Outline

1. Convex Functions
2. Examples of Convex and Concave Functions
3. Convexity-Preserving Operations
Convex Functions

A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen’s inequality (basic form)
A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called **Jensen's inequality** (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen’s inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$.
Convex Functions

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y)$$

- Inequality called **Jensen’s inequality** (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- f is **strictly** convex if inequality strict when $x \neq y$.
- Analogous definition when the domain of f is a convex subset D of \mathbb{R}^n
A function is \(f : \mathbb{R}^n \to \mathbb{R} \) is **concave** if \(-f \) is convex. Equivalently:

- Line segment between any points on the graph of \(f \) lies **below** \(f \).
- If \(x, y \in \mathbb{R}^n \) and \(\theta \in [0, 1] \), then

\[
f(\theta x + (1 - \theta) y) \geq \theta f(x) + (1 - \theta)f(y)
\]
A function is $f : \mathbb{R}^n \to \mathbb{R}$ is **concave** if $-f$ is convex. Equivalently:

- Line segment between any points on the graph of f lies **below** f.
- If $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then
 $$f(\theta x + (1 - \theta) y) \geq \theta f(x) + (1 - \theta) f(y)$$

$f : \mathbb{R}^n \to \mathbb{R}$ is **affine** if it is both concave and convex. Equivalently:

- Line segment between any points on the graph of f lies on the **graph of f**.
- $f(x) = a^\top x + b$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
We will now look at some equivalent definitions of convex functions.

First Order Definition

A differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \geq f(x) + (\nabla f(x))^T (y - x)$$
We will now look at some equivalent definitions of convex functions.

First Order Definition

A differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \geq f(x) + (\nabla f(x))^T(y - x)$$

- Local information \rightarrow global information
- If $\nabla f(x) = 0$ then x is a global minimizer of f
Second Order Definition

A twice differentiable \(f : \mathbb{R}^n \to \mathbb{R} \) is convex if and only if its Hessian matrix \(\nabla^2 f(x) \) is positive semi-definite for all \(x \). (We write \(\nabla^2 f(x) \succeq 0 \))

Interpretation

Recall definition of PSD:

\[
\begin{bmatrix} z \end{bmatrix}^\top \nabla^2 f(x) \begin{bmatrix} z \end{bmatrix} \geq 0
\]

When \(n = 1 \), this is \(f''(x) \geq 0 \).

More generally,

\[
\begin{bmatrix} z \end{bmatrix}^\top \nabla^2 f(x) \begin{bmatrix} z \end{bmatrix} \|egin{bmatrix} z \end{bmatrix}\|^2
\]

is the second derivative of \(f \) along the line \(\{x + tz : t \in \mathbb{R}\} \). So if \(\nabla^2 f(x) \succeq 0 \) then \(f \) curves upwards along any line.

Moving from \(x \) to \(x + \delta \vec{z} \), infitisimal change in gradient is \(\delta \nabla^2 f(x) z \). When \(\nabla^2 f(x) \succeq 0 \), this is in roughly the same direction as \(\vec{z} \).
Second Order Definition

A twice differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all x. (We write $\nabla^2 f(x) \succeq 0$)

Interpretation

- Recall definition of PSD: $z^T \nabla^2 f(x) z \geq 0$ for all $z \in \mathbb{R}^n$
- When $n = 1$, this is $f''(x) \geq 0$.
- More generally, $\frac{z^T \nabla^2 f(x) z}{||z||^2}$ is the second derivative of f along the line $\{x + tz : t \in \mathbb{R}\}$. So if $\nabla^2 f(x) \succeq 0$ then f curves upwards along any line.
- Moving from x to $x + \delta \bar{z}$, infinitesimal change in gradient is $\delta \nabla^2 f(x) z$. When $\nabla^2 f(x) \succeq 0$, this is in roughly the same direction as \bar{z}.

Convex Functions 3/23
The epigraph of f is the set of points above the graph of f. Formally,

$$\text{epi}(f) = \{(x, t) : t \geq f(x)\}$$
The epigraph of f is the set of points above the graph of f. Formally,

$$\text{epi}(f) = \{(x, t) : t \geq f(x)\}$$

Epigraph Definition

f is a convex function if and only if its epigraph is a convex set.
Jensen’s Inequality (General Form)

\(f: \mathbb{R}^n \to \mathbb{R} \) is convex if and only if

- For every \(x_1, \ldots, x_k \) in the domain of \(f \), and \(\theta_1, \ldots, \theta_k \geq 0 \) such that \(\sum_i \theta_i = 1 \), we have
 \[
 f(\sum_i \theta_i x_i) \leq \sum_i \theta_i f(x_i)
 \]

- Given a probability measure \(\mathcal{D} \) on the domain of \(f \), and \(x \sim \mathcal{D} \),
 \[
 f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]
 \]

Adding noise to \(x \) can only increase \(f(x) \) in expectation.
Jensen’s Inequality (General Form)

\[f : \mathbb{R}^n \rightarrow \mathbb{R} \] is convex if and only if

- For every \(x_1, \ldots, x_k \) in the domain of \(f \), and \(\theta_1, \ldots, \theta_k \geq 0 \) such that \(\sum_i \theta_i = 1 \), we have

\[
f(\sum_i \theta_i x_i) \leq \sum_i \theta_i f(x_i)
\]

- Given a probability measure \(\mathcal{D} \) on the domain of \(f \), and \(x \sim \mathcal{D} \),

\[
f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]
\]

Adding noise to \(x \) can only increase \(f(x) \) in expectation.
Local and Global Optimality

Local minimum

\(x \) is a **local minimum** of \(f \) if there is a an open ball \(B \) containing \(x \) where \(f(y) \geq f(x) \) for all \(y \in B \).

Local and Global Optimality

When \(f \) is convex, \(x \) is a local minimum of \(f \) if and only if it is a global minimum.
Local and Global Optimality

Local minimum

x is a **local minimum** of f if there is a an open ball B containing x where $f(y) \geq f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

- This fact underlies much of the tractability of convex optimization.
Sub-level sets

Level sets of \(f(x, y) = \sqrt{x^2 + y^2} \)

Sublevel set

The \(\alpha \)-sublevel set of \(f \) is \(\{ x \in \text{domain}(f) : f(x) \leq \alpha \} \).
Sub-level sets

The \(\alpha \)-sublevel set of \(f \) is \(\{x \in \text{domain}(f) : f(x) \leq \alpha\} \).

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization.
Level sets of $f(x, y) = \sqrt{x^2 + y^2}$

Sublevel set

The α-sublevel set of f is $\{x \in \text{domain}(f) : f(x) \leq \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.
Continuity

Convex functions are continuous.

If a function $f : D \rightarrow \mathbb{R}$ is convex on its domain, and D is convex, then it can be extended to a convex function on \mathbb{R}^n by setting $f(x) = \infty$ whenever $x \notin D$. This simplifies notation. Resulting function $\tilde{f} : D \rightarrow \mathbb{R} \cup \{\infty\}$ is "convex" with respect to the ordering on $\mathbb{R} \cup \{\infty\}$.
Continuity

Convex functions are continuous.

Extended-value extension

If a function \(f : D \rightarrow \mathbb{R} \) is convex on its domain, and \(D \) is convex, then it can be extended to a convex function on \(\mathbb{R}^n \). by setting \(f(x) = \infty \) whenever \(x \notin D \).

This simplifies notation. Resulting function \(\tilde{f} : D \rightarrow \mathbb{R} \cup \infty \) is “convex” with respect to the ordering on \(\mathbb{R} \cup \infty \).
Outline

1. Convex Functions
2. Examples of Convex and Concave Functions
3. Convexity-Preserving Operations
Functions on the reals

- **Affine:** \(ax + b \)
- **Exponential:** \(e^{ax} \) convex for any \(a \in \mathbb{R} \)
- **Powers:** \(x^a \) convex on \(\mathbb{R}_{++} \) when \(a \geq 1 \) or \(a \leq 0 \), and concave for \(0 \leq a \leq 1 \)
- **Logarithm:** \(\log x \) concave on \(\mathbb{R}_{++} \).
Norms

Norms are convex.

\[\|\theta x + (1 - \theta)y\| \leq \|\theta x\| + \|(1 - \theta)y\| = \theta\|x\| + (1 - \theta)\|y\| \]

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)
Norms

Norms are convex.

\[\|\theta x + (1 - \theta)y\| \leq \|\theta x\| + \|(1 - \theta)y\| = \theta\|x\| + (1 - \theta)\|y\| \]

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Max

\[\max_i x_i \text{ is convex} \]

\[
\max_i (\theta x + (1 - \theta)y)_i = \max_i (\theta x_i + (1 - \theta)y_i) \\
\leq \max_i \theta x_i + \max_i (1 - \theta)y_i \\
= \theta \max_i x_i + (1 - \theta)\max_i y_i
\]

If i’m allowed to pick the maximum entry of \(\theta x\) and \(\theta y\) independently, I can do only better.
- Log-sum-exp: \(\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n}) \) is convex
- Geometric mean: \(\left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \) is concave
- Log-determinant: \(\log \det X \) is concave
- Quadratic form: \(x^\top Ax \) is convex iff \(A \succeq 0 \)
- Other examples in book

\[f(x, y) = \log(e^x + e^y) \]
Log-sum-exp: $\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ is convex

Geometric mean: $(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$ is concave

Log-determinant: $\log \det X$ is concave

Quadratic form: $x^\top Ax$ is convex iff $A \succeq 0$

Other examples in book

Proving convexity often comes down to case-by-case reasoning, involving:

- Definition: restrict to line and check Jensen’s inequality
- Write down the Hessian and prove PSD
- Express as a combination of other convex functions through convexity-preserving operations (Next)
Outline

1. Convex Functions
2. Examples of Convex and Concave Functions
3. Convexity-Preserving Operations
Nonnegative Weighted Combinations

If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then
\[
g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k
\]
is convex.
If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \geq 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

proof ($k = 2$)

$$g \left(\frac{x + y}{2} \right) = w_1 f_1 \left(\frac{x + y}{2} \right) + w_2 f_2 \left(\frac{x + y}{2} \right)$$

$$\leq w_1 \frac{f_1(x) + f_1(y)}{2} + w_2 \frac{f_2(x) + f_2(y)}{2}$$

$$= \frac{g(x) + g(y)}{2}$$
If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then \(g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k \) is convex.

Extends to integrals \(g(x) = \int_y w(y) f_y(x) \) with \(w(y) \geq 0 \), and therefore expectations \(\mathbb{E}_y f_y(x) \).
Nonnegative Weighted Combinations

If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then \(g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k \) is convex.

Extends to integrals \(g(x) = \int_y w(y) f_y(x) \) with \(w(y) \geq 0 \), and therefore expectations \(\mathbb{E}_y f_y(x) \).

Worth Noting

Minimizing the expectation of a random convex cost function is also a convex optimization problem!

- A \textbf{stochastic} convex optimization problem is a convex optimization problem.
Example: Stochastic Facility Location

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is
 \[g(x) = \sum_i \frac{1}{k} ||x - y_i|| \]
Example: Stochastic Facility Location

Average Distance

- \(k \) customers located at \(y_1, y_2, \ldots, y_k \in \mathbb{R}^n \)
- If I place a facility at \(x \in \mathbb{R}^n \), average distance to a customer is
 \[
g(x) = \sum_i \frac{1}{k} ||x - y_i||
\]

- Since distance to any one customer is convex in \(x \), so is the average distance.
- Extends to probability measure over customers.
Convex functions are a convex cone in the vector space of functions from \mathbb{R}^n to \mathbb{R}.

The set of convex functions is the intersection of an infinite set of homogeneous linear inequalities indexed by x, y, θ

$$f(\theta x + (1 - \theta)y) - \theta f(x) + (1 - \theta)f(y) \leq 0$$
Composition with Affine Function

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n \), then
\[
g(x) = f(Ax + b)
\]
is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).
Composition with Affine Function

If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n \), then

\[
g(x) = f(Ax + b)
\]

is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).

Proof

\((x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b, t) \in \text{graph}(f)\)
Composition with Affine Function

If $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R}.

Proof

$$(x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{graph}(f)$$

$$(x, t) \in \text{epi}(g) \iff t \geq g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{epi}(f)$$
Composition with Affine Function

If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m} \), \(b \in \mathbb{R}^n \), then

\[
g(x) = f(Ax + b)
\]

is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).

Proof

\((x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{graph}(f)\)

\((x, t) \in \text{epi}(g) \iff t \geq g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{epi}(f)\)

\(\text{epi}(g)\) is the inverse image of \(\text{epi}(f)\) under the affine mapping

\((x, t) \rightarrow (Ax + b, t)\)
Examples

- $\|Ax + b\|$ is convex
- $\max(Ax + b)$ is convex
- $\log(e^{a_1^\top x + b_1} + e^{a_2^\top x + b_2} + \ldots + e^{a_n^\top x + b_n})$ is convex
Maximum

If f_1, f_2 are convex, then $g(x) = \max \{ f_1(x), f_2(x) \}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.
If f_1, f_2 are convex, then $g(x) = \max \{ f_1(x), f_2(x) \}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.

$$\text{epi } g = \text{epi } f_1 \cap \text{epi } f_2$$
Example: Robust Facility Location

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$

- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x - y_i||$
Example: Robust Facility Location

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is

$$g(x) = \max_i ||x - y_i||$$

Since distance to any one customer is convex in x, so is the worst-case distance.
Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x - y_i||$

Worth Noting

When a convex cost function is uncertain, minimizing the worst-case cost is also a convex optimization problem!

- A robust (in the worst-case sense) convex optimization problem is a convex optimization problem.
Other Examples

- Maximum eigenvalue of a symmetric matrix A is convex in A

 $$\max \{ v^\top A v : \|v\| = 1 \}$$

- Sum of k largest components of a vector x is convex in x

 $$\max \left\{ \mathbf{1}_S \cdot x : |S| = k \right\}$$
Minimization

If $f(x, y)$ is convex and C is convex and nonempty, then
$g(x) = \inf_{y \in C} f(x, y)$ is convex.
Minimization

If $f(x, y)$ is convex and C is convex and nonempty, then $g(x) = \inf_{y \in C} f(x, y)$ is convex.

Proof (for $C = \mathbb{R}^k$)

$\text{epi } g$ is the projection of $\text{epi } f$ onto hyperplane $y = 0$.

\[f(x, y) = x^2 + y^2 \]

\[g(x) = x^2 \]
Example

Distance from a convex set C

$$f(x, y) = \inf_{y \in C} \|x - y\|$$
Composition Rules

If $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$, then $f = h \circ g$ is convex if

- g_i are convex, and h is convex and nondecreasing in each argument.
- g_i are concave, and h is convex and nonincreasing in each argument.

Proof ($n = k = 1$)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$
Perspective

If f is convex then $g(x, t) = tf(x/t)$ is also convex.

Proof

$\text{epi } g$ is inverse image of $\text{epi } f$ under the perspective function.