$, by dividing by b.
- S° can be thought of as the normalized representations of halfspaces containing S.
\[S^\circ = \{ y : y^\top x \leq 1 \text{ for all } x \in S \} \]

Properties of the Polar

1. \(S^{\circ \circ} = S \)
2. \(S^\circ \) is a closed convex set containing the origin
3. When 0 is in the interior of \(S \), then \(S^\circ \) is bounded.
\[S^\circ = \{ y : y^\top x \leq 1 \text{ for all } x \in S \} \]

Properties of the Polar

1. \(S^{\circ \circ} = S \)
2. \(S^\circ \) is a closed convex set containing the origin
3. When 0 is in the interior of \(S \), then \(S^\circ \) is bounded.

Follows from representation as intersection of halfspaces

\(S \) contains an \(\epsilon \)-ball centered at the origin, so \(\|y\| \leq 1/\epsilon \) for all \(y \in S^\circ \).
\[S^\circ = \{ y : y^\top x \leq 1 \text{ for all } x \in S \} \]

Properties of the Polar

1. \(S^{\circ\circ} = S \)
2. \(S^\circ \) is a closed convex set containing the origin
3. When 0 is in the interior of \(S \), then \(S^\circ \) is bounded.

Easy to see that \(S \subseteq S^{\circ\circ} \)

- Take \(x_\circ \not\in S \), by SSHT and \(0 \in S \), there is a halfspace \(z^\top x \leq 1 \) containing \(S \) but not \(x_\circ \) (i.e. \(z^\top x_\circ > 1 \))
- \(z \in S^\circ \), therefore \(x_\circ \not\in S^{\circ\circ} \)
\[
S^\circ = \{ y : y^\top x \leq 1 \text{ for all } x \in S \}
\]

Properties of the Polar

1. \(S^{\circ\circ} = S \)
2. \(S^\circ \) is a closed convex set containing the origin
3. When 0 is in the interior of \(S \), then \(S^\circ \) is bounded.

Note

When \(S \) is non-convex, \(S^\circ = (\text{convexhull}(S))^\circ \), and \(S^{\circ\circ} = \text{convexhull}(S) \).
Examples

Norm Balls

- The polar of the Euclidean unit ball is itself (we say it is self-dual)
- The polar of the 1-norm ball is the ∞-norm ball
- More generally, the p-norm ball is dual to the q-norm ball, where
 \[\frac{1}{p} + \frac{1}{q} = 1 \]
Examples

Polytopes

Given a polytope P represented as $Ax \leq \vec{1}$, the polar P° is the convex hull of the rows of A.

- Facets of P correspond to vertices of P°.
- Dually, vertices of P correspond to facets of P°.
Polar duality takes a simplified form when applied to cones

The polar of a closed convex cone K is given by

$$K^\circ = \{ y : y^\top x \leq 0 \text{ for all } x \in K \}$$

Note

- If halfspace $y^\top x \leq b$ contains K, then so does smaller $y^\top x \leq 0$.
- K° represents all homogeneous halfspaces containing K.
Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by

$$K^\circ = \{ y : y^\top x \leq 0 \text{ for all } x \in K \}$$

Dual Cone

By convention, $K^* = -K^\circ$ is referred to as the dual cone of K.

$$K^* = \{ y : y^\top x \geq 0 \text{ for all } x \in K \}$$
\(K^\circ = \{ y : y^\top x \leq 0 \text{ for all } x \in K \} \)

Properties of the Polar Cone

1. \(K^{\circ\circ} = K \)
2. \(K^\circ \) is a closed convex cone
$K^\circ = \{ y : y^\top x \leq 0 \text{ for all } x \in K \}$

Properties of the Polar Cone

1. $K^{\circ\circ} = K$
2. K° is a closed convex cone

1. Same as before
2. Intersection of homogeneous halfspaces
Examples

- The polar of a subspace is its orthogonal complement
- The polar cone of the nonnegative orthant is the nonpositive orthant
 - Self-dual
- The polar of a polyhedral cone $Ax \preceq 0$ is the conic hull of the rows of A
- The polar of the cone of positive semi-definite matrices is the cone of negative semi-definite matrices
 - Self-dual
Recall: Farkas’ Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $z^T x \leq 0$ for all $x \in K$, and $z^T w > 0$.

Equivalently: there is $z \in K^\circ$ with $z^T w > 0$.
Outline

1 Convexity and Duality
2 Duality of Convex Sets
3 Duality of Convex Functions
Conjugation of Convex Functions

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function. The conjugate of f is

$$f^*(y) = \sup_x (y^Tx - f(x))$$

Note

- $f^*(y)$ is the minimal value of β such that the affine function $y^Tx - \beta$ underestimates $f(x)$ everywhere.
- Equivalently, the distance we need to lower the hyperplane $y^Tx - t = 0$ in order to get a supporting hyperplane to $\text{epi } f$.
- $y^Tx - t = f^*(y)$ are the supporting hyperplanes of $\text{epi } f$.

Duality of Convex Functions 12/14
\[f^*(y) = \sup_{x} (y^T x - f(x)) \]

Properties of the Conjugate

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)
\[f^*(y) = \sup_{x} (y^T x - f(x)) \]

Properties of the Conjugate

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)

- Supremum of affine functions of \(y \)
- By definition of \(f^*(y) \)
\[f^*(y) = \sup_x (y^\top x - f(x)) \]

Properties of the Conjugate

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)

1. \(f^{**}(x) = \max_y y^\top x - f^*(y) \) when \(f \) is convex
\[
f^*(y) = \sup_x (y^T x - f(x))
\]

Properties of the Conjugate

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)

- \(f^{**}(x) = \max_y y^T x - f^*(y) \) when \(f \) is convex
- For fixed \(y \), \(f^*(y) \) is minimal \(\beta \) such that \(y^T x - \beta \) underestimates \(f \).
\[f^*(y) = \sup_x (y^\top x - f(x)) \]

Properties of the Conjugate

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)

- \(f^{**}(x) = \max_y y^\top x - f^*(y) \) when \(f \) is convex
- For fixed \(y \), \(f^*(y) \) is minimal \(\beta \) such that \(y^\top x - \beta \) underestimates \(f \).
- Therefore \(f^{**}(x) \) is the maximum, over all \(y \), of affine underestimates \(y^\top x - \beta \) of \(f \).
\(f^*(y) = \sup_x (y^T x - f(x)) \)

Properties of the Conjugate:

1. \(f^{**} = f \) when \(f \) is convex
2. \(f^* \) is a convex function
3. \(xy \leq f(x) + f^*(y) \) for all \(x, y \in \mathbb{R}^n \) (Fenchel’s Inequality)

Additional notes:

- \(f^{**}(x) = \max_y y^T x - f^*(y) \) when \(f \) is convex
- For fixed \(y \), \(f^*(y) \) is minimal \(\beta \) such that \(y^T x - \beta \) underestimates \(f \).
- Therefore \(f^{**}(x) \) is the maximum, over all \(y \), of affine underestimates \(y^T x - \beta \) of \(f \).
- By our characterization early in this lecture, this is equal to \(f \).
Examples

- **Affine function**: \(f(x) = ax + b \). Conjugate has \(f^*(a) = -b \), and \(\infty \) elsewhere.

- \(f(x) = x^2/2 \) is self-conjugate.

- **Exponential**: \(f(x) = e^x \). Conjugate has \(f^*(y) = y \log y - y \) for \(y \in \mathbb{R}_+ \), and \(\infty \) elsewhere.

- **Quadratic**: \(f(x) = \frac{1}{2} x^\top Q x \) with \(Q \succeq 0 \). Self conjugate.

- **Log-sum-exp**: \(f(x) = \log(\sum_i e^{x_i}) \). Conjugate has \(f^*(y) = \sum_i y_i \log y_i \) for \(y \succeq 0 \) and \(1^\top y = 1 \), \(\infty \) otherwise.