1. Introduction

It is well known that 3D architectures can greatly facilitate the design of rigid materials to create lightweight yet strong cellular materials for diverse engineering applications ranging from structural panels, flow cooling, to energy absorption.1–4 The underlying science stems from the fundamental relationships between the material stiffness/strength or internal surface area and the material density, usually characterized via Ashby charts.1–4 Despite the prosperous studies on the 3D-architected rigid materials, the effects of 3D architectures on the soft materials have been less studied.5,6

Here, we focus on the effects of 3D architectures on soft stretchable electronics. A number of seminal strategies have been proposed to design stretchable electronics;7–10 however, they are usually limited to either bulk shapes with high densities or 2D thin-film geometries. Whereas 3D-architected electronics have been fabricated for intriguing applications from neuron electrodes to foldable batteries,11–21 most of these paradigms involve rigid conductors integrated with soft substrates. The rigid conductors in these 3D-architected electronics may induce limited stretchability or integration mismatch.22–24 As a promising alternative, conductors with intrinsically-stretchable materials such as gels25–30 and conductive polymer composites31,32 have been recently proposed. Despite their great potential, processing these intrinsically-stretchable conductors into 3D complex architectures is still a long-lasting challenge.7,24 Although Hong et al. showed the feasibility of 3D printing of stretchable hydrogels with the direct-writing method,33 the 3D architectures with suspending beams are still challenging due to the requirement of self-weight supporting during the direct-writing process, thus limiting the overall architecture choices.5,6,33

In this report, we present a strategy for creating highly stretchable 3D-architected conductors. We show that 3D architectures can facilitate the design of soft conductors in three aspects: (1) enhancing the overall stretchability by harnessing the architecture geometries, (2) reducing the overall density, (3) enabling conformal contact with curved solids and sensing their large deformation, and (4) enlarging contact areas with engineering fluids and sensing the fluid compositions. We expect that this 3D-architected design of soft conductors with high stretchability, low density, tunable porosity and acute sensitivity may open promising avenues for broad applications in soft and wet environments, including healthcare devices,34–38 quality monitoring and treatment of water,34 human-interface dampers and absorbents,35 soft robotics,36 and tissue scaffolds.37

2. Methods

The strategy integrates two sets of mechanisms: design of elastomer lattice structures (Fig. 1a and e–g) and conformal coating of conductive hydrogels (Fig. 1b–d, h and i). First, we design and fabricate elastomer lattices with highly complex architectures (Fig. 1a). The fabrication challenge comes from the suspending beams in the structures (Fig. 1a). Direct manufacturing with nozzle-based direct-writing,33,38–40 photopolymerization-based stereolithography24,41,42 or polyjet printing43,44 is unable to accomplish the fabrication. To enable the fabrication, we employ a method so-called “indirect additive manufacturing”
by utilizing a water-soluble supporting scaffold (Fig. 1e–g and Fig. S1, ESI†).45–47 The fabrication method can achieve resolution as low as 150 \(\mu \text{m} \) (beam diameter). Not only unit cell structures (Fig. 1g), can the method product large-scale lattices with a number of unit cells with total sample size as large as \(\sim 5 \text{ cm} \) (Fig. 1j).

Then, we conformally coat an ion-doped conductive hydrogel layer around the elastomer lattice beams (Fig. 1a–d). It is challenging to conformally coat water-containing hydrogel pre-solutions on the hydrophobic elastomer surface (Fig. 1c and d). To enable the coating, UV or Ozone assisted chemical anchoring has been employed by other researchers.29,48,49 Although the chemical anchoring method works well for elastomers with planar or slightly curved surfaces, it is challenging for the complexly architected lattices with complex internal surfaces.50 To enable the conformal coating, we first dip-coat a polydopamine (PDA) interfacial layer (40–60 nm) around the elastomer beams (Fig. 1b–d, h and Fig. S2, ESI†), followed by an ion-doped poly(acrylamide) hydrogel coating (Fig. 1i).50 PDA layer has both catechol and amine groups within its molecular structure and can form strong covalent and non-covalent interactions with a wide range of material surfaces, both hydrophobic and hydrophilic;51,52 therefore, hydrogel layer can be conformally coated upon the PDA-coated elastomer structures (Fig. 1c, d and i). The coating thickness of the hydrogel can be controlled by varying the concentrations of the crosslinking agents and accelerators, achieving thickness ranging from 5 to 300 \(\mu \text{m} \) (Fig. S3, ESI†). Since the ion-doped hydrogel is conductive and stretchable, the hydrogel-coated lattice conductors are conductive to AC voltages under large stretches (Fig. 1k).

3. Results and discussions

Effect of 3D architectures on the stretchability

Fractal cuts have been proved to be a good strategy to enhance the overall stretchability of 2D structures.20,22,53–57 Park et al. demonstrated that partitioning a 3D solid into islands connected by small soft ligands can significantly enhance the over stretchability.58,59 Here, we move one step further and hypothesize that 3D fractal architectures can be harnessed to enhance the structural stretchability of soft conductors. To test this hypothesis, we fabricate a series of lattice conductors in self-similar fractal octahedron architectures (Fig. 2a). Uniaxial stretching tests show
that the stretchability of the lattices increases with the fractal orders (Fig. 2b, c and Movie S1, ESI†). The maximum stretch of the first order structure is 3.5, while those of the second and third order lattice conductors are around 5 and 7.1, respectively (Fig. 2b). The stretchability of the third order lattice conductors is twice that of the first order. It is noted that small extra segments are designed on the structures to enable easy clamping of the structures during the mechanical testing (Fig. 2a); we neglect the effect of these segments on the failure behaviors because we try to clamp the whole extra segments during the mechanical testing. Qualitatively, the improvement of stretchability is because that the architected beams with varied tilted angles need to be first aligned along the stretching direction and then elongated with the stretching. The alignment delays the stretching in individual beams. The similar stretch-delaying effect can be found in tendons where the mechanical stretching first unfolds and aligns the randomly orientated or crimped fibers.60 It is noted that the stretchability and stress-stretch behaviors of the lattice conductors and elastomer lattices almost coincide (Fig. 2b), primarily because the modulus and thickness of the hydrogel (0.4–1 kPa, 30–50 μm in thickness, Fig. S4, ESI†) are much smaller than those of the elastomer (∼30–300 kPa, 300–1000 μm in diameter).

To quantitatively understand the stretchability of the fractal lattice conductors, we develop an analytical model as follows. For the second-order structure under uniaxial stretch λ_2 (Fig. 2a), the axial stretch of the beam is $\lambda_{2,1}$ and the stretch in the lateral direction is λ_2, where ζ indicates the compressibility of the structure ($-0.5 \leq \zeta < 0$). Through a geometric analysis in the octahedron architecture (similar as the eight-chain model61), we can approximate the uniaxial stretch of the octahedron beam as

$$\lambda_{2,1}(\lambda_2) = \sqrt{\frac{\lambda_2^{3(1+\zeta)}}{3} + \frac{2\zeta^{2x}}{3}}$$

where a very small parameter ζ ($\ll 1$) is used to enforce the accuracy of the model. For the third order structure under
uniaxial \(\lambda_3 \) (Fig. 2a), we further denote the uniaxial stretch of the elastomer beam as \(\lambda_{3,1} \). Following a similar geometrical analysis, we can formulate \(\lambda_{3,1} \) as

\[
\lambda_{3,1}(\lambda_3) = \sqrt[3]{\frac{\sqrt{3} \frac{(1 + c)}{2} \frac{(1+c)^2}{3} + 2 \lambda_3}{3}} + 2 \left(\frac{\sqrt{3} \frac{(1+c)}{2} \frac{(1+c)^2}{3} + 2 \lambda_3}{3} \right)^{\frac{2}{3}}
\]

(2)

Through analyzing the stress-stretch behaviors of the lattice conductors, we can obtain the parameters \(\varepsilon \approx 0.08 \) and \(z \approx -0.33 \) (theoretical predictions shown in Fig. 2b, the model described in ESI† and Fig. S5 and S6). Using eqn (1)-(2), we plot the theoretically predicted beam stretches in functions of the overall stretches on the structures at various orders in Fig. 2d. As shown in Fig. 2d, the fractal architectures can significantly delay the beam stretch: as the failure stretch of the elastomer beam is 3.5, the beam stretch of the second order structure fails when the overall stretch \(\sim 5.2 \), while the third order \(\sim 7.3 \). These theoretical predictions are consistent with the experimental observations (Fig. 2c). We further develop finite element models to calculate the beam stretches of the lattice structures under varied overall stretches (Fig. 2e). The numerical results can also roughly agree with the experimentally observed results (Fig. 2e).

Effect of 3D architectures on the density

It is highly desirable for the future electronics to feature low density to enable easy portability, and high stretchability along with skin-like rigidity to enable better interfacing with the human.7–9 To illustrate these features, we construct stretchability-density and rigidity-density Ashby charts in Fig. 3. The relative density of the lattice conductor can be written as

\[
\frac{\rho}{\rho_0} = \left(\frac{3 \sqrt{3} \pi d^2}{4 l^2} \right)^{i-1}
\]

(3)

where \(\rho \) is the effective density of the lattice conductor and \(\rho_0 \) is the density of the elastomer (\(\sim 1 \) g cm\(^{-3}\)), \(i \) is the fractal order number, \(d \) is the beam diameter and \(l \) is the beam length. The densities of the second order lattices are estimated as 0.09–0.5 g cm\(^{-3}\) and those of the third order lattices 0.008–0.02 g cm\(^{-3}\). Compared to other 3D-architected conductors, the densities of the third order lattices are only slightly higher than the hollow metallic micro/nano lattices41,42,62,63 (Fig. 3a). However, the stretchability of the current lattices is around 30 times of that of hollow metallic lattices, and at least twice of that of existing most stretchable conductors with 3D lattice architectures33,58,64 (Fig. 3a).

In addition, the lattice architectures can also enable control of effective stiffness of the lattice conductors over a large range. Since the lattice architectures (i.e., octahedron) follow a bending-dominated character, the effective relative Young’s moduli of the lattice conductors should roughly follow a quadratic relationship with the relative density as15,65

\[
\frac{E}{E_0} \approx (\frac{\rho}{\rho_0})^2 = \left(\frac{3 \sqrt{3} \pi d^2}{4 l^2} \right)^{2i-2}
\]

(4)

where \(E \) is the effective Youngs’ modulus of the lattice conductor, \(E_0 \) is the modulus of the elastic beam (90–900 kPa). The fractal lattice design can enable the relative density to span over a large range from 0.008 to 0.4; therefore, the relative Youngs’ moduli span over 4 orders of magnitude from 6.4 \times 10^{-5} to 1.6 \times 10^{-1}. As shown in Fig. 3b, the measured Young’s moduli of the fabricated lattice conductors span from 6 \times 10^{-3} to 3 \times 10^5 kPa with a nearly quadratic relationship \(EI/E_0 \approx (\rho/\rho_0)^{2.02} \). In addition, the effective moduli of the lattice conductors are within the modulus range of human skins and tissues (shaded area in Fig. 3b), thus expecting good adaption with human surfaces from the mechanical perspective.66

Effect of 3D architectures on the interactions with engineering solids

Next, we show that the 3D architectures can facilitate the lattice conductors to interact well with engineering solids. When a soft conductor interacts with an engineering solid, the interaction deformation between these two objects can usually exhibit
digital information through the conductivity change of the conductor. Most of existing stretchable sensors are in 2D planar configurations; to monitor 3D large deformation, they are usually required to be attached to curved surfaces with special bonding treatments and spatial connections. However, our 3D-architected lattice conductor can be used to monitor 3D large deformation of curved solids without special attachment on the curved surfaces.

We first show that the lattice conductors can remain highly conductive under large cyclic stretches (Fig. 4a and b). As shown in Fig. 4b, the third order lattice conductors can be reversibly stretched to stretch \(~7\) for more than 20 cycles, and the corresponding conductivities remain nearly constant for stretch 1 and 7, respectively (Fig. S7, ESI†). Within stretch 1–7, the structural resistances at various orders increase with the uniaxial stretches (Fig. 4c). The resistance-stretch relationship can be quantitatively understood as follows. If we assume the resistivity remains constant, the resistance of the stretched first-order conductor can be estimated as:

\[
\frac{R}{R_0} = \lambda_1^2
\]

Fig. 4 Conductivity properties of lattice conductors under large stretches. (a) Stretched lattice conductor. (b) The resistance of the lattice conductor during 20 cycles of stretching between stretch 1 and 7. (c) Experimentally measured and theoretically predicted relative resistances of various lattice conductors in functions of applied uniaxial stretches. \(R_0\) represents the resistance at undeformed state. (d) The resistances of the lattice conductors with various hydrogel thicknesses. The effective resistivities of the lattice conductors at the undeformed state can be estimated as \(1.02 \times 10^5\) \(\Omega\) m for 9 \(\mu\)m, \(4.08 \times 10^2\) \(\Omega\) m for 20 \(\mu\)m and \(2.17 \times 10^2\) \(\Omega\) m for 100 \(\mu\)m, respectively. (e) A cyclically expanding balloon is encapsulated within a lattice conductor. (f) The cyclically varying relative resistances of the lattice conductor and relative diameters of the balloon.
where \(R_0 \) is the resistance for \(l_1 = 1 \). According to eqn (1) and (2), we can express the resistance for the second and third order lattice conductors as

\[
\frac{R}{R_0} \approx \frac{\sqrt{\frac{2(1+\varepsilon)}{3} + 2\lambda_2^2}}{3} + 2\left(\frac{\sqrt{\frac{2(1+\varepsilon)}{3} + 2\lambda_2^2}}{3}\right)^2a
\]

where \(R_0 \) is the resistance for \(l_2 = 1 \) and \(l_3 = 1 \), respectively. It is noted that we here ignored the clamping segments outside of the main octahedron architectures. The predicted conductivities from eqn (5)–(7) match consistently with the measured conductivities of the lattice conductors at various orders (Fig. 4c). To further validate the theoretical predictions, we measure the conductivities of lattice conductors with varied thicknesses of hydrogel coatings, and the measured results are also roughly consistent with the theoretical predictions (Fig. 4d). The discrepancy between the theoretical and experimental results is probably due to the thickness inhomogeneity of the hydrogel coatings.

Then we demonstrate a 3D resistive sensor to monitor 3D large deformation of a curved solid. The essential goal of this demonstration is to use the 3D lattice conductors to monitor the beating of a heart in vitro. We employ a cyclically deforming balloon to mimic the beating heart and encapsulate it with a lattice conductor, followed by measuring the conductivity on two ends of the lattice conductor (Fig. 3e, Fig. S8 and Movie S2, ESI†). As the balloon is deforming, the 3D lattice structure with low stiffness and high deformability can conformally deform around the balloon surface. Therefore, the stretch of the third order lattice conductor can be estimated as \(\lambda_3 \approx D/D_0 \), where \(D \) and \(D_0 \) are the diameters of the balloon at the deformed and initial state, respectively. Similar to eqn (7), the relative resistance can be estimated as

\[
\frac{R}{R_0} \approx \frac{\sqrt{\frac{2(1+\varepsilon)}{3} + 2\lambda_3^{2(1+\varepsilon)}D}}{3} + 2\left(\frac{\sqrt{\frac{2(1+\varepsilon)}{3} + 2\lambda_3^{2(1+\varepsilon)}D}}{3}\right)^2a
\]

Fig. 5 Wastewater monitoring with lattice conductors. (a) A clamped lattice conductor immersed in a CuSO\(_4\) solution and under cyclic stretching. (b) Schematics to show the nanoclay-embedded hydrogel on the lattice structure capable of adsorbing heavy metal ions. (c) The relative resistances \((R/R^*) \) of the unstretched and stretched lattice conductors in functions of Cu\(^{2+}\) concentrations. \(R^* \) represents the resistance for the concentration 0.06 mol L\(^{-1}\). The control results are the relative resistances of CuSO\(_4\) solutions. (d) The relative resistances of the lattice conductor that adsors Cu\(^{2+}\) in a solution with step-increasing of Cu\(^{2+}\) concentrations. The red numbers in (d) represent the Cu\(^{2+}\) concentrations (mol L\(^{-1}\)). The resistance measurement is performed when the structure is taken out of the solution with the residue water removed.
with the measured resistances during the balloon actuation, we can theoretically calculate the balloon diameters (eqn (8)) which are consistent with the experimentally measured results (Fig. 4f).

Effect of 3D architectures on the interactions with engineering fluids

Besides the deformation-sensing capability, the 3D porous lattice conductors with hydrogel skins can be used to monitor heavy metal ions in the wastewater. Wastewater with heavy metal ions should be carefully treated before discharging into the environment because heavy metals are carcinogenic after long-term accumulation in living organisms.34,69 The variation of the metal ion concentration can usually be monitored by conductivity measurements; however, the measurements have low sensitivity when the concentration is low (<10⁻⁴ mol L⁻¹).34 Here, we employ hydrogel-coated lattice conductors to monitor metal ion concentrations with higher sensitivity (Fig. 5a). Within the hydrogel, we embed negatively-charged nanoclay particles that promote the absorption of Cu²⁺ ions through electrostatic attractions (Fig. 5b).34,70 And the absorption of Cu²⁺ can enhance the conductivities of the hydrogel-coated lattice conductors (Fig. 5c). In contrast to the direct conductivity measurement in the Cu²⁺ solution, we use a hydrogel layer to first absorb and accumulate Cu²⁺ within a hydrogel matrix. Therefore, the hydrogel absorption skin can significantly enhance the measurement sensitivity at the low concentration range (Fig. 5c). It is noted that to eliminate the effect of gel swelling we pre-swell the hydrogel layers in the DI water before the experiments (see ESI†). In addition, the porous character of the lattice structures enlarges the contact areas between the Cu²⁺ ions and hydrogels (Fig. 5a). Furthermore, cyclic large-strain stretching of the hydrogel-elastomer structure can also facilitate the mixing of the solution and the diffusion of heavy metal ions into the hydrogel layers (Fig. 5a).

To demonstrate the monitoring capability of the lattice conductors, we step-by-step increase the Cu²⁺ concentration in a CuSO₄ solution bath and measure the resistance of the lattice conductor after ~5 min absorption. The measurement is carried out when the lattice conductors are taken out of the solution, and the water residue is removed (see ESI†). The measured resistances show step-wise decreasing with large resistance changes; however, direct measurement of the solution resistance only shows small resistance changes (Fig. 5d). It is noted that the required absorption time for thin gel layer (30 µm) is relatively short (only in several minutes) to enable time-effective sensing. The equilibrium absorption time scales with h²/η where h is the hydrogel thickness and η is the diffusivity (∼10⁻¹¹ m² s⁻¹).34,69 The equilibrium absorption time for 1 mm-thick hydrogel is estimated as 27.8 h, but only 1.5 min for 30 µm-thick hydrogels.

4. Conclusion

We recently reported carbon-grease-filled lattice conductors that are 3D-architected and stretchable.46 Compared to the reported conductors, the current lattice conductors involve ionically conductive hydrogels conformally on the lattice surfaces, thus offering a special opportunity for interacting with the external environment. Although the hydrogels on the outer surfaces may require humidity control to maintain their properties in the long term,20 the interactions with the external engineering objects can enable applications that have not been achieved by existing 3D-architected conductors,11–21 such as sensing of the large deformation of curved solids and rapid wastewater monitoring (Fig. 4 and 5).

In summary, we report a type of stretchable 3D-architected lattice conductors. Besides the high stretchability and low density, the lattice conductors show great adaption when interfacing with engineering solids and fluids. With integrated features of high stretchability, 3D architecture, high porosity and low density, the designed lattice conductors may inspire a number of future research directions and applications. For example, 3D-architected metamaterials with the potent capability of tuning material properties by harnessing the structural architectures can be applied to design unconventional electronics with both controlled electronic conductivity and desirable mechanical performance.19,64 In addition, with their skin-like rigidity, these hydrogel-based lattice conductors probably can be easily translated to a number of biomedical applications which require biocompatible electrodes with desirable shapes.11,12,16

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The research was funded by NSF grant CMMI-1649093. We acknowledge Dr Malancha Gupta for allowing us to use the contact angle goniometer in her lab. The SEM images were taken from Center for Electron Microscopy and Microanalysis (CEMMA) at the University of Southern California.

References

