CS599: Convex and Combinatorial Optimization
Fall 2013
Lecture 3: Linear Programming Duality II

Instructor: Shaddin Dughmi
Announcements

- Today: wrap up linear programming
- Readings on website
1. Recall
2. Formal Proof of Strong Duality of LP
3. Consequences of Duality
4. More Examples of Duality
Weak and Strong Duality

Primal LP

maximize \(c^T x \)
subject to \(Ax \leq b \)
\(x \geq 0 \)

Dual LP

minimize \(b^T y \)
subject to \(A^T y \geq c \)
\(y \geq 0 \)

Theorem (Weak Duality)

\(\text{OPT}(\text{primal}) \leq \text{OPT}(\text{dual}) \).

Theorem (Strong Duality)

\(\text{OPT}(\text{primal}) = \text{OPT}(\text{dual}) \).
Informal Proof of Strong Duality

Recall the physical interpretation of duality

When the ball is stationary at x, we expect force c to be neutralized only by constraints that are tight, i.e., force multipliers $y \geq 0$ such that $y^\top A = c$, $y^\top b - c^\top x = y^\top b - y^\top Ax = \sum_i y_i (b_i - a_i x) = 0$. We found a primal and dual solution that are equal in value!
Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized only by constraints that are tight. i.e. force multipliers $y \geq 0$ s.t.

- $y^T A = c$
- $y_i (b_i - a_i x) = 0$
Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized only by constraints that are tight. i.e. force multipliers $y \geq 0$ s.t.

- $y^T A = c$
- $y_i (b_i - a_i x) = 0$

$$y^T b - c^T x = y^T b - y^T A x = \sum_i y_i (b_i - a_i x) = 0$$

We found a primal and dual solution that are equal in value!
Separating Hyperplane Theorem

If $A, B \subseteq \mathbb{R}^n$ are disjoint convex sets, then there is a hyperplane separating them. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^T x \leq b$ for every $x \in A$ and $a^T y \geq b$ for every $y \in B$.
Definition

A convex cone is a convex subset of \mathbb{R}^n which is closed under nonnegative scaling and convex combinations.

Definition

The convex cone generated by vectors $u_1, \ldots, u_m \in \mathbb{R}^n$ is the set of all nonnegative-weighted sums of these vectors (also known as conic combinations).

$$\text{Cone}(u_1, \ldots, u_m) = \left\{ \sum_{i=1}^{m} \alpha_i u_i : \alpha_i \geq 0 \forall i \right\}$$
The following follows from the separating hyperplane Theorem.

Farkas’ Lemma

Let \mathcal{C} be the convex cone generated by vectors $u_1, \ldots, u_m \in \mathbb{R}^n$, and let $w \in \mathbb{R}^n$. Exactly one of the following is true:

- $w \in \mathcal{C}$
- There is $z \in \mathbb{R}^n$ such that $z \cdot u_i \leq 0$ for all i, and $z \cdot w \geq 0$.
Equivalently: Theorem of the Alternative

One of the following is true, where $U = [u_1, \ldots, u_m]$

- The system $Uy = w$, $y \geq 0$ has a solution
- The system $U^Tz \leq 0$, $z^Tw \geq 0$ has a solution.
Given v, by Farkas’ Lemma one of the following is true

1. The system $\begin{pmatrix} A^T \\ b^T \end{pmatrix} y = \begin{pmatrix} c \\ v \end{pmatrix}$, $y \geq 0$ has a solution.
 - $OPT(dual) \leq v$

2. The system $(A; b) z \leq 0$, $z^T \begin{pmatrix} c \\ v \end{pmatrix} \geq 0$ has a solution.
 - Let $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$, where $z_1 \in \mathbb{R}^n$ and $z_2 \in \mathbb{R}$
 - Setting $x = -z_1/z_2$ gives $Ax \leq b$, $c^T x \geq v$.
 - $OPT(primal) \geq v$
1. Recall
2. Formal Proof of Strong Duality of LP
3. Consequences of Duality
4. More Examples of Duality
Complementary Slackness

Primal LP
- maximize \(c^T x \)
- subject to \(Ax \leq b \)
- \(x \geq 0 \)

Dual LP
- minimize \(y^T b \)
- subject to \(A^T y \geq c \)
- \(y \geq 0 \)

Let \(s_i = (b - Ax)_i \) be the \(i \)'th primal slack variable
Let \(t_j = (A^T y - c)_j \) be the \(j \)'th dual slack variable

Complementary Slackness

\(x \) and \(y \) are optimal if and only if
\[
\begin{align*}
 x_j t_j &= 0 \\
 y_i s_i &= 0
\end{align*}
\] for all \(j = 1, \ldots, n \) and \(i = 1, \ldots, m \)
Complementary Slackness

Primal LP

maximize \(c^T x \)
subject to \(Ax \leq b \)
\(x \geq 0 \)

Dual LP

minimize \(y^T b \)
subject to \(A^T y \geq c \)
\(y \geq 0 \)

- Let \(s_i = (b - Ax)_i \) be the \(i \)'th primal slack variable
- Let \(t_j = (A^T y - c)_j \) be the \(j \)'th dual slack variable
Complementary Slackness

Primal LP

maximize \(c^\top x \)
subject to \(Ax \leq b \)
\(x \geq 0 \)

Dual LP

minimize \(y^\top b \)
subject to \(A^\top y \geq c \)
\(y \geq 0 \)

- Let \(s_i = (b - Ax)_i \) be the \(i \)'th primal slack variable
- Let \(t_j = (A^\top y - c)_j \) be the \(j \)'th dual slack variable

Complementary Slackness

\(x \) and \(y \) are optimal if and only if
- \(x_j t_j = 0 \) for all \(j = 1, \ldots, n \)
- \(y_i s_i = 0 \) for all \(i = 1, \ldots, m \)
Interpretation of Complementary Slackness

Economic Interpretation

Given an optimal primal production vector \(x \) and optimal dual offer prices \(y \),

- Facility produces only products for which it is indifferent between sale and production.
- Only raw materials that are binding constraints on production are priced greater than \(0 \).
Interpretation of Complementary Slackness

Physical Interpretation

Only walls adjacent to the balls equilibrium position push back on it.
Proof of Complementary Slackness

<table>
<thead>
<tr>
<th>Primal LP</th>
<th>Dual LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximize (c^T x)</td>
<td>minimize (y^T b)</td>
</tr>
<tr>
<td>subject to (Ax \leq b)</td>
<td>subject to (A^T y \geq c)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td>(y \geq 0)</td>
</tr>
</tbody>
</table>

Consequences of Duality
Proof of Complementary Slackness

Primal LP

- Maximize: \(c^\top x \)
- Subject to:
 - \(Ax + s = b \)
 - \(x \geq 0 \)
 - \(s \geq 0 \)

Dual LP

- Minimize: \(y^\top b \)
- Subject to:
 - \(A^\top y - t = c \)
 - \(y \geq 0 \)
 - \(t \geq 0 \)

- Can equivalently rewrite LP using slack variables

Consequences of Duality
Proof of Complementary Slackness

Primal LP

maximize \(c^\top x \)
subject to
\[Ax + s = b \]
\[x \geq 0 \]
\[s \geq 0 \]

Dual LP

minimize \(y^\top b \)
subject to
\[A^\top y - t = c \]
\[y \geq 0 \]
\[t \geq 0 \]

Can equivalently rewrite LP using slack variables

\[
y^\top b - c^\top x = y^\top (Ax + s) - (y^\top A - t^\top)x = y^\top s + t^\top x
\]
Proof of Complementary Slackness

Primal LP

maximize $c^T x$
subject to $Ax + s = b$
$x \geq 0$
$s \geq 0$

Dual LP

minimize $y^T b$
subject to $A^T y - t = c$
y \geq 0
t \geq 0

Can equivalently rewrite LP using slack variables

$$y^T b - c^T x = y^T (Ax + s) - (y^T A - t^T) x = y^T s + t^T x$$

Gap between primal and dual objectives is 0 if and only if complementary slackness holds.
Recovering Primal from Dual

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.

Primal LP
- \(n \) variables, \(m+n \) constraints
- Maximize \(c^\top x \)
- Subject to \(Ax \leq b \), \(x \geq 0 \)

Dual LP
- \(m \) variables, \(m+n \) constraints
- Minimize \(y^\top b \)
- Subject to \(A^\top y \geq c \), \(y \geq 0 \)

Let \(y \) be dual optimal. By non-degeneracy:
- Exactly \(m \) of the \(m+n \) dual constraints are tight at \(y \)
- Exactly \(n \) dual constraints are loose
- \(n \) loose dual constraints impose \(n \) tight primal constraints

Assuming non-degeneracy, solving the linear equation yields a unique primal optimum solution \(x \).
Recovering Primal from Dual

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly n [m] tight constraints.
Will encounter LPs where the dual is easier to solve than primal.
Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly \(n \) [\(m \)] tight constraints.

Primal LP

\(n \) variables, \(m + n \) constraints

- maximize \(c^T x \)
- subject to \(Ax \leq b \)
- \(x \geq 0 \)

Dual LP

\(m \) variables, \(m + n \) constraints

- minimize \(y^T b \)
- subject to \(A^T y \geq c \)
- \(y \geq 0 \)
Recovering Primal from Dual

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly n [m] tight constraints.

Primal LP
$(n \text{ variables}, \ n + m \text{ constraints})$

- maximize $c^T x$
- subject to $Ax \leq b$
- $x \geq 0$

Dual LP
$(m \text{ variables}, \ m + n \text{ constraints})$

- minimize $y^T b$
- subject to $A^T y \geq c$
- $y \geq 0$

- Let y be dual optimal. By non-degeneracy:
 - Exactly m of the $m + n$ dual constraints are tight at y
 - Exactly n dual constraints are loose
Recovering Primal from Dual

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly n $[m]$ tight constraints.

Primal LP
(n variables, $m + n$ constraints)

maximize $c^T x$
subject to $Ax \leq b$
$x \geq 0$

Dual LP
(m variables, $m + n$ constraints)

minimize $y^T b$
subject to $A^T y \geq c$
$y \geq 0$

Let y be dual optimal. By non-degeneracy:
- Exactly m of the $m + n$ dual constraints are tight at y
- Exactly n dual constraints are loose
- n loose dual constraints impose n tight primal constraints
Will encounter LPs where the dual is easier to solve than primal
Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.

Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly \(n \) \([m]\) tight constraints.

Let \(y \) be dual optimal. By non-degeneracy:
- Exactly \(m \) of the \(m + n \) dual constraints are tight at \(y \)
- Exactly \(n \) dual constraints are loose
- \(n \) loose dual constraints impose \(n \) tight primal constraints
- Assuming non-degeneracy, solving the linear equation yields a unique primal optimum solution \(x \).
Sensitivity Analysis

Primal LP

- **Maximize**: \(c^T x \)
- **Subject to**:
 - \(Ax \leq b \)
 - \(x \geq 0 \)

Dual LP

- **Minimize**: \(y^T b \)
- **Subject to**:
 - \(A^T y \geq c \)
 - \(y \geq 0 \)

Sometimes, we want to examine how the optimal value of our LP changes with its parameters \(c \) and \(b \).
Sensitivity Analysis

Sometimes, we want to examine how the optimal value of our LP changes with its parameters c and b.

Let $OPT = OPT(A, c, b)$ be the optimal value of the above LP. Let x and y be the primal and dual optima.

- $\frac{\partial OPT}{\partial c_j} = x_j$ when x is the unique primal optimum.
- $\frac{\partial OPT}{\partial b_i} = y_i$ when y is the unique dual optimum.
Sensitivity Analysis

Primal LP

maximize $c^T x$

subject to $Ax \leq b$

$x \geq 0$

Dual LP

minimize $y^T b$

subject to $A^T y \geq c$

$y \geq 0$

Sometimes, we want to examine how the optimal value of our LP changes with its parameters c and b

Economic Interpretation of Sensitivity Analysis

- A small increase δ in c_j increases profit by $\delta \cdot x_j$
- A small increase δ in b_i increases profit by $\delta \cdot y_i$
- y_i measures the “marginal value” of resource i for production
Outline

1. Recall
2. Formal Proof of Strong Duality of LP
3. Consequences of Duality
4. More Examples of Duality
Shortest Path

Given a directed network $G = (V, E)$ where edge e has length $\ell_e \in \mathbb{R}_+$, find the minimum cost path from s to t.

![Graph](image)

Where $\delta_v = -1$ if $v = s$, 1 if $v = t$, and 0 otherwise.

Interpretation of Dual

Stretch s and t as far apart as possible, subject to edge lengths.
Shortest Path

Primal LP
\[
\begin{align*}
\text{min} & \sum_{e \in E} \ell_e x_e \\
\text{s.t.} & \sum_{e \rightarrow v} x_e - \sum_{v \rightarrow e} x_e = \delta_v, \quad \forall v \in V. \\
& x_e \geq 0, \quad \forall e \in E.
\end{align*}
\]

Where \(\delta_v = -1 \) if \(v = s \), \(1 \) if \(v = t \), and \(0 \) otherwise.

Dual LP
\[
\begin{align*}
\text{max} & \quad y_t - y_s \\
\text{s.t.} & \quad y_v - y_u \leq \ell_e, \quad \forall (u, v) \in E.
\end{align*}
\]
Primal LP
\[
\min \sum_{e \in E} \ell_e x_e \\
\text{s.t.} \\
\sum_{e \rightarrow v} x_e - \sum_{v \rightarrow e} x_e = \delta_v, \quad \forall v \in V. \\
x_e \geq 0, \quad \forall e \in E.
\]

Where \(\delta_v = -1 \) if \(v = s \), \(1 \) if \(v = t \), and \(0 \) otherwise.

Dual LP
\[
\max y_t - y_s \\
\text{s.t.} \\
y_v - y_u \leq \ell_e, \quad \forall (u, v) \in E.
\]

Interpretation of Dual
Stretch \(s \) and \(t \) as far apart as possible, subject to edge lengths.
Maximum Weighted Bipartite Matching

Set B of buyers, and set G of goods. Buyer i has value w_{ij} for good j, and interested in at most one good. Find maximum value assignment of goods to buyers.
Maximum Weighted Bipartite Matching

Primal LP

\[
\text{max } \sum_{i,j} w_{ij} x_{ij}
\]

s.t.

\[
\sum_{j \in G} x_{ij} \leq 1, \quad \forall i \in B.
\]

\[
\sum_{i \in B} x_{ij} \leq 1, \quad \forall j \in G.
\]

\[
x_{ij} \geq 0, \quad \forall i \in B, j \in G.
\]

Dual LP

\[
\text{min } \sum_{i \in B} u_i + \sum_{j \in G} p_j
\]

s.t.

\[
u_i + p_j \geq w_{ij}, \quad \forall i \in B, j \in G.
\]

\[
u_i \geq 0, \quad \forall i \in B.
\]

\[
p_j \geq 0, \quad \forall j \in G.
\]

Interpretation of Dual:

- \(p_j \) is price of good \(j \)
- \(u_i \) is utility of buyer \(i \)

Complementary Slackness: each buyer grabs his favorite good given prices.
Maximum Weighted Bipartite Matching

Primal LP

\[
\begin{align*}
\text{max} & \quad \sum_{i,j} w_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{j \in G} x_{ij} \leq 1, \quad \forall i \in B. \\
& \quad \sum_{i \in B} x_{ij} \leq 1, \quad \forall j \in G. \\
& \quad x_{ij} \geq 0, \quad \forall i \in B, j \in G.
\end{align*}
\]

Dual LP

\[
\begin{align*}
\text{min} & \quad \sum_{i \in B} u_i + \sum_{j \in G} p_j \\
\text{s.t.} & \quad u_i + p_j \geq w_{ij}, \quad \forall i \in B, j \in G. \\
& \quad u_i \geq 0, \quad \forall i \in B. \\
& \quad p_j \geq 0, \quad \forall j \in G.
\end{align*}
\]

Interpretation of Dual

- \(p_j \) is price of good \(j \)
- \(u_i \) is utility of buyer \(i \)
- Complementary Slackness: each buyer grabs his favorite good given given prices

More Examples of Duality
Rock-Paper-Scissors

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>P</td>
<td>−1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Two players, row and column
- Game described by matrix A
- When row player plays pure strategy i and column player plays pure strategy j, row player pays column player A_{ij}
2-Player Zero-Sum Games

Rock-Paper-Scissors

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>P</td>
<td>−1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Two players, row and column
- Game described by matrix A
- When row player plays pure strategy i and column player plays pure strategy j, row player pays column player A_{ij}
- **Mixed Strategy**: distribution over pure strategies
Two players, row and column

Game described by matrix A

When row player plays pure strategy i and column player plays pure strategy j, row player pays column player A_{ij}

Mixed Strategy: distribution over pure strategies

Assume players know each other’s mixed strategies but not coin flips
2-Player Zero-Sum Games

Assume row player moves first with distribution $y \in \Delta_m$
- Loss as a function of column’s strategy given by $y^T A$
- A best response by column is pure strategy j maximizing $(y^T A)_j$

More Examples of Duality
2-Player Zero-Sum Games

- Assume row player moves first with distribution $y \in \Delta_m$
- Loss as a function of column’s strategy given by $y^\top A$
- A best response by column is pure strategy j maximizing $(y^\top A)_j$

Row Moves First

$$\begin{align*}
\min \ & \max_j (y^\top A)_j \\
\text{s.t.} \ & \\
& \sum_{i=1}^m y_i = 1 \\
& \ y \geq \vec{0}
\end{align*}$$
2-Player Zero-Sum Games

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column’s strategy given by $y^T A$
 - A best response by column is pure strategy j maximizing $(y^T A)_j$

Row Moves First

$$\min u$$
$$\text{s.t.}$$
$$u\mathbf{1} - y^T A \geq \mathbf{0}$$
$$\sum_{i=1}^m y_i = 1$$
$$y \geq \mathbf{0}$$
2-Player Zero-Sum Games

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column’s strategy given by $y^T A$
 - A best response by column is pure strategy j maximizing $(y^T A)_j$
 - Similarly when column moves first

Row Moves First

$$\begin{align*}
\text{min } u \\
\text{s.t. } u \mathbf{1} - y^T A &\geq \mathbf{0} \\
\sum_{i=1}^m y_i &= 1 \\
y &\geq \mathbf{0}
\end{align*}$$

Column Moves First

$$\begin{align*}
\text{max } v \\
\text{s.t. } v \mathbf{1} - Ax &\leq \mathbf{0} \\
\sum_{j=1}^n x_j &= 1 \\
x &\geq \mathbf{0}
\end{align*}$$
2-Player Zero-Sum Games

- Assume row player moves first with distribution \(y \in \Delta_m \)
 - Loss as a function of column’s strategy given by \(y^\top A \)
 - A best response by column is pure strategy \(j \) maximizing \((y^\top A)_j \)
 - Similarly when column moves first

Row Moves First

\[
\begin{align*}
\min & \quad u \\
\text{s.t.} & \quad u\mathbf{1} - y^\top A \geq \mathbf{0} \\
& \quad \sum_{i=1}^m y_i = 1 \\
& \quad y \geq 0
\end{align*}
\]

Column Moves First

\[
\begin{align*}
\max & \quad v \\
\text{s.t.} & \quad v\mathbf{1} - Ax \leq \mathbf{0} \\
& \quad \sum_{j=1}^n x_j = 1 \\
& \quad x \geq 0
\end{align*}
\]

These two optimization problems are LP Duals!
Weak Duality

- $u^* \geq v^*$
- Zero sum games have a second mover advantage
Duality and Zero Sum Games

Weak Duality
- \(u^* \geq v^* \)
- Zero sum games have a second mover advantage

Strong Duality (Minimax Theorem)
- \(u^* = v^* \)
- There is no second or first mover advantage in zero sum games with mixed strategies
- Each player can guarantee \(u^* = v^* \) regardless of other's strategy.
- \(y^*, x^* \) are simultaneously best responses to each other (Nash Equilibrium)
Duality and Zero Sum Games

Weak Duality

- $u^* \geq v^*$
- Zero sum games have a second mover advantage

Strong Duality (Minimax Theorem)

- $u^* = v^*$
- There is no second or first mover advantage in zero sum games with mixed strategies
- Each player can guarantee $u^* = v^*$ regardless of other’s strategy.
- y^*, x^* are simultaneously best responses to each other (Nash Equilibrium)

Complementary Slackness

x^* randomizes over pure best responses to y^*, and vice versa.
Saddle Point Interpretation

Consider the matching pennies game

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Unique equilibrium: each player randomizes uniformly
- If row player deviates, he pays out more
- If column player deviates, he gets paid less
Unique equilibrium: each player randomizes uniformly
If row player deviates, he pays out more
If column player deviates, he gets paid less
Begin Convex Optimization Background: Convex Sets