Solutions: Recursion and Induction

Exercise 1(a)

Let $M = (T, T, \ldots, T)$. We’ll show by induction that for any sentence, if A has no occurrences of \bot, then $⟦A⟧_M = T$. There are four cases to consider.

1. For any sentence letter s, $⟦s⟧_M = M(s) = T$.
2. For \bot, the conditional is trivially true.
3. If $B \land C$ contains no occurrences of \bot, then B and C each contain no occurrences of \bot. So, by the inductive hypothesis, $⟦B⟧_M = ⟦C⟧_M = T$. It follows that

$$⟦B \land C⟧_M = ⟦B⟧_M \land ⟦C⟧_M = T \land T = T$$

(1)

4. For the case $B \rightarrow C$, as in case 3 we can assume that $⟦B⟧_M = ⟦C⟧_M = T$. Then

$$⟦B \rightarrow C⟧_M = ⟦B⟧_M \rightarrow ⟦C⟧_M = T \rightarrow T = T$$

(2)

So we conclude by induction that for every sentence A, $⟦A⟧_M = T$. This means that $⟦A⟧$ is positive.

Exercise 1(b)

Consider the truth-function \bot that takes every $M \in 2^S$ to \bot. By part (a), for any sentence A that contains no \bot, then $⟦A⟧_M \neq \bot(M)$ when $M = (T, \ldots, T)$, and so $⟦A⟧ \neq \bot$.

Exercise 2

Let B be any sentence, and let M be any model. We’ll show by induction that for any sentence $A \in \text{Prop} 1$, if A contains no conditionals, if $⟦A[B]⟧_M = T$, then $⟦B⟧_M = T$. There are four cases to consider.

1. For the sentence letter p, $⟦p⟧ = B$. So clearly if $⟦p[B]⟧_M = T$ then $⟦B⟧_M = T$.
2. $⟦\bot[B]⟧_M = ⟦\bot⟧_M = \bot$. This can’t be T, so our conclusion holds trivially in this case.
3. If a conjunction $A_1 \land A_2$ contains no conditionals, then neither does A_1 or A_2. So the inductive hypothesis says:

\[
\text{If } \llbracket A_1[B] \rrbracket_M = \top \text{ then } \llbracket B \rrbracket_M = \top \\
\text{If } \llbracket A_2[B] \rrbracket_M = \top \text{ then } \llbracket B \rrbracket_M = \top
\] (3)

Using the definitions of substitution and the interpretation function:

\[
\llbracket (A_1 \land A_2)[B] \rrbracket_M = \llbracket A_1[B] \land A_2[B] \rrbracket_M = \llbracket A_1[B] \rrbracket_M \land \llbracket A_2[B] \rrbracket_M
\] (4)

So if $\llbracket (A_1 \land A_2)[B] \rrbracket_M = \top$ then $\llbracket A_1[B] \rrbracket_M = \top$ and $\llbracket A_2[B] \rrbracket_M = \top$. Therefore, $\llbracket B \rrbracket_M = \top$, by the inductive hypothesis, which is what we needed to show.

4. The conditional $A_1 \rightarrow A_2$ obviously contains a conditional, so again our conclusion holds trivially.

It follows that for every model, if $\llbracket A[B] \rrbracket_M = \top$ then $\llbracket B \rrbracket_M = \top$. This means that $A[B] \models B$.

Exercise 3(a)

1. $\delta(s) = 0$ for any $s \in S$
2. $\delta(\bot) = 0$
3. $\delta(A \land B) = \delta(A) + \delta(B) + 1$
4. $\delta(A \rightarrow B) = \delta(A) + \delta(B)$

Exercise 3(b)

For the inductive proof there are four cases.

1. For a sentence letter $s \in S$, $\delta(s) = 0$, and since $\delta(s[B])$ is a natural number, $\delta(s[B]) \geq \delta(s)$.
2. $\delta(\bot) = 0$, so the same reasoning applies as case 1.
3. By the definitions of substitution and c,
\[
\epsilon((A_1 \rightarrow A_2)[B]) = \epsilon(A_1[B] \rightarrow A_2[B]) = \epsilon(A_1[B]) + \epsilon(A_2[B]) \tag{5}
\]
By the inductive hypothesis, $\epsilon(A_1[B]) \geq \epsilon(A_1)$ and $\epsilon(A_2[B]) \geq \epsilon(A_2)$. It follows that
\[
\epsilon(A_1[B]) + \epsilon(A_2[B]) \geq \epsilon(A_1) + \epsilon(A_2) = \epsilon(A_1 \rightarrow A_2) \tag{6}
\]
Putting these together, we see that
\[
\epsilon((A_1 \rightarrow A_2)[B]) \geq \epsilon(A_1 \rightarrow A_2) \tag{7}
\]

4. By the definitions of substitution and c,
\[
\epsilon((A_1 \land A_2)[B]) = \epsilon(A_1[B] \land A_2[B]) = \epsilon(A_1[B]) + \epsilon(A_2[B]) + 1 \tag{8}
\]
By the inductive hypothesis, $\epsilon(A_1[B]) \geq \epsilon(A_1)$ and $\epsilon(A_2[B]) \geq \epsilon(A_2)$. It follows that
\[
\epsilon(A_1[B]) + \epsilon(A_2[B]) + 1 \geq \epsilon(A_1) + \epsilon(A_2) + 1 = \epsilon(A_1 \land A_2) \tag{9}
\]
Putting these together,
\[
\epsilon((A_1 \land A_2)[B]) \geq \epsilon(A_1 \land A_2) \tag{10}
\]

Exercise 3(c)

There are four cases.

1. For a sentence letter $t \in S$,
\[
\#(s, t) = \begin{cases}
1 & \text{if } s = t \\
0 & \text{otherwise}
\end{cases} \tag{11}
\]

2. $\#(s, \bot) = 0$

3. $\#(s, A \land B) = \#(s, A) + \#(s, B)$
4. \(\#(s, A \rightarrow B) = \#(s, A) + \#(s, B) \)

Exercise 3(d)

There are four cases to consider for an inductive proof:

1. By the definition of substitution, \(p[B] = B \). Also \(c(p) = 0 \), and \(\#(p, p) = 1 \). So:
 \[
 c(p[B]) = c(B) = 0 + c(B) \cdot 1 = c(p) + c(B) \cdot \#(p, p)
 \]
 (12)

2. By the definitions, \(\bot[B] = \bot \), \(c(\bot) = 0 \), and \(\#(p, \bot) = 0 \). So:
 \[
 c(\bot[B]) = c(\bot) = 0 = 0 + c(B) \cdot 0 = c(\bot) + c(B) \cdot \#(p, \bot)
 \]
 (13)

3. For a conjunction \(A_1 \land A_2 \), the inductive hypothesis tells us:
 \[
 c(A_1[B]) = c(A_1) + c(B) \cdot \#(p, A_1)
 c(A_2[B]) = c(A_2) + c(B) \cdot \#(p, A_2)
 \]
 (14)

 By the definitions,
 \[
 c((A_1 \land A_2)[B]) = c(A_1[B] \land A_2[B]) = c(A_1[B]) + c(A_2[B]) + 1
 \]
 (15)

 Applying the inductive hypothesis, this is equal to
 \[
 c(A_1) + c(B) \cdot \#(p, A_1) + c(A_2) + c(B) \cdot \#(p, A_2) + 1
 \]
 (16)

 Rearranging terms, this is equal to
 \[
 (c(A_1) + c(A_2) + 1) + c(B) \cdot (\#(p, A_1) + \#(p, A_2))
 \]
 (17)

 And by the definitions of \(c \) and \(\# \) this is the same as
 \[
 c(A_1 \land A_2) + c(B) \cdot \#(p, A_1 \land A_2)
 \]
 (18)

4. Similar to case 3.
Exercise 4(a)

\[\text{sl}(s) = \{ s \} \quad \text{for a sentence letter } s \in S \]
\[\text{sl}(\bot) = \{ \} \]
\[\text{sl}(A \land B) = \text{sl}(A) \cup \text{sl}(B) \]
\[\text{sl}(A \rightarrow B) = \text{sl}(A) \cup \text{sl}(B) \]

(19)

Exercise 4(b)

We’ll show by induction that for every sentence \(A \), if \(M \) and \(M' \) have the same truth value for every sentence letter in \(A \), then \(\llbracket A \rrbracket_M = \llbracket A \rrbracket_{M'} \). There are four cases to consider!

1. For a sentence letter \(s \), since obviously \(s \in \text{sl}(s) = \{ s \} \),
 \[\llbracket s \rrbracket_M = M(s) = M'(s) = \llbracket s \rrbracket_{M'} \]
 (20)

2. \(\llbracket \bot \rrbracket_M = \bot = \llbracket \bot \rrbracket_{M'} \)

3. Consider a conjunction \(A \land B \). If \(M(s) = M'(s) \) for every \(s \in \text{sl}(A \land B) = \text{sl}(A) \cup \text{sl}(B) \), it follows that \(M(s) = M'(s) \) for every \(s \in \text{sl}(A) \), and also \(M(s) = M'(s) \) for every \(s \in \text{sl}(B) \). So by the inductive hypothesis,
 \[\llbracket A \rrbracket_M = \llbracket A \rrbracket_{M'} \]
 \[\llbracket B \rrbracket_M = \llbracket B \rrbracket_{M'} \]
 (21)

 Then we can conclude:
 \[\llbracket A \land B \rrbracket_M = \llbracket A \rrbracket_M \land \llbracket B \rrbracket_M = \llbracket A \rrbracket_{M'} \land \llbracket B \rrbracket_{M'} = \llbracket A \land B \rrbracket_{M'} \]
 (22)

4. Similar to case 3.

Exercise 4(c)

If neither \(A \equiv \bot \) nor \(B \equiv \top \), then there must be some model \(M \) such that \(\llbracket A \rrbracket_M = \top \), and there must be some model \(M' \) such that \(\llbracket B \rrbracket_{M'} \). In that case, define a new model \(M'' \).
\[M^*(s) = \begin{cases} M(s) & \text{if } s \neq p \\ M'(s) & \text{otherwise} \end{cases} \quad (23) \]

Note that for every \(s \neq p \), \(M^*(s) = M(s) \). Since \(p \notin s A \), it follows that \(M(s) = M^*(s) \)
for every \(s \in s A \). So by part (b),

\[\llbracket A \rrbracket_{M^*} = \llbracket A \rrbracket_M = \top \quad (24) \]

Similarly, since \(s A = \{ p \} \), and \(M'(p) = M^*(p) \), by part (b) again,

\[\llbracket B \rrbracket_{M^*} = \llbracket B \rrbracket_{M'} = \bot \quad (25) \]

So \(M^* \) is a model in which \(A \) is true and \(B \) is false. So it is not the case that \(A \vDash B \).
Contrapositively, if \(A \vDash B \), then either \(A \vDash \bot \) or else \(B \).

Note the proof works with hardly any changes if instead we just assume:

\[s A \cap s B = \{ \} \quad (26) \]