Accessing Multiple Conical Intersections in the 3s and 3p_x Photodissociation of the Hydroxymethyl Radical

Chirantha P. Rodrigo, Chuanchuan Zhou, and Hanna Reisler*

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States

ABSTRACT: The photodissociation dynamics of the hydroxymethyl radical (CH_2OH, CH_2OD, and CD_2OD) following excitation to the 3s and 3p_x Rydberg states is studied using time-sliced velocity map imaging of hydrogen photofragments. Dissociation takes place on the ground potential energy surface reached via conical intersections from the excited states, and formaldehyde and hydroxymethylene are identified as reaction products. The major product, formaldehyde, has a bimodal internal energy distribution. The largest fraction has high kinetic energy (KE), modest rotational excitation, and vibrational excitation mainly in the CO stretch and the CH(D)_2 deformations modes (scissors, wag, and rock). The minor fraction has lower KEs and a higher rovibrational excitation that is unresolved. A bimodal internal energy distribution in the formaldehyde fragment has been predicted by Yarkony [J. Chem. Phys. 2008, 122, 084316] for a conical intersection along the O−H bond coordinate. The hydroxymethylene product state distributions depend strongly on the nature of the excited state. In dissociation via the 3s state, the hydroxymethylene products have broad rovibrational state distributions and are produced at low yield. As suggested by Yarkony, they may be produced in the same dissociation events that give rise to low KE formaldehyde. In these events, the bound region of the PES is sampled following the conical intersection along O−H(D). The hydroxymethylene yield is low near its threshold and increases slowly with excitation energy to the 3s state, but its internal energy distribution remains broad and the contributions of the cis- and trans-isomers cannot be resolved. The mechanism changes markedly when exciting to the 3p_x state. The hydroxymethylene products have less rotational excitation and show separate contributions of cis- and trans-isomers. The trans-isomer is found to be a minor product relative to the higher-energy cis-isomer, as predicted by Yarkony for conical intersections along the C−H coordinate. It appears that the efficiency of dissociation via conical intersections along the O−H and C−H coordinates depends on the initial excited state. While the O−H conical intersection seam (vertical cone) provides an efficient route to the ground state following excitation via the 3s or the 3p_x Rydberg states, conical intersections along the C−H bond coordinate (tilted cone) are sampled more efficiently via 3p_x excitation and proceed through different dynamics. The energy separations between formaldehyde and hydroxymethylene and between the cis- and trans-isomers of hydroxymethylene are determined experimentally for all the investigated isotopologs and are in good agreement with theory.

I. INTRODUCTION

The hydroxymethyl radical has been implicated in atmospheric, astrochemical, and combustion processes. For example, CH_2OH is a significant product in the reaction of O(1D) with methane,1,2 while reactions of Cl and H atoms with methanol yield predominantly CH_2OH.3−4 In addition, the hydroxymethyl radical and its isomer, the methoxy radical, are implicated in reactions such as O + CH_3 and O_2 + CH_3OH.5−8 Recently, it has been suggested that hydroxymethyl radicals might be present in the interstellar medium under conditions where methanol is ubiquitous.9−12 It is no wonder, therefore, that much research, theoretical and experimental, has been devoted to this radical.13−38 While the ground state of CH_2OH has been well characterized14,18,26−29,33,36,37 and its predissociation and isomerization pathways investigated recently in detail,27,32,34 much less information is available on its excited states photophysics and photodissociation dynamics.

Previously it has been established that the onset of electronic absorption in CH_2OH is at ∼26 000 cm^{-1} and the radical continues to absorb at least up to 45 000 cm^{-1}.15,22,25 Three Rydberg states contribute to the absorption.15,16,22,25,26,35 (1) Absorption to the 3s(1′A') state has an onset at 25 970 cm^{-1} and extends all the way up to the highest wavelengths investigated so far. This absorption system is structureless.22 (2) The origin band of the absorption to the 3p_(2′A') state lies at ∼35 000 cm^{-1} and has a width of >100 cm^{-1} due to lifetime broadening. This absorption system, which lies above a structureless background of continuing 3s absorption, exhibits a progression in the CO stretch.22 (3) Absorption to the 3p_(3′A') state has a clear vibronic band structure with linewidths ∼10 cm^{-1} and an origin band at 41 050 cm^{-1}. It shows a progression in the CO stretch and has other assigned vibronic bands.22,26,38 All the states are short-lived (<0.5 ps), and H atoms are the main photodissociation products.20−23
The Journal of Physical Chemistry A

Electronic structure calculations are in agreement with these assignments.2,5,16,25,35

The lowest Rydberg states are obtained by promoting an electron from the half-occupied \(\pi^*_{\text{CO}} \) antibonding molecular orbital to a Rydberg orbital localized on carbon.15,16,25,26,35 This results in an increased CO double bond character in the Rydberg states and a concomitant large change in the CO bond length.26 The ground state is nonplanar and rigorously should be treated with the G4 group in the permutation-inversion model. However, as shown before, the electronic wave function complies with \(C_s \) symmetry, as do the Rydberg states, and therefore the vibrationless electronic states are symmetry labeled as \(A' \) and \(A'' \).26

Previous studies have shown that the Rydberg states of \(\text{CH}_2\text{OH} \) are coupled to the ground state, leading to \(\text{O}--\text{H} \) and \(\text{C}--\text{H} \) bond breaking and generating formaldehyde and hydroxymethylene dissociation products.20–23,25,35 The lowest channels have the following dissociation energies:

\[
\text{CH}_2\text{OH} \rightarrow \text{CH}_2\text{O}(\tilde{X}A_1) + \text{H};
\]

\[
D_0 = 10160 \pm 70 \text{ cm}^{-1} (1.26 \pm 0.01 \text{ eV}) \quad (I)
\]

\[
\text{CH}_2\text{OH} \rightarrow \text{trans-CHOH}(\tilde{X}A') + \text{H};
\]

\[
D_0 = 28420 \pm 70 \text{ cm}^{-1} (3.52 \pm 0.01 \text{ eV}) \quad (II)
\]

\[
\text{CH}_2\text{OH} \rightarrow \text{cis-CHOH}(\tilde{X}A') + \text{H};
\]

\[
D_0 = 29970 \pm 70 \text{ cm}^{-1} (3.52 \pm 0.01 \text{ eV}) \quad (III)
\]

The kinetic energy distributions (KEDs) of \(\text{D} \) fragments from \(\text{CH}_2\text{OD} \) and \(\text{CD}_2\text{OH} \) were recorded and compared.22–24,32 At 26 000–30 000 cm\(^{-1}\) only \(\text{O}--\text{H} \) bond-breaking was observed, whereas at photoysis energies >30 500 cm\(^{-1}\) both \(\text{D} \) and \(\text{H} \) products were detected. The \(\text{H}/\text{D} \) ratio increased fairly monotonically with photolysis energy.

The kinetic energy distributions (KEDs) of \(\text{D} \) fragments from \(\text{CH}_2\text{OD} \) and \(\text{CD}_2\text{OH} \) were recorded and compared.22–24,32 At 26 000–30 000 cm\(^{-1}\) only \(\text{O}--\text{H} \) bond-breaking was observed, whereas at photoysis energies >30 500 cm\(^{-1}\) both \(\text{D} \) and \(\text{H} \) products were detected. The \(\text{H}/\text{D} \) ratio increased fairly monotonically with photolysis energy.

The kinetic energy distributions (KEDs) of \(\text{D} \) fragments from \(\text{CH}_2\text{OD} \) and \(\text{CD}_2\text{OH} \) were recorded and compared.22–24,32 At 26 000–30 000 cm\(^{-1}\) only \(\text{O}--\text{H} \) bond-breaking was observed, whereas at photoysis energies >30 500 cm\(^{-1}\) both \(\text{D} \) and \(\text{H} \) products were detected. The \(\text{H}/\text{D} \) ratio increased fairly monotonically with photolysis energy.
II. EXPERIMENTAL DETAILS

The experimental setup and conditions were similar to those reported previously32,35,40 and are only described briefly here. A molecular beam of cold hydroxymethyl radicals (rotational temperature = 10–15 K) or their isotopologs is excited to the two lowest Rydberg states by UV laser radiation, and H/D photoproducts are detected by SVMI after excitation to their respective ions (H+/D+).

The generation of the CH3OH radical and its isotopologs in a supersonic expansion and the detection of H/D photoproducts have been described previously. The SVMI arrangement and operation procedures have been described in detail before. The time spread of the ion cloud is stretched to ≥50 ns by optimizing the SVMI operating conditions with the aid of ion trajectory simulations. A thin time slice of the ion cloud (<10% of the total) is taken from the center and imaged onto a position sensitive detector by fast gating the MCP gain. This is accomplished with a homemade high-voltage pulser that generates ≤5 ns pulses. The center slice is located by taking several short acquisitions of images around the center of the ion cloud and comparing them for two features that indicate the center: (i) the sharpness of the ring structures in the image and (ii) the largest image size. This procedure determines the optimal time delay between the pump laser firing and the gating pulse.

Ion spot locations (hit events) on the detector are stored in a computer as Cartesian coordinates and later transformed to polar coordinates. Radial distributions were obtained summing all events in full 360° at each radius R. All images are rectified for slight imperfections in the radial distributions as described elsewhere. The speed (velocity) distributions of H(D) fragments are derived from the radial distribution of ions using the appropriate calibration factors based on dissociation events of known recoil energy. Center-of-mass kinetic energy distributions (KEDs) are obtained by using momentum conservation and the corresponding Jacobian, and recoil anisotropy parameters are determined from the angular distributions at each R in the usual way.

For CD3OD, structure optimization and vibrational frequency calculations were performed at the MP2/6-311+G (2d,p) level of theory. It has been shown before by Blowers and Masel that for CH3OH, (n and m are integers) type molecules the above level of calculations gives good agreement with experiment after using a scaling factor of 0.96. Calculations were carried out using the Q-CHEM computational package.

III. RESULTS

H and D photofragment images were recorded at several excitation energies that access the 3s and 3p, Rydberg states (Figure 1). In particular, we concentrated on the following excitations: (i) below the energetic opening of the hydroxymethylene channels; (ii) near the thresholds of cis- and trans-hydroxymethylene; and (iii) near and at the band origin of the Lyman-α transition (the corresponding wavelengths for D detection are 121.56 and 364.7 nm). The VUV radiation is generated by tripling ~365 nm radiation in a frequency tripling cell with a mixture of Kr and Ar by focusing 2–3 mJ of the ~365 nm doubled output of a Nd:YAG laser pumped dye laser system (Continuum, NY-81C/ND6000; LDS 722 dye, Inrad Autotracker-II doubler with KDP crystal, lens f.l. = 20 cm). The residual ~365 nm radiation that passes through the cell ionizes the excited H(D) fragments. The probe laser is delayed by ~2 ns with respect to the pump laser, and its wavelength is tuned across the Doppler profile of the H(D) fragments while recording velocity map images.

Two different types of experiments were performed: (1) in probe-only experiments, residual 365 nm radiation from the probe laser acts as the pump laser; (2) in pump–probe experiments, a separate UV pump laser is used to excite the radical to selected excitation energies and H(D) atoms are probed as described above. In these experiments, the probe laser power is turned down to minimize background signal generated by residual ~365 nm. This background is subtracted from the images before processing the data.

The SVMJ arrangement and operation procedures have been described in detail before. The time spread of the ion cloud is stretched to ≥50 ns by optimizing the SVMJ operating conditions with the aid of ion trajectory simulations. A thin time slice of the ion cloud (<10% of the total) is taken from the center and imaged onto a position sensitive detector by fast gating the MCP gain. This is accomplished with a homemade high-voltage pulser that generates ≤5 ns pulses. The center slice is located by taking several short acquisitions of images around the center of the ion cloud and comparing them for two features that indicate the center: (i) the sharpness of the ring structures in the image and (ii) the largest image size. This procedure determines the optimal time delay between the pump laser firing and the gating pulse.

Ion spot locations (hit events) on the detector are stored in a computer as Cartesian coordinates and later transformed to polar coordinates. Radial distributions were obtained summing all events in full 360° at each radius R. All images are rectified for slight imperfections in the radial distributions as described elsewhere. The speed (velocity) distributions of H(D) fragments are derived from the radial distribution of ions using the appropriate calibration factors based on dissociation events of known recoil energy. Center-of-mass kinetic energy distributions (KEDs) are obtained by using momentum conservation and the corresponding Jacobian, and recoil anisotropy parameters are determined from the angular distributions at each R in the usual way.

For CD3OD, structure optimization and vibrational frequency calculations were performed at the MP2/6-311+G (2d,p) level of theory. It has been shown before by Blowers and Masel that for CH3OH, (n and m are integers) type molecules the above level of calculations gives good agreement with experiment after using a scaling factor of 0.96. Calculations were carried out using the Q-CHEM computational package.
transition to the $3p_z$ state. By using different isotopologs, identifying background contributions and fitting fragment state distributions were facilitated.

Before processing the images contributions from background signals had to be removed. Signals from probe laser dissociation were removed by recording probe-only images, while maintaining the same experimental conditions except for blocking the pump laser, and subtracting them from the pump—probe images. Background signals due to isotopic contamination were removed as described by Feng et al.21 H fragment images from CH$_2$OD included small contributions from contaminant CH$_2$OH. This background was estimated and removed from CH$_2$OD images by recording images of neat CH$_2$OH and scaling them to match the intensity of high KE H fragment signals generated by O—H bond breaking in CH$_2$OH before subtraction. Images acquired upon excitation to the $3p_z$ state include small contributions from underlying $3s$ dissociation. Because the KEDs associated with hydroxymethylene products are very different for $3s$ and $3p_z$ dissociation (see below), it was possible to estimate these contributions, and the signals associated with $3s$ dissociation were subtracted from the images acquired in the $3p_z$ absorption region before attempting to fit the KEDs. This subtraction procedure was only applied for the purpose of fitting and assigning structures in the KEDs of hydroxymethylene.

In order to fit the KEDs with vibrational levels of the products, we used the PGOPHER software program,43 which allowed also determination of rotational temperatures. First, a stick spectrum of the energetically allowed vibrational levels of each product was generated, and a rotational temperature was selected for best fit. We assumed the same rotational constants for all vibrational states regardless of the level of excitation. Tables 1 and 2 list the rotational constants and fundamental vibrational frequencies used for the formaldehyde and hydroxycarbene isotopologs. Vibrational frequencies of fundamentals, overtones and combinations bands were taken from the literature when available.34,45 Other energy levels were generated by combinations of fundamental frequencies obtained either from calculations46,47,48 or from experimental measurements.48

Contour fittings were begun with the vibrationless peak by varying its KE origin and rotational temperature to match the experimental profile. Linewidths (Gaussian shapes) were added to each rotational line to simulate the experimental resolution.40 Special attention was paid to fitting well the rise and tailing-off of the band contours by varying both the temperature and linewidth. The optimized rotational temperatures and widths were used to fit the remaining vibrational bands for each fragment, leaving only the relative populations (intensities) as variables. Two different rotational temperatures were used to simulate cis- and trans-HCHO products as they showed different degrees of tailing-offs in their experimental distributions. A least-squares fitting algorithm was used to fit the part of the KED correlated with the formaldehyde cofragment, which had partially resolved structures. Other parts of the KEDs were fit by manual adjustments of populations while seeking optimal visual fits.

The best signal-to-noise ratio in the KEDs was obtained for H/D images recorded with \sim365 nm excitation. This residual radiation from the tripling cell (used to ionize the excited H/D fragments) also causes dissociation of the hydroxymethyl radical via channel I. The excitation energy of \sim27400 cm$^{-1}$ is insufficient for reactions II and III. In pump—probe experiments, the small signal from the probe laser is subtracted before analysis as described above, but with increased intensity of the 365 nm radiation, significant H/D fragment signals are obtained without firing the pump laser. Figure 2 shows images obtained by detecting H/D fragments from CH$_2$OH, CH$_2$OD, and CD$_2$OD, and the corresponding kinetic energy release (KER) plots. In comparing the KEDs obtained from H/D images of CH$_2$OH and CH$_2$OD, we observe larger signals at very low KEs from the former. The excess signal that extends down to zero KE corresponds to a small background of unknown origin. In CH$_2$OD experiments, the H and D contributions are separated, demonstrating that the small contaminant signal at low KE is associated only with H atoms but not D fragments (see Figures S1 and S2 in the Supporting Information for examples of this background). This signal must be associated with an unknown background contamination because at this energy the C—H bond cannot be broken. A similar low KE background exists in D images from CD$_2$OD as seen in Figure 2c. Since this part of the KED is structureless and we only fit the structured, high KED component in these images, this background does not cause interference.

The structured components in the three KEDs shown in Figure 2 can be fit by using the known vibrational levels of formaldehyde listed in Table 1.44 Attempts to fit the KEDs by assuming only CO stretch (ν_3) excitation or any other single vibrational mode failed to give good fits (see Figure S3 in the Supporting Information). We found that the CH(D) stretch and CH(D)$_2$ deformation modes (rock, wag, and/or scissors) was needed. As these modes are quite close in energy (see Table 1) it was difficult to determine which one is dominant. Figure 2 shows the best fit for each isotopolog obtained by using the CO stretch ν_3 and the CH$_2$ scissors ν_s modes. The vibrational levels used in the fits are marked with stick spectra, in which the position of the line indicates the origin of the rotationless vibrational level, and its length is proportional to the integrated population of the level. The relative populations of the vibrational levels that give rise to the displayed fits are listed in the Supporting Information (Figures S4–S7 and Tables S1–S3).

For CH$_2$OH and CH$_2$OD, the structures correlated with CH$_2$O are fit satisfactorily by assuming the participation of the CO stretch ν_3 and the CH$_2$ scissors mode ν_s. However, these fits are not unique, and fits using the other CH$_2$ deformation modes in addition to the CO stretch (while varying somewhat

Table 1. Vibrational Frequencies and Rotational Constants of Formaldehyde in the Ground State (in cm$^{-1}$)a

<table>
<thead>
<tr>
<th>rotational constant</th>
<th>CH$_2$O</th>
<th>CD$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.408</td>
<td>4.726</td>
</tr>
<tr>
<td>B</td>
<td>1.296</td>
<td>1.077</td>
</tr>
<tr>
<td>C</td>
<td>1.135</td>
<td>0.874</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vibrational description (symmetry)</th>
<th>ν_1 (a$_{1g}$)</th>
<th>ν_2 (b$_{1g}$)</th>
<th>ν_3 (a$_{1u}$)</th>
<th>ν_4 (b$_{2u}$)</th>
<th>ν_5 (b$_{3u}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sym. C—H stretch</td>
<td>2783</td>
<td>2783</td>
<td>2783</td>
<td>2783</td>
<td>2783</td>
</tr>
<tr>
<td>C—O stretch</td>
<td>1746</td>
<td>1746</td>
<td>1746</td>
<td>1746</td>
<td>1746</td>
</tr>
<tr>
<td>CH$_2$ scissors</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>CH$_2$ wag</td>
<td>1167</td>
<td>1167</td>
<td>1167</td>
<td>1167</td>
<td>1167</td>
</tr>
<tr>
<td>antisym. C—H stretch</td>
<td>2843</td>
<td>2843</td>
<td>2843</td>
<td>2843</td>
<td>2843</td>
</tr>
<tr>
<td>CH$_2$ rock</td>
<td>1249</td>
<td>1249</td>
<td>1249</td>
<td>1249</td>
<td>1249</td>
</tr>
</tbody>
</table>

aFrom ref 44.
spectra that give the best excited vibrational levels include the CO stretch proportional to the integrated relative population of each level. The vibrational levels of formaldehyde, with the length of each line bands with the scissors mode that Gaussian-shaped rotational distributions are often we are mindful of the fact that the rotational energy (S5 and Table S1 in the Supporting Information). In addition, the rotational temperature) are satisfactory as well (see Figure S5 in the Supporting Information). From ref 47. VCI frequencies. Experimental values are given in parentheses. From ref 47. VCI frequencies. This work. Scaled frequencies (0.96 scaling factor).

Table 2. Vibrational Frequencies and Rotational Constants of Hydroxycarbene isotopologs (in cm⁻¹)

<table>
<thead>
<tr>
<th>rotational constant</th>
<th>HCOH</th>
<th></th>
<th>HCOD</th>
<th></th>
<th>DCOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans</td>
<td>cis</td>
<td>trans</td>
<td>cis</td>
<td>trans</td>
</tr>
<tr>
<td>A</td>
<td>9.701</td>
<td>9.346</td>
<td>7.393</td>
<td>6.901</td>
<td>5.754</td>
</tr>
<tr>
<td>B</td>
<td>1.222</td>
<td>1.217</td>
<td>1.139</td>
<td>1.142</td>
<td>1.031</td>
</tr>
<tr>
<td>C</td>
<td>1.085</td>
<td>1.077</td>
<td>0.987</td>
<td>0.980</td>
<td>0.875</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vibrational description (symmetry)</th>
<th>trans-HCOHb</th>
<th>cis-HCOHc</th>
<th>trans-HCODb</th>
<th>cis-HCODc</th>
<th>trans-DCODd</th>
<th>cis-DCODd</th>
</tr>
</thead>
<tbody>
<tr>
<td>o.p. twist (\nu_6) ((a''))</td>
<td>1058.9</td>
<td>978</td>
<td>907.1</td>
<td>847</td>
<td>790</td>
<td>761</td>
</tr>
<tr>
<td>i.p. bend (\nu_3) ((a'))</td>
<td>(1048.5)</td>
<td>1189</td>
<td>(901.6)</td>
<td>921</td>
<td>862</td>
<td>857</td>
</tr>
<tr>
<td>i.p. bend (\nu_3) ((a'))</td>
<td>1475.1</td>
<td>1442</td>
<td>1420.8</td>
<td>1414</td>
<td>1280</td>
<td>1278</td>
</tr>
<tr>
<td>C–O stretch (\nu_4) ((a'))</td>
<td>1300.5</td>
<td>1299</td>
<td>1294.1</td>
<td>1288</td>
<td>1116</td>
<td>1120</td>
</tr>
<tr>
<td>C–H stretch (\nu_2) ((a'))</td>
<td>2706.5, 2785.5</td>
<td>2552</td>
<td>2682.8</td>
<td>2516</td>
<td>2086</td>
<td>2023</td>
</tr>
<tr>
<td>O–H stretch (\nu_1) ((a'))</td>
<td>3561.6, 3520.8, 3516 (3500.6)</td>
<td>3397</td>
<td>2566.4, 2626.8</td>
<td>2584</td>
<td>2623</td>
<td>2547</td>
</tr>
</tbody>
</table>

Figure 2. H/D photofragment images and the corresponding kinetic energy release (KER) plots (black curves) obtained in probe-laser only dissociation of (a) CH₂OH, (b) CH₂OD, and (c) CD₂OD. The stick spectra that give the best fits to the KEDs (red curves) correspond to vibrational levels of formaldehyde, with the length of each line proportional to the integrated relative population of each level. The excited vibrational levels include the CO stretch \(\nu_3 \) and combination bands with the scissors mode \(\nu_3 \). See the text for details.

the rotational temperature) are satisfactory as well (see Figure S5 and Table S1 in the Supporting Information). In addition, we are mindful of the fact that the rotational energy distributions may not be simulated well by a temperature and that Gaussian-shaped rotational distributions are often generated in dissociation on repulsive surfaces. Therefore, temperature is considered here only as a number of merit for the extent of rotational excitation. Nevertheless, to achieve the best fits, both CO stretch excitation and the CH₂ deformation modes are required (overtones and combination bands). The rotational temperature returned by the fits is 450–550 K, corresponding to 312–382 cm⁻¹ of fragment rotational energy.

Because the frequencies of the deformation modes of CH₂OH and CH₂OD are quite similar to the CO stretch, the peaks in the KEDs consist of clumps of close-lying vibrational levels. This results in fairly well resolved structures in the KEDs despite the inclusion of numerous vibrational levels in the fits. The situation is different for CD₂OD. Here, the frequencies of the CO stretch (1702 cm⁻¹) and the CD₂ deformation modes (989, 938, and 1106 cm⁻¹) are disparate, and thus, the overtones and combination bands span almost the entire KE range. Indeed, in this case, the structures in the KEDs are less resolved, as seen in Figure 2c. The best fit for CD₂OD is obtained by assuming the participation of the CO stretch and the CH₂ scissors (\(\nu_3 \)). The fits show that some of the populations of the close-lying levels are quite correlated, and therefore, we show stick spectra rather than report accurate population distributions.

The maximum KER in each curve corresponds to the dissociation energy of channel 1. The value obtained for CH₂OH, 10340 ± 140 cm⁻¹, agrees within experimental error with the previous result of 10160 ± 70 cm⁻¹. The corresponding values for CH₂OD and CD₂OD, 11402 ± 140 and 11440 ± 140 cm⁻¹, respectively, are listed in Table 3.

From the angular distributions, we determine the recoil anisotropy parameters \(\beta \) for the structured components at high KE to be \(\sim -0.7 \), in agreement with previous results. The lower energy, structureless components of the KEDs have values much closer to zero or slightly negative. We will return to the anisotropy issue later.

We have recorded images at other excitation energies that access the 3s state, and the general appearance of the structured component of the KEDs does not change, as seen in Figures 3 and 4. The main change is that the signal level increases at
higher photolysis energies as the maximum in the $3s$ absorption cross-section is approached, and the internal excitation in the formaldehyde fragment increases somewhat.

The low KE region in the KEDs changes qualitatively when exciting in the peak of the origin band of the transition to $3p_x$. Figures 4 and 5 compare H/D images recorded for excitation of CH$_2$OH and CH$_2$OD just below the origin band of the $3p_x$ transition band and at its peak. The same qualitative shapes of the KEDs are observed for all three isotopologs. At these photolysis energies, the hydroxymethylene channels II and III are open, with 20–30% of the products arising from breaking the C–H(D) bond. 20–22 We can now examine the photodissociation via these channels with better KE resolution.

Just prior to the opening of the $3p_x$ transition, the KEDs of CH$_2$OH and CD$_2$OD are typical of those for $3s$ excitation. They include a structured, high KE component as before, and also a prominent low KE component that is unstructured and is composed in part of H/D from O–H(D) bond breaking processes (similar to the KEDs observed at energies below the energetic opening of channels II and III), and a component correlated with breaking the C–H(D) bond that extends down to zero KER. 20–22 These two components are distinguished in CH$_2$OD, as shown in Figure 5c,d. The H-fragment KER from C–H bond breaking indeed extends to zero KER.

Table 3. Dissociation Energies (D_0) Determined from KEDs of H(D) Photofragments and Energy Separations between cis- and trans-HCOH isotopologs; Energy Calibration and Fitting Errors Are Included in the Confidence Error Bars

<table>
<thead>
<tr>
<th>reaction</th>
<th>D_0 (cm$^{-1}$)</th>
<th>$E_{cis-trans}$ (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$OD \rightarrow H$_2$CO + H</td>
<td>10340 ± 140</td>
<td></td>
</tr>
<tr>
<td>CH$_2$OH \rightarrow trans-HCOH + H</td>
<td>28424 ± 70</td>
<td></td>
</tr>
<tr>
<td>CH$_2$OH \rightarrow cis-HCOH + H</td>
<td>29974 ± 70</td>
<td>1550 ± 40</td>
</tr>
<tr>
<td>CH$_2$OD \rightarrow H$_2$CO + D</td>
<td>11402 ± 140</td>
<td></td>
</tr>
<tr>
<td>CH$_2$OD \rightarrow trans-HCOD + H</td>
<td>28385 ± 70</td>
<td></td>
</tr>
<tr>
<td>CH$_2$OD \rightarrow cis-HCOD + H</td>
<td>29945 ± 70</td>
<td>1560 ± 40</td>
</tr>
<tr>
<td>CD$_2$OD \rightarrow D$_2$CO + D</td>
<td>11440 ± 140</td>
<td></td>
</tr>
<tr>
<td>CD$_2$OD \rightarrow trans-DCOD + D</td>
<td>28955 ± 70</td>
<td></td>
</tr>
<tr>
<td>CD$_2$OD \rightarrow cis-DCOD + D</td>
<td>30590 ± 70</td>
<td>1635 ± 40</td>
</tr>
</tbody>
</table>

Figure 3. H photofragment KEDs obtained in $3s$ dissociation of CH$_2$OH at the indicated energies. The background from probe-laser only dissociation is subtracted.

Figure 4. H photofragment images and KEDs obtained in CH$_2$OH dissociation: (a,b) at the peak of the origin band of $3p_x$ absorption (35 053 cm$^{-1}$) and (c,d) at 33 898 cm$^{-1}$ ($3s$ absorption), just below the $3p_x$ band origin. Note the difference in structure in the low KE component correlated with HCOH production and the change in relative integrated intensities of the low and high KE components.

Figure 5. H and D photofragment KEDs obtained in CH$_2$OD dissociation: (a,b) at the peak of the origin band of $3p_x$ absorption (35 053 cm$^{-1}$) and (c,d) at 33 898 cm$^{-1}$ ($3s$ absorption), just below the $3p_x$ band origin. Signals due to a small amount of CH$_2$OH in the sample have been subtracted from the H-fragment KER plots as explained in the text. Also, the small signal in (a) that extends to high KEDs beyond ~6800 cm$^{-1}$ derives from an unknown contamination. This signal cannot be separated in panel c because of the lack of structure in the low KE part. The signal height in each plot is in arbitrary units and does not reflect the relative population of CH$_2$O and HCOD.
The shapes of the KEDs in the low KE region change abruptly when exciting to the 3p state. In all three isotopologs, the low KE component exhibits structures with sharp rises that coincide with vibrations of hydroxymethylene (see below). In addition, Figure 4 shows that the relative population of the low KE component increases relative to the population of the higher KE component when compared to the corresponding population ratios obtained in 3s excitation just below the origin of the 3p transition. Figure 5a, which shows H and D signals from CH2OD, distinguishes again between the O–D and C–H bond breaking channels. Inspection of the H-fragment KEDs (Figure 5a,c) shows that the major change in going from 3s to 3p excitation is in the internal energy distribution in the HCOD radical, in particular the reduction in rotational temperature. The appearance of distinct structures with sharp rises in Figure 5a allows us to distinguish between signal correlated with the HCOD fragment, which appears with a maximum KE of 6670 cm$^{-1}$, and the small, structureless background that extends from near zero KE to >12 000 cm$^{-1}$, and is attributed to the small contamination discussed above.

Previously, H signals from CH2OD dissociation were reported to have an onset at ~30 500 cm$^{-1}$, where the H signal was only <0.05 of the D signal. The H/D ratio increased with excitation energy, reaching ~30% at the origin band of the transition to 3p. With the better sensitivity and KE resolution afforded with the new experimental arrangement, we reexamined the C–H bond breaking. We find that near the threshold of channel II the contaminant H signal obscures the very small signal correlated with trans-HCOH, and the threshold for this channel cannot be identified. As shown in Figure 4 for CH2OH, the low KE signal, which is present at energies below the opening of the channel II, increases only gradually with excitation energy when this channel is energetically open, but no structure is observed. Recording H fragments from CH2OD does not improve the situation, and thus these measurements do not provide additional information regarding the H/D ratios compared to previous results, and only confirm that at these excitation energies C–H bond breaking is inefficient.

Much more information can be derived from the KEDs obtained following excitation to the 3p state, in particular those correlated with hydroxymethylene. To this end, we zoom on the low KE region of H/D fragments from the three isotopologs, and the results are shown in Figure 6. In order to assign the structures in the KEDs, background signals associated with isotopic contamination and 3s dissociation are removed, as described above. The highest KE peak in the H fragment KEDs from CH2OH and CH2OD appears at an energy corresponding to the ground vibrational level of the trans-hydroxymethylene; it exhibits a sharp rise and a decay that can be simulated with a rotational temperature of ~1200 K. The derived dissociation energies leading to trans-hydroxymethylene for the three isotopologs are summarized in Table 3.

The second highest-energy peak in the KEDs is the most prominent one, and it also has a fairly sharp rise. In order to fit this peak to a vibrational level of one of the isomers, we use the calculated and/or experimental vibrational energies of trans- and cis-HCOH(D) summarized in Table 2. The trans-vibration closest in energy to this peak is ν_3 (in-plane bend) at 1466 and 1415 cm$^{-1}$ for HCOH and HCOD, respectively, values that are close to the calculated cis–trans energy separation of 1550–1620 cm$^{-1}$. Thus, it is quite challenging to distinguish between these two contributions, and we have relied on the consistency of the fittings of several KEDs for the three isotopologs. We obtain good fits for the first two peaks for all the isotopologs when we assume that the second peak is the ground state of the cis-isomer, and let its rotational temperature vary to achieve the best fit. The fits are consistently inferior when we follow the same procedure but assume that this peak corresponds to ν_3 of trans-HCOH(D) (see Figure S8 in Supporting Information). Conversely, when we carry out a free fit of these two peaks, the energy separation that is returned by the fits, 1550–1600 cm$^{-1}$, is closer to the calculated cis–trans separation than to the ν_3 energies of HCOH(D). We note that the cis-isomer has never been isolated experimentally, and we must rely on theoretical calculations of the vibrational energies and the cis–trans energy separation. Our interpretation is strengthened by experiments with CD2OD. As shown in Table 2, there is no vibrational mode of DCOD whose frequency is close to the cis–trans energy separation of ~1600 cm$^{-1}$. Fitting the two peaks in the KED shown in Figure 6c gives an energy

![Figure 6. KER plots (black curves) obtained from images in which the low KE region was expanded to fill the detector. Excitation to the origin band of the 3p transition (35 053 cm$^{-1}$) was used in (a) CH3OH, (b) CH3OD, and (c) CD3OD. Background signals were subtracted as explained in the text. The red curves show best fits using vibrational levels of trans- and cis-hydroxymethylene. The two highest KE peaks are assigned as the ground states of the trans- and cis-isomers and are separated by 1550, 1560, and 1635 cm$^{-1}$ in (a), (b), and (c), respectively. The next peak in parts a and b is fit by assuming excitation to the CO stretch ν_4 of HCOH(D).](http://dx.doi.org/10.1021/jp404552g)
separation of \(\sim 1630 \text{ cm}^{-1}\), confirming that the second peak is indeed correlated with cis-DCOD.

Assigning the second peak in the HCOH(D) KEDs as the ground state of cis-HCOH(D) leads to assignment of the third peak as the CO stretch (\(\nu_4 \sim 1300 \text{ cm}^{-1}\)) of the cis-isomer. Results obtained at other excitation energies coinciding with vibronic bands of the 3p\(_x\) transition (see Figure S9, Supporting Information, for examples) confirm this interpretation. We have not tried to assign the rest of the structures in the KEDs because of the large number of possible levels and the high rotational excitation that masks vibrational structure. We do note, however, that with excitation at higher energies, e.g., coinciding with excitation to the CO stretch level of 3p\(_x\), the intensity of the peak assigned to the trans-isomer decreases relative to the peak that is best fit as the ground state of the cis isomer (see Figure S9 in Supporting Information).

IV. DISCUSSION

Previous work on CH\(_2\)OD has shown that in addition to O–H bond breaking, C–H fission becomes possible starting at energy \(\sim 30 \text{ 540 } \pm 1000 \text{ cm}^{-1}\), and that the H/D ratio increases fairly monotonically up to at least 42 000 \text{ cm}^{-1}.\(^{12}\) The observed 4540 \text{ cm}^{-1} energy difference between the onsets of D and H formation indicates that two separate processes contribute to the formation of CH\(_2\)O and HCOD and that isomerization to methoxy is not important. The two channels have different angular distributions as well, with \(\beta\) parameters of \(\sim 0.7\) and 0 to \(\sim 0.4\) for the O–D and C–H channels, respectively.\(^{22}\) With better KE resolution, we are now able to take a closer look at the photodissociation dynamics by varying the excitation energy and using several isotopologs of the hydroxymethyl radical. Because absorption to 3s is structureless, whereas absorption to 3p\(_x\) exhibits broad vibronic bands above the structureless 3s background, it is possible to distinguish between dissociation via 3s and 3p\(_x\).\(^{20–22}\) Below we discuss dissociation mechanisms leading to channels I–III and associate them with the relevant conical intersections.\(^{25,35}\)

A. Formaldehyde Channel

The images of H photofragments obtained at excitation energies where the C–H bond cannot be broken show that most of the formaldehyde products are generated with high KEs and possess excitation in the CO stretch and the CH(D)\(_2\) deformation modes (see Figures 2 and 3). The best fits to the KEDs generated in dissociation of CH\(_2\)OH and CH\(_2\)OD are obtained by using combination bands of the CO stretch and the \(\nu_3\) mode (CH\(_3\) scissors; 1500 \text{ cm}^{-1}). Fits using combination bands of CH\(_2\) wag or rock with CO stretch give somewhat less satisfactory results but cannot be excluded. Although the fits are very good, the relative populations of the levels are difficult to determine accurately because of the proximity of some of the energy levels. However, the semiquantitative conclusion is robust: the main contributors to vibrational excitation in formaldehyde fragment are the CO stretch and the CH(D)\(_2\) deformation modes (fundamentals, overtones, and combination bands). Rotational excitation is modest, and most of the available energy is released as kinetic energy.

This conclusion also makes physical sense. CO excitation is reasonable because of the large difference in C–O internuclear distance between CH\(_2\)OH(D) and CH\(_2\)O.\(^{48}\) It is also likely that, when the H atom of the dissociating O–H pushes against formaldehyde on the repulsive part of the PES, a symmetric nuclear motion such as CH\(_2\) scissors will be excited. The observation of excitation in the CO stretch is in accordance with Yarkony’s prediction of a conical intersection along the +g vector direction that propels the dissociating radical toward the repulsive part of the ground state PES and induces CO stretch excitation.\(^{50}\) The pattern of fragment vibrational excitation does not change qualitatively at higher excitation energies in the 3s state, as seen in Figure 3, except that the extent of vibrational excitation increases somewhat with increasing photolysis energy. The recoil anisotropy parameter at high KEs (\(\beta = -0.7\)) is close to the maximum of \(\sim 1.0\) for a perpendicular transition and fast dissociation, as was found before.\(^{20–22}\)

Referring again to Yarkony’s calculations,\(^{35}\) the small fraction of the formaldehyde fragments with a more statistical internal state distribution is predicted to arise from dissociation events along the \(-g\) direction, in which the gradients push the dissociating O–H in the direction of the bound region of the PES. Indeed, this is confirmed in our experiments, which demonstrate the generation of fragments with high internal energies and unresolved rovibrational state distributions (Figure 2). Similar bimodal energy distributions, consisting of a major high KE component with distinct structures and a minor, unstructured, lower KE component, are observed in all the investigated isotopologs (CH\(_2\)OH, CH\(_2\)OD, and CD\(_2\)OD). The absence of distinct structures in the low-KE part is consistent with a more statistical-like internal energy distribution in the formaldehyde fragment, in which rotational excitation is higher and all the allowed vibrational levels are populated. The similar distributions obtained for O–H and O–D bond breaking processes in CH\(_2\)OH(D) indicate that the slow components are not due to tunneling (as observed, for example, in the dissociation of phenols and para-substituted phenols).\(^{49,50}\) The hydrogen fragments with low KEs have nearly isotropic angular distributions, with \(\beta\) ranging from 0 to \(\sim 0.4\). These near-zero values of the \(\beta\) parameters do not imply here slow dissociation. Rather, out of plane motions can also reduce the anisotropy, especially when the fragments have such a broad distribution of internal energies.

B. Hydroxymethylene Channels

The two main questions regarding the cis- and trans-hydroxymethylene channels are (1) what are the mechanisms for their formation and (2) what are the relative populations of the cis- and trans-isomers? Yarkony has predicted that formation of the higher lying cis-hydroxymethylene would be favored following a 3s/ground state conical intersection at large C–H internuclear distances and that this intersection would be accessible only above a small barrier above the dissociation threshold to this channel.\(^{35}\) The calculations, which do not take zero-point energy into account, set this barrier at 2625 \text{ cm}^{-1} above the channel II threshold. The energy separation of CH\(_2\)O and trans-HCOH has been calculated to be 18 126 \text{ cm}^{-1} by Schreiner and co-workers,\(^{48}\) whereas the cis–trans separation in hydroxymethylene was calculated to be 1536\(^{48}\) and 1616\(^{46,47}\) \text{ cm}^{-1}.

The best determination of the energy thresholds for channels II and III are obtained from images recorded following 3p\(_x\) excitation, where the HCOH(D) yield is about 0.3 of CH\(_2\)O and both signals are much larger than the background. From the KEDs, we determine the energy difference between CH\(_2\)O and trans-HCOH at 18 084 \pm 180 \text{ cm}^{-1}, in excellent agreement with the calculated value.\(^{48}\) The corresponding values returned by the fits for CHOD and CDOD are listed Table 3. The energy threshold for channel II is best determined from images where we zoom on the low KE regions to enhance resolution (Figure 6). In CH\(_2\)OH, the small amount of trans-HCOH that appears near the energy threshold for its formation is well
separated in KE from the lowest KEs correlated with H₂CO. As the excitation energy increases, the maximum allowed KE correlated with HCOH becomes larger than the minimum KE of the H₂CO fragment and the two components coalesce. However, as shown in Figure 5, by using CH₂OD, these two components are distinguished.

With 3s excitation, the HCOD yield increases gradually (see Figures 3 and 4) near the channel II threshold. Because the H-fragment KEDs display no structural features we cannot determine whether cis-HCOH(D) appears at its threshold. It is likely that, as proposed by Yarkony, trans- and cis-HCOH(D) are first formed as minor products near their thresholds in dissociation events that sample the minimum region of the ground state PES and generate formaldehyde as the major fragment. This mechanism is consistent with the broad vibrational excitations in the fragments. In our experiments, we cannot determine whether the 3s/ground state conical intersection at large C−H internuclear distances identified by Yarkony is accessible from the 3s state. We must wait for dynamical calculations to clarify this issue, though it is plausible that this tilted-cone conical intersection, while allowed energetically, is less efficient than the one along the O−H coordinate that leads mainly to channel I.²⁵,³⁵

In excitation to 3pₓ for all the studied isotopologs we obtain better fits at all energies when assuming that the second peak in the KED associated with HCOH(D) is the ground state of the cis-isomer than ν₅ of trans-HCOH(D) or any other of its vibrational levels. Taking into account Yarkony’s prediction that the main product following the conical intersections at large C−H distances is the cis-isomer,²²,²⁵,³⁵ we propose that the second peak in the KEDs correlated with hydroxymethylene is the ground vibrational state of the cis-isomer. In this case, the third peak can be assigned to ν₄ (CO stretch; ∼1300 cm⁻¹) of the cis-isomer. Results obtained with CD₂OD confirm and strengthen this interpretation. The H and D KEDs also allow us to determine experimentally the cis–trans separation in hydroxymethylene (HCOH, HCOD, and DCOD). The value for HCOH (Table 3) is in good agreement with the calculated one.³⁶–⁴⁸

V. SUMMARY AND CONCLUSIONS

The studies described above, together with previous experimental and theoretical work,¹⁰–²²,²⁵,³⁵ allow us to propose the following mechanisms for formaldehyde and hydroxymethylene formation in the photodissociation of hydroxymethyl radicals excited to the 3s and 3pₓ states. The internal energy distribution in the formaldehyde fragment is bimodal. Most of the products are generated via a conical intersection between the 3s state and the ground state along the O–H bond coordinate that reaches the repulsive part of the ground state PES.²⁰–²²,²⁵,³⁵ In agreement with Yarkony’s predictions, the formaldehyde products have mostly high KEs and little rotational excitation but possess vibrational excitation in the CO-stretch and the CH(D) deformation modes, with best fits obtained with the scissors mode ν₄. A small fraction is produced with lower KEs and higher internal energies, again in agreement with Yarkony’s suggestion that some of the dissociating radicals sample the minimum region of the PES before dissociating, giving rise to a broad range of internal energies in the formaldehyde product.

Near their thresholds, trans- and cis-HCOH (and their isotopologs) are probably generated by predissociation on the ground state PES following the 3s/ground state conical intersection along the O–H coordinate in a process that provides access to the minimum region on the ground state PES. The yield of hydroxymethylene via this pathway is small relative to the formaldehyde product, and it increases only slowly with excitation energy to the 3s state. The vibrational energy distributions in HCOH(D) are broad, and no sharp threshold can be discerned at the cis-isomer threshold. It is likely that the 3s/ground state conical intersection seam along the C−H coordinate, which leads to direct C−H bond breaking via a tilted cone, is accessed less efficiently than the corresponding one along O−H, which is associated with a vertical cone and leads mainly to formaldehyde formation.

The situation changes abruptly when the 3pₓ band origin is reached. The rotational excitation in the HCOH(D) fragments decreases and vibrational bands become discernible. The highest KE in the KEDs correlated with HCOH(D) corresponds to the ground vibrational level of the trans-isomer, and we find that its relative population decreases with increasing excitation energy. The next and most prominent peak in the KEDs is fit well as the ground vibrational level of the cis-isomer. cis-HCOH(D) is the most populated isomer, and other peaks in the KED can be modeled with its vibrational levels. This result agrees with the calculations of Hoffman and Yarkony who found a conical intersection seam between 3pₓ and 3s (titled cone), which can then access both the O–H and C−H intersection seams between 3s and the ground state.²⁵ It is possible that starting from 3pₓ gradients near the intersection seams propel CH₂OH efficiently toward routes that lead to the formation of both formaldehyde and cis-hydroxymethylene products along the O–H and C−H bond breaking coordinates, respectively. We note in closing that this is the first time that the cis-isomer of hydroxymethylene has been identified experimentally as a reaction product.

The results reported here, along with additional work in progress on energy distributions following excitation to the 3pₓ state of the hydroxymethyl radical, have created a large set of benchmark data that can be compared now with theoretical calculations that include conical intersection seams and the dynamical evolution of the dissociating radicals through them. We hope that the work reported herein would serve as motivation for renewed theoretical efforts.

ASSOCIATED CONTENT

S Supporting Information

Kinetic energy distributions and population analysis; additional fittings of selected KE distributions. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(H.R.) E-mail: reisler@usc.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Support by the U.S. Department of Energy (DOE), Basic Energy Sciences, Grant No. DE-FG02-05ER15629, is gratefully acknowledged. We thank Dr. Amit Samanta for helpful discussions.
REFERENCES

(7) Seakins, P. W.; Tsong, Y. D.; Bruna, P. J.; Grein, F. Stability, Properties, and Electronic G

(15) Bruna, P. J.; Grein, F. Stability, Properties, and Electronic G

(43) Western, C. M. *PGOPER 2010*, a Program for Simulating Rotational Structure; University of Bristol: Bristol, U.K., 2010; see http://pgoper.chm.bris.ac.uk.

