CS675: Convex and Combinatorial Optimization
Fall 2014
Convex Functions

Instructor: Shaddin Dughmi
Outline

1. Convex Functions

2. Examples of Convex and Concave Functions

3. Convexity-Preserving Operations
A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
Convex Functions

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called **Jensen’s inequality** (basic form)
A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if the line segment between any points on the graph of \(f \) lies above \(f \). i.e. if \(x, y \in \mathbb{R}^n \) and \(\theta \in [0, 1] \), then

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

- Inequality called Jensen’s inequality (basic form)
- \(f \) is convex iff its restriction to any line \(\{x + tv : t \in \mathbb{R}\} \) is convex
A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen’s inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$.
A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen’s inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$.
- Analogous definition when the domain of f is a convex subset D of \mathbb{R}^n
A function is $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is concave if $-f$ is convex. Equivalently:

- Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then
 $$f(\theta x + (1 - \theta) y) \geq \theta f(x) + (1 - \theta) f(y)$$
A function is $f : \mathbb{R}^n \to \mathbb{R}$ is concave if $-f$ is convex. Equivalently:

- Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then
 \[f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y) \]

$f : \mathbb{R}^n \to \mathbb{R}$ is affine if it is both concave and convex. Equivalently:

- Line segment between any points on the graph of f lies on the graph of f.
- $f(x) = a^T x + b$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \geq f(x) + (\nabla f(x))^T(y - x)$$
We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \geq f(x) + (\nabla f(x))^T(y - x)$$

- Local information \rightarrow global information
- If $\nabla f(x) = 0$ then x is a global minimizer of f
Second Order Definition

A twice differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its derivative is nondecreasing in all directions. Formally,

$$\nabla^2 f(x) \succeq 0$$

for all x.

Interpretation

Recall definition of PSD:

$z^\top \nabla^2 f(x) z > 0$ for all $z \in \mathbb{R}^n$

At $x + \delta \vec{z}$, infinitesimal change in gradient is in roughly the same direction as \vec{z}.

Graph of f curves upwards along any line.

When $n = 1$, this is $f''(x) \geq 0$.
Second Order Definition

A twice differentiable $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if its derivative is nondecreasing in all directions. Formally,

$$\nabla^2 f(x) \succeq 0$$

for all x.

Interpretation

- Recall definition of PSD: $z^\top \nabla^2 f(x) z > 0$ for all $z \in \mathbb{R}^n$
- At $x + \delta \vec{z}$, infinitesimal change in gradient is in roughly in the same direction as \vec{z}
- Graph of f curves upwards along any line
- When $n = 1$, this is $f''(x) \geq 0$.

Convex Functions 3/23
The epigraph of f is the set of points above the graph of f. Formally,

$$\text{epi}(f) = \{(x, t) : t \geq f(x)\}$$
The epigraph of f is the set of points above the graph of f. Formally,

$$epi(f) = \{(x,t) : t \geq f(x)\}$$

Epigraph Definition
f is a convex function if and only if its epigraph is a convex set.
Jensen’s Inequality (General Form)

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if and only if

- For every \(x_1, \ldots, x_k \) in the domain of \(f \), and \(\theta_1, \ldots, \theta_k \geq 0 \) such that \(\sum_i \theta_i = 1 \), we have
 \[
 f\left(\sum_i \theta_i x_i\right) \leq \sum_i \theta_i f(x_i)
 \]

- Given a probability measure \(\mathcal{D} \) on the domain of \(f \), and \(x \sim \mathcal{D} \),
 \[
 f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]
 \]
Jensen’s Inequality (General Form)

$f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

- For every x_1, \ldots, x_k in the domain of f, and $\theta_1, \ldots, \theta_k \geq 0$ such that $\sum_i \theta_i = 1$, we have
 \[
 f\left(\sum_i \theta_i x_i\right) \leq \sum_i \theta_i f(x_i)
 \]

- Given a probability measure \mathcal{D} on the domain of f, and $x \sim \mathcal{D}$,
 \[
 f\left(\mathbb{E}[x]\right) \leq \mathbb{E}[f(x)]
 \]

Adding noise to x can only increase $f(x)$ in expectation.
Local and Global Optimality

Local minimum

x is a **local minimum** of f if there is an open ball B containing x where $f(y) \geq f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.
Local and Global Optimality

Local minimum

x is a **local minimum** of f if there is a an open ball B containing x where $f(y) \geq f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

- This fact underlies much of the tractability of convex optimization.
Sub-level sets

Level sets of \(f(x, y) = \sqrt{x^2 + y^2} \)

The \(\alpha \)-sublevel set of \(f \) is \(\{ x \in \text{domain}(f) : f(x) \leq \alpha \} \).
Sub-level sets

Level sets of \(f(x, y) = \sqrt{x^2 + y^2} \)

Sublevel set

The \(\alpha \)-sublevel set of \(f \) is \(\{ x \in \text{domain}(f) : f(x) \leq \alpha \} \).

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization.
Sub-level sets

Level sets of \(f(x, y) = \sqrt{x^2 + y^2} \)

Sublevel set

The \(\alpha \)-sublevel set of \(f \) is \(\{ x \in \text{domain}(f) : f(x) \leq \alpha \} \).

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.
Other Basic Properties

Continuity

Convex functions are continuous.
Continuity

Convex functions are continuous.

Extended-value extension

If a function $f : D \to \mathbb{R}$ is convex on its domain, and D is convex, then it can be extended to a convex function on \mathbb{R}^n by setting $f(x) = \infty$ whenever $x \notin D$.

This simplifies notation. Resulting function $\tilde{f} : D \to \mathbb{R} \cup \infty$ is “convex” with respect to the ordering on $\mathbb{R} \cup \infty$.
Outline

1. Convex Functions
2. Examples of Convex and Concave Functions
3. Convexity-Preserving Operations
Functions on the reals

- **Affine:** $ax + b$
- **Exponential:** e^{ax} convex for any $a \in \mathbb{R}$
- **Powers:** x^a convex on \mathbb{R}_{++} when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$
- **Logarithm:** $\log x$ concave on \mathbb{R}_{++}.
Norms are convex.

\[\|\theta x + (1 - \theta)y\| \leq \|\theta x\| + \|(1 - \theta)y\| = \theta\|x\| + (1 - \theta)\|y\| \]

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)
Norms

Norms are convex.

\[\|\theta x + (1 - \theta)y\| \leq \|\theta x\| + \|(1 - \theta)y\| = \theta\|x\| + (1 - \theta)\|y\| \]

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Max

\(\max_i x_i \) is convex

\[
\max_i (\theta x + (1 - \theta)y)_i = \max_i (\theta x_i + (1 - \theta)y_i)
\]
\[
\leq \max_i \theta x_i + \max_i (1 - \theta)y_i
\]
\[
= \theta \max_i x_i + (1 - \theta) \max_i y_i
\]

If i’m allowed to pick the maximum entry of \(\theta x \) and \(\theta y \) independently, I can do only better.
- Log-sum-exp: \(\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n}) \) is convex
- Geometric mean: \((\prod_{i=1}^{n} x_i)^{\frac{1}{n}} \) is concave
- Log-determinant: \(\log \det X \) is concave
- Quadratic form: \(x^\top A x \) is convex iff \(A \succeq 0 \)
- Other examples in book

\[
f(x, y) = \log(e^x + e^y)
\]
- Log-sum-exp: \(\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n}) \) is convex
- Geometric mean: \((\prod_{i=1}^{n} x_i)^{\frac{1}{n}} \) is concave
- Log-determinant: \(\log \det X \) is concave
- Quadratic form: \(x^\top Ax \) is convex iff \(A \succeq 0 \)
- Other examples in book

Proving convexity often comes down to case-by-case reasoning, involving:
- Definition: restrict to line and check Jensen’s inequality
- Write down the Hessian and prove PSD
- Express as a combination of other convex functions through convexity-preserving operations (Next)
Outline

1 Convex Functions

2 Examples of Convex and Concave Functions

3 Convexity-Preserving Operations
Nonnegative Weighted Combinations

If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then

\[
g = w_1 f_1 + w_2 f_2 + \cdots + w_k f_k \text{ is convex.}
\]
Nonnegative Weighted Combinations

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \geq 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

proof ($k = 2$)

$$g \left(\frac{x + y}{2} \right) = w_1 f_1 \left(\frac{x + y}{2} \right) + w_2 f_2 \left(\frac{x + y}{2} \right)$$

$$\leq w_1 \frac{f_1(x) + f_1(y)}{2} + w_2 \frac{f_2(x) + f_2(y)}{2}$$

$$= \frac{g(x) + g(y)}{2}$$
Nonnegative Weighted Combinations

If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then
\[
g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k
\]
is convex.

Extends to integrals
\[
g(x) = \int y \, w(y) f_y(x) \text{ with } w(y) \geq 0,
\]
and therefore expectations
\[
E_y f_y(x).
\]
Nonnegative Weighted Combinations

If \(f_1, f_2, \ldots, f_k \) are convex, and \(w_1, w_2, \ldots, w_k \geq 0 \), then
\[
g = w_1 f_1 + w_2 f_2 + \ldots + w_k f_k \text{ is convex.}
\]

Extends to integrals
\[
g(x) = \int y \, w(y) f_y(x) \text{ with } w(y) \geq 0,
\]
and therefore expectations \(\mathbb{E}_y f_y(x) \).

Worth Noting

Minimizing the expectation of a random convex cost function is also a convex optimization problem!

- A stochastic convex optimization problem is a convex optimization problem.
Example: Stochastic Facility Location

Average Distance

- \(k \) customers located at \(y_1, y_2, \ldots, y_k \in \mathbb{R}^n \)
- If I place a facility at \(x \in \mathbb{R}^n \), average distance to a customer is
 \[
g(x) = \sum_i \frac{1}{k} ||x - y_i||
\]
Example: Stochastic Facility Location

Average Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is
 \[g(x) = \sum_i \frac{1}{k} ||x - y_i|| \]
- Since distance to any one customer is convex in x, so is the average distance.
- Extends to probability measure over customers
Implication

Convex functions are a convex cone in the vector space of functions from \mathbb{R}^n to \mathbb{R}.

The set of convex functions is the intersection of an infinite set of homogeneous linear inequalities indexed by x, y, θ

$$f(\theta x + (1 - \theta)y) - \theta f(x) + (1 - \theta)f(y) \leq 0$$
Composition with Affine Function

If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n \), then

\[
g(x) = f(Ax + b)
\]

is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).
Composition with Affine Function

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n \), then

\[
g(x) = f(Ax + b)
\]

is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).

Proof

\((x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b, t) \in \text{graph}(f)\)
Composition with Affine Function

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, and \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n \), then

\[
g(x) = f(Ax + b)
\]

is a convex function from \(\mathbb{R}^m \) to \(\mathbb{R} \).

Proof

\[
(x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b, t) \in \text{graph}(f)
\]

\[
(x, t) \in \text{epi}(g) \iff t \geq g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{epi}(f)
\]
Composition with Affine Function

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R}.

Proof

$$(x, t) \in \text{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b, t) \in \text{graph}(f)$$

$$(x, t) \in \text{epi}(g) \iff t \geq g(x) = f(Ax + b) \iff (Ax + b, t) \in \text{epi}(f)$$

$\text{epi}(g)$ is the inverse image of $\text{epi}(f)$ under the affine mapping

$$(x, t) \mapsto (Ax + b, t)$$
Examples

- $\|Ax + b\|$ is convex
- $\max(Ax + b)$ is convex
- $\log(e^{\mathbf{a}_1^\top\mathbf{x} + b_1} + e^{\mathbf{a}_2^\top\mathbf{x} + b_2} + \ldots + e^{\mathbf{a}_n^\top\mathbf{x} + b_n})$ is convex
If f_1, f_2 are convex, then $g(x) = \max \{ f_1(x), f_2(x) \}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.
If f_1, f_2 are convex, then $g(x) = \max \{ f_1(x), f_2(x) \}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.

$$\text{epi } g = \text{epi } f_1 \bigcap \text{epi } f_2$$
Example: Robust Facility Location

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is

 $$g(x) = \max_i \|x - y_i\|$$
Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is
 $$g(x) = \max_i ||x - y_i||$$

Since distance to any one customer is convex in x, so is the worst-case distance.
Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x - y_i||$

Worth Noting

When a convex cost function is uncertain, minimizing the worst-case cost is also a convex optimization problem!

- A robust (in the worst-case sense) convex optimization problem is a convex optimization problem.
Other Examples

- Maximum eigenvalue of a symmetric matrix A is convex in A

 $$\max \{ v^\top A v : \|v\| = 1 \}$$

- Sum of k largest components of a vector x is convex in x

 $$\max \left\{ \vec{1}_S \cdot x : |S| = k \right\}$$
Minimization

If $f(x, y)$ is convex and C is convex and nonempty, then $g(x) = \inf_{y \in C} f(x, y)$ is convex.
Minimization

If \(f(x, y) \) is convex and \(C \) is convex and nonempty, then \(g(x) = \inf_{y \in C} f(x, y) \) is convex.

Proof (for \(C = \mathbb{R}^k \))

\(\text{epi} \ g \) is the projection of \(\text{epi} \ f \) onto hyperplane \(y = 0 \).

\[f(x, y) = x^2 + y^2 \]

\[g(x) = x^2 \]
Example

Distance from a convex set C

$$f(x, y) = \inf_{y \in C} ||x - y||$$
Composition Rules

If \(g : \mathbb{R}^n \to \mathbb{R}^k \) and \(h : \mathbb{R}^k \to \mathbb{R} \), then \(f = h \circ g \) is convex if

- \(g_i \) are convex, and \(h \) is convex and nondecreasing in each argument.
- \(g_i \) are concave, and \(h \) is convex and nonincreasing in each argument.

Proof \((n = k = 1)\)

\[
 f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)
\]
Perspective

If f is convex then $g(x, t) = tf(x/t)$ is also convex.

Proof

epi g is inverse image of epi f under the perspective function.