Frege’s FA, Week 6

Frege’s definitions of number

1. \(\#F = 0 \) iff \(\forall x \neg Fx \)
 \(\#F = Sn \) iff \(\exists x (Fx \land \#(\lambda y. x \neq y \land Fy) = n) \)
2. \(\#F = \#G \) iff \(F \sim G \)
3. \(\#F = \text{ext}(\lambda x. X \sim F) \)

Basic Law V: \(\text{ext} F = \text{ext} G \) iff \(\forall x (Fx \leftrightarrow Gx) \)

This is inconsistent! Let \(R = \lambda x. \exists F (x = \text{ext} F \land \neg Fx) \).

Frege’s response

Set theory

Extensionality: For all sets \(A \) and \(B \), if \(\forall x (x \in A \leftrightarrow x \in B) \) then \(A = B \)

Separation: For any set \(A \), there is some set \(B \) such that \(\forall x (x \in B \leftrightarrow x \in A \land \varphi(x)) \)

Replacement: For any set \(A \), if for each \(x \in A \) there is exactly one \(y \) such that \(\varphi(x, y) \),
then there is a set \(B \) such that \(\forall y (y \in B \leftrightarrow \exists x (x \in A \text{ and } \varphi(x, y)) \)

Type theory

extensional/intensional

Neo-Fregeanism

second-order logic + HP