Multivariate utility maximization with proportional transaction costs and random endowment

– Joint work with G. Benedetti (CREST, Dauphine) –

Luciano Campi

Université Paris-Dauphine
Contents

1 Introduction

2 Transaction costs

3 Duality and existence

4 Utility indifference pricing
Introduction I : Formulation of the problem

A concave function $U : \mathbb{R}^d \to [-\infty, \infty)$ is called a utility function supported on \mathbb{R}_+^d if

- $C_U := \text{cl}(\text{dom}(U)) = \text{cl}\{x : U(x) > -\infty\} = \mathbb{R}_+^d$ and
- U is increasing with respect to \mathbb{R}_+^d-(partial) order.

Consider the following problem

$$u(\mathcal{E}) := \sup\{\mathbb{E} [U(X + \mathcal{E})] : X \in \mathcal{A}_T^0\}$$

where

- \mathcal{A}_T^0 is the set of all final gains attainable from a zero initial portfolio (to be defined later).
- \mathcal{E} is a (possibly unbounded) random endowment.
Introduction I : Formulation of the problem

A concave function \(U : \mathbb{R}^d \rightarrow [-\infty, \infty) \) is called a utility function supported on \(\mathbb{R}^d_+ \) if

- \(C_U := \text{cl}(\text{dom}(U)) = \text{cl}\{x : U(x) > -\infty\} = \mathbb{R}^d_+ \) and
- \(U \) is increasing with respect to \(\mathbb{R}^d_+(\text{partial}) \) order.

Consider the following problem

\[
\begin{align*}
u(\mathcal{E}) := \sup \{ \mathbb{E} [U(X + \mathcal{E})] : X \in A_T^0 \}
\end{align*}
\]

where

- \(A_T^0 \) is the set of all final gains attainable from a zero initial portfolio (to be defined later).
- \(\mathcal{E} \) is a (possibly unbounded) random endowment.
Introduction II: References

Max utility with TC:
- HJB approach: Davis-Norman (1990), Shreve-Soner (1994).
- Shadow prices: recent papers by Gerhold, Kallsen, Mühle-Karbe, Schachermayer.

Utility-based pricing with TC:
Introduction II: References

- Max utility with TC:
 - HJB approach: Davis-Norman (1990), Shreve-Soner (1994).
 - Shadow prices: recent papers by Gerhold, Kallsen, Mühle-Karbe, Schachermayer.

- Utility-based pricing with TC:
TC Model: Bid-ask matrices

Main features of the model: All is measured in physical units/quantities, \(d \geq 1 \) risky assets (e.g., foreign currencies), the terms of trading are given by a **bid-ask process**

\[
\{\Pi_t(\omega), t \in [0, T]\} = \{(\Pi_{ij}^t(\omega))_{i,j=1}^d, t \in [0, T]\}
\]

an adapted, càdlàg, \(d \times d \) matrix-valued process s.t.
- \(\Pi_{ij} > 0, 1 \leq i, j \leq d \)
- \(\Pi_{ii} = 1, 1 \leq i \leq d \)
- \(\Pi_{ij} \leq \Pi_{ik}^j \Pi_{kj}^i, 1 \leq i, j, k \leq d \)

Meaning: To buy 1 unit of currency \(j \) one has to pay \(\Pi_{ij}^t(\omega) \) units of \(i \) (at time \(t \) when the state of world is \(\omega \))
TC Model: Solvency cones & consistent price systems

- **solvency cone**: $K_t = \text{cone}\{e^i, \Pi_{ij}^t e^i - e^j : 1 \leq i, j \leq d\}$
- $-K_t$ is the cone of portfolios available at price 0
- polar of $-K_t$: $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- **Financial interpretation**: $w \in K_t^*$ iff $w \in \mathbb{R}^d$ and $\Pi_{ij}^t w^i \geq w^j$
 \[\Rightarrow \Pi_{ij}^t \geq \frac{w^j}{w^i} \Rightarrow \Pi_{ij}^t = (1 + \lambda_{ij}^t) \frac{w^j}{w^i} \text{ for some } \lambda_{ij}^t \geq 0 \]
- Every $w \in K_t^*$ (resp. in its interior) is called consistent (resp. strictly consistent) price system.
TC Model: Solvency cones & consistent price systems

- **solvency cone:** \(K_t = \text{cone}\{e^i, \Pi_t^{ij} e^i - e^j : 1 \leq i, j \leq d\} \)
- \(-K_t\) is the cone of portfolios available at price 0
- **polar of \(-K_t\):** \(K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\} \)
- **Financial interpretation:** \(w \in K_t^* \) iff \(w \in \mathbb{R}_+^d \) and \(\Pi_t^{ij} w^i \geq w^j \)
 \(\Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij} \frac{w^j}{w^i}) \) for some \(\lambda_t^{ij} \geq 0 \)
- Every \(w \in K_t^* \) (resp. in its interior) is called consistent (resp. strictly consistent) price system.
TC Model: Solvency cones & consistent price systems

- **solvency cone**: $K_t = \text{cone}\{ e^i, \prod_{t}^{ij} e^i - e^j : 1 \leq i, j \leq d \}$
- $-K_t$ is the cone of portfolios available at price 0
- **polar of $-K_t$**: $K^*_t = \{ w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t \}$
- **Financial interpretation**: $w \in K^*_t$ iff $w \in \mathbb{R}^d$ and $\prod_{t}^{ij} w^i \geq w^j$
 \[\Rightarrow \prod_{t}^{ij} \geq \frac{w^j}{w^i} \Rightarrow \prod_{t}^{ij} = (1 + \lambda_{t}^{ij}) \frac{w^j}{w^i} \text{ for some } \lambda_{t}^{ij} \geq 0 \]
- Every $w \in K^*_t$ (resp. in its interior) is called consistent (resp. strictly consistent) price system.
TC Model: Solvency cones & consistent price systems

- **solvency cone**: $K_t = \text{cone}\{e^i, \Pi_{t}^{ij}e^i - e^j : 1 \leq i, j \leq d\}$
- $-K_t$ is the cone of portfolios available at price 0
- **polar of $-K_t$**: $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- **Financial interpretation**: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_{t}^{ij}w^i \geq w^j$
 \[\Rightarrow \Pi_{t}^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_{t}^{ij} = (1 + \lambda_{t}^{ij})\frac{w^j}{w^i} \text{ for some } \lambda_{t}^{ij} \geq 0 \]
- Every $w \in K_t^*$ (resp. in its interior) is called **consistent** (resp. **strictly consistent**) price system.
TC Model: Solvency cones & consistent price systems

- **solvency cone**: $K_t = \text{cone}\{ e^i, \Pi_{ij}^t e^i - e^j : 1 \leq i, j \leq d \}$
- $-K_t$ is the cone of portfolios available at price 0
- **polar of $-K_t$:** $K_t^* = \{ w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t \}$
- **Financial interpretation**: $w \in K_t^*$ iff $w \in \mathbb{R}^d_+$ and $\Pi_{ij}^t w^i \geq w^j$
 \[\Rightarrow \Pi_{ij}^t \geq \frac{w^j}{w^i} \Rightarrow \Pi_{ij}^t = (1 + \lambda_{ij}^t) \frac{w^j}{w^i} \] for some $\lambda_{ij}^t \geq 0$
- Every $w \in K_t^*$ (resp. in its interior) is called consistent (resp. strictly consistent) price system.
TC Model: Strictly consistent price processes

Z is a random dynamic analogue of SCPS’s.

Definition

An $\mathbb{R}^d_+ \setminus \{0\}$-valued, adapted process Z is a strictly consistent price process if

- is a càdlàg martingale
- If $Z_\tau \in \text{int}K^*_\tau \forall \tau$ stopping time, and $Z_{\sigma^-} \in \text{int}K^*_{\sigma^-} \forall \sigma$ predictable stopping time.

Relation with the usual concept of EMM: choose a numéraire Z^1, define $S_t = (1, Z^2_t / Z^1_t \ldots Z^d_t / Z^1_t)$ and set $d\mathbb{Q}/d\mathbb{P} = Z^1_T / Z^1_0$, then S is a \mathbb{Q}-martingale.
TC Model: Admissible portfolios

Let Π_t be a given Bid-Ask process. A d-dim process X is an admissible self-financing portfolio process if

- is predictable and finite variation (may have left as well as right jumps!)
- $dX_t \in -K_t$, more precisely:

$$X_\tau - X_\sigma \in -K_{\sigma,\tau} = -\text{conv}(\bigcup_{\sigma \leq u < \tau} K_u, 0)$$

- is “bounded from below” by some threshold

Interpretation: $X^i_t = \text{quantity}$ of asset i held by the agent in t. We denote A^x the set of all admissible portfolio processes X with $X_0 = x$, and $A^x_T := \{X_T : X \in A^x\}$.
TC Model: Super-replication theorem

Assumption

No-Arbitrage condition (NA): There exists a SCPP Z.

Let $Y \in L^0(\mathbb{R}^d, \mathcal{F}_T)$ a contingent claim such that $Y \succeq_T -a1$ (i.e. $Y + a1 \in K_T$) for some $a > 0$.

Theorem (C.-Schachermayer, 2006)

Under NA, the following sets are equal:

1. $\{x \in \mathbb{R}^d : \exists X \in \mathcal{A}^x, X_T \succeq Y\}$
2. $\{x \in \mathbb{R}^d : \langle Z_0, x \rangle \geq E[\langle Z_T, Y \rangle], \forall Z \in \mathcal{Z}^s\}$

For more info Kabanov-Safarian’s book (2010).
Let us come back to max problem

Assumption

N- Arbitrage condition: There exists a SCPP Z

Let U denote a utility function such that $C_U = \mathbb{R}_+^d$. Our objective is

$$u(\mathcal{E}) := \sup\{\mathbb{E}[U(X + \mathcal{E})] : X \in \mathcal{A}_T^0\}.$$

Recall from C.-Owen (2008) that $u(x)$ finite if $x \in \text{cl}(\mathcal{A}_T^0 \cap \mathbb{R})$, so we assume

$$x' \preceq \mathcal{E} \preceq x'' + X'', \quad x', x'' \in \text{int}(\mathcal{A}_T^0 \cap \mathbb{R}), X'' \in \mathcal{A}_T^0.$$

We call \mathcal{O} the set of random endowments with such properties.
Inada’s conditions I: Essential smoothness $U'(0) = \infty$

For proving the main results we need multivariate Inada’s conditions:

- **Essentially smoothness** (analogue of $U'(0) = \infty$)
- **Asymptotic satiability** (analogue of $U'(\infty) = 0$)

Definition (Rockafellar’s Convex Analysis)

A utility function $U : \mathbb{R}^d \rightarrow [-\infty, \infty)$ with $C_U = \mathbb{R}_+^d$ is said to be **essentially smooth** if

1. U is differentiable in the interior of \mathbb{R}_+^d;
2. $\lim_{i \to \infty} |\nabla U(x_i)| = +\infty$ for any sequence $x_i \in \mathbb{R}_+^d$ converging to a boundary point of \mathbb{R}_+^d.
Inada’s conditions II: Asymptotic satiability $U'(\infty) = 0$

- Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon)^d \neq \emptyset.$$

- Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{ U(x) - \langle x, x^* \rangle \}$$

- One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl} (\text{dom}(U^*))$.

Luciano Campi
Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Inada’s conditions II: Asymptotic satiability $U'(\infty) = 0$

Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon)^d \neq \emptyset.$$

Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{ U(x) - \langle x, x^* \rangle \}$$

One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl}(\text{dom}(U^*))$.

Luciano Campi
Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Inada’s conditions II: Asymptotic satiability $U'(\infty) = 0$

Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon)^d \neq \emptyset.$$

Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{ U(x) - \langle x, x^* \rangle \}$$

One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl}(\text{dom}(U^*))$.

Luciano Campi

Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Duality I : Dual variables

Let $\mathcal{E} \in \mathcal{O}$. We look at the corresponding abstract problem and use the duality (L^∞, ba).

- Set $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and define
 \[
 \mathbb{U}_\mathcal{E}(X) := \mathbb{E} [U(X + \mathcal{E})].
 \]

 Then $\sup_{X \in \mathcal{C}} \mathbb{U}_\mathcal{E}(X) = u(\mathcal{E}) = \sup_{X \in \mathcal{A}_T^0} \mathbb{E} [U(X + \mathcal{E})]$.

- The dual of $\mathbb{U}_\mathcal{E}$ is given by
 \[
 \mathbb{U}_\mathcal{E}^*(m) := \sup_{X \in L^\infty(\mathbb{R}^d)} [\mathbb{U}_\mathcal{E}(X) - m(X)].
 \]

- Define the dual cone of \mathcal{C} by
 \[
 \mathcal{D} := \{ m \in \text{ba}(\mathbb{R}^d; \mathbb{P}) : m(X) \leq 0 \quad \forall X \in \mathcal{C} \}.
 \]
Duality I : Dual variables

Let $\mathcal{E} \in \mathcal{O}$. We look at the corresponding abstract problem and use the duality (L^∞, ba).

- Set $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and define
 \[
 U_\mathcal{E}(X) := \mathbb{E} [U(X + \mathcal{E})].
 \]
 Then $\sup_{X \in \mathcal{C}} U_\mathcal{E}(X) = u(\mathcal{E}) = \sup_{X \in \mathcal{A}_T^0} \mathbb{E} [U(X + \mathcal{E})]$.

- The dual of $U_\mathcal{E}$ is given by
 \[
 U^*_\mathcal{E}(m) := \sup_{X \in L^\infty(\mathbb{R}^d)} [U_\mathcal{E}(X) - m(X)].
 \]

- Define the dual cone of \mathcal{C} by
 \[
 \mathcal{D} := \{ m \in ba(\mathbb{R}^d; \mathbb{P}) : m(X) \leq 0 \quad \forall X \in \mathcal{C} \}.
 \]
Duality I: Dual variables

Let $\varepsilon \in \mathcal{O}$. We look at the corresponding abstract problem and use the duality (L^∞, ba).

- Set $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and define

$$U_\varepsilon(X) := \mathbb{E} [U(X + \varepsilon)].$$

Then $\sup_{X \in \mathcal{C}} U_\varepsilon(X) = u(\varepsilon) = \sup_{X \in \mathcal{A}_T^0} \mathbb{E} [U(X + \varepsilon)].$

- The dual of U_ε is given by

$$U_\varepsilon^*(m) := \sup_{X \in L^\infty(\mathbb{R}^d)} [U_\varepsilon(X) - m(X)].$$

- Define the dual cone of \mathcal{C} by

$$\mathcal{D} := \{ m \in ba(\mathbb{R}^d; \mathbb{P}) : m(X) \leq 0 \quad \forall X \in \mathcal{C} \}. $$
Duality II

- Pick w.l.o.g. $X \in \mathcal{X}_T$ and $\mathcal{E} \in \mathcal{O}$ such that $X + \mathcal{E} \in \mathbb{R}_+^d$
- For any $m = m^c + m^p \in \mathcal{D}$ one has

$$U(X + \mathcal{E}) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right\rangle$$

- Taking expectation, one has

$$E \left[U(X + \mathcal{E}) \right] \leq E \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right\rangle \right]$$

$$\leq E \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})$$

- Moreover: $U^*_\mathcal{E}(m) = E \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})$ for $m \in \text{ba}(\mathbb{R}_+^d)$
- so that $u(\mathcal{E}) \leq \inf_{m \in \mathcal{D}} U^*_\mathcal{E}(m)$.

Luciano Campi
Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Duality II

- Pick w.l.o.g. $X \in \mathcal{A}_T$ and $\mathcal{E} \in \mathcal{O}$ such that $X + \mathcal{E} \in \mathbb{R}_+^d$
- For any $m = m^c + m^p \in \mathcal{D}$ one has

$$U(X + \mathcal{E}) \leq U^* \left(\frac{dm^c}{d\mathcal{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathcal{P}} \right\rangle$$

- Taking expectation, one has

$$\mathbb{E} \left[U(X + \mathcal{E}) \right] \leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathcal{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathcal{P}} \right\rangle \right]$$

$$\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathcal{P}} \right) \right] + m(\mathcal{E})$$

- Moreover: $U^*_{\mathcal{E}}(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathcal{P}} \right) \right] + m(\mathcal{E})$ for $m \in \text{ba(}\mathbb{R}_+^d\text{)}$
- so that $u(\mathcal{E}) \leq \inf_{m \in \mathcal{D}} U^*_{\mathcal{E}}(m)$.

Luciano Campi

Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Duality II

- Pick w.l.o.g. $X \in \mathcal{A}_T$ and $\mathcal{E} \in \mathcal{O}$ such that $X + \mathcal{E} \in \mathbb{R}_+^d$
- For any $m = m^c + m^p \in \mathcal{D}$ one has

$$U(X + \mathcal{E}) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left(X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right)$$

- Taking expectation, one has

$$\mathbb{E} [U(X + \mathcal{E})] \leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left(X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right) \right]$$

$$\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})$$

- Moreover : $U^*_\mathcal{E}(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})$ for $m \in \text{ba}(\mathbb{R}_+^d)$
- so that $u(\mathcal{E}) \leq \inf_{m \in \mathcal{D}} U^*_\mathcal{E}(m)$.
Duality II

- Pick w.l.o.g. $X \in \mathcal{A}_T$ and $\mathcal{E} \in \mathcal{O}$ such that $X + \mathcal{E} \in \mathbb{R}^d_+$.
- For any $m = m^c + m^p \in \mathcal{D}$ one has
 \[
 U(X + \mathcal{E}) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right\rangle
 \]
- Taking expectation, one has
 \[
 \mathbb{E} \left[U(X + \mathcal{E}) \right] \leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \right\rangle \right]
 \leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})

 - Moreover: $U^*_\mathcal{E}(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(\mathcal{E})$ for $m \in \text{ba}(\mathbb{R}^d_+)$.
 - So that $u(\mathcal{E}) \leq \inf_{m \in \mathcal{D}} U^*_\mathcal{E}(m)$.

Luciano Campi

Université Paris-Dauphine

Multivariate utility maximization with proportional transaction costs and random endowment
Duality II

- Pick w.l.o.g. $X \in A_T$ and $\mathcal{E} \in \mathcal{O}$ such that $X + \mathcal{E} \in \mathbb{R}_+^d$
- For any $m = m^c + m^p \in \mathcal{D}$ one has
 \[
 U(X + \mathcal{E}) \leq U^*(\frac{dm^c}{d\mathbb{P}}) + \langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \rangle
 \]
- Taking expectation, one has
 \[
 \mathbb{E}[U(X + \mathcal{E})] \leq \mathbb{E} \left[U^*(\frac{dm^c}{d\mathbb{P}}) + \langle X + \mathcal{E}, \frac{dm^c}{d\mathbb{P}} \rangle \right]
 \leq \mathbb{E} \left[U^*\left(\frac{dm^c}{d\mathbb{P}}\right) \right] + m(\mathcal{E})
 \]
- Moreover: $U^*_\mathcal{E}(m) = \mathbb{E} \left[U^*\left(\frac{dm^c}{d\mathbb{P}}\right) \right] + m(\mathcal{E})$ for $m \in \text{ba}(\mathbb{R}_+^d)$
- so that $u(\mathcal{E}) \leq \inf_{m \in \mathcal{D}} U^*_\mathcal{E}(m)$.
Duality III: No duality gap and existence

Theorem (Lagrange Duality Theorem)

If $\mathcal{E} \in \mathcal{O}$ then

$$\sup_{X \in \mathcal{C}} \mathcal{U}_\mathcal{E}(X) = u(\mathcal{E}) = \min_{m \in \mathcal{D}} \mathcal{U}_\mathcal{E}^*(m) \in \mathbb{R}.$$

Let $\hat{m} = \hat{m}_c + \hat{m}_p \in \mathcal{D}$ denote the minimizer, which is unique if U is strictly concave.

Moreover, if $\mathcal{E} \in \mathcal{O} \cap L^\infty(\mathbb{R}^d)$ and $x \mapsto u(x + \mathcal{E})$ is asymptotic satiable, then the optimizer \hat{X} exists and

$$\hat{X} = (\nabla U)^{-1} \left(\frac{d \hat{m}_c}{d\mathcal{P}} \right) - \mathcal{E}.$$
Duality III : No duality gap and existence

Theorem (Lagrange Duality Theorem)

If \(\mathcal{E} \in \mathcal{O} \) then

\[
\sup_{X \in \mathcal{C}} U_\mathcal{E}(X) = u(\mathcal{E}) = \min_{m \in \mathcal{D}} U^*_\mathcal{E}(m) \in \mathbb{R}.
\]

Let \(\hat{m} = \hat{m}^c + \hat{m}^p \in \mathcal{D} \) denote the minimizer, which is unique if \(U \) is strictly concave.

Moreover, if \(\mathcal{E} \in \mathcal{O} \cap L^\infty(\mathbb{R}^d) \) and \(x \mapsto u(x + \mathcal{E}) \) is asymptotic satiable, then the optimizer \(\hat{X} \) exists and

\[
\hat{X} = (\nabla U)^{-1} \left(\frac{d\hat{m}^c}{d\mathbb{P}} \right) - \mathcal{E}.
\]
Sufficient conditions for existence

- The asymptotic satiability of $u(\mathcal{E} + x)$ is difficult to check. Nonetheless ...

- Let U^* satisfy the growth condition

$$U^*(\epsilon x^*) \leq \zeta(\epsilon)(U^*(x^*)^+ + 1)$$

for all $x^* \in \mathbb{R}^d_+, \epsilon \in (0, 1]$ and for some positive function ζ. Then, both U and $x \mapsto u(\mathcal{E} + x)$ are asymptotically satiable if $\mathcal{E} \in O \cap L^\infty$.

- As in the case with no random endowment (see C.-Owen), a suitable notion of RAE with more concavity (Multivariate Risk Aversion) implies the growth condition for U^*.

- Liquidation to, e.g., the first asset can be included in the picture taking $U(x_1 \ldots x_d) = U(x_1)$ (as in C.-Owen).
Sufficient conditions for existence

- The asymptotic satiability of \(u(\mathcal{E} + x) \) is difficult to check. Nonetheless ...
- Let \(U^* \) satisfy the growth condition

\[
U^*(\varepsilon x^*) \leq \zeta(\varepsilon)(U^*(x^*)^+ + 1)
\]

for all \(x^* \in \mathbb{R}_+^d, \varepsilon \in (0, 1] \) and for some positive function \(\zeta \). Then, both \(U \) and \(x \mapsto u(\mathcal{E} + x) \) are asymptotically satiable if \(\mathcal{E} \in O \cap L^\infty \).

- As in the case with no random endowment (see C.-Owen), a suitable notion of RAE with more concavity (Multivariate Risk Aversion) implies the growth condition for \(U^* \).
- Liquidation to, e.g., the first asset can be included in the picture taking \(U(x_1 \ldots x_d) = U(x_1) \) (as in C.-Owen).
Sufficient conditions for existence

- The asymptotic satiability of \(u(\mathcal{E} + x) \) is difficult to check. Nonetheless ...
- Let \(U^* \) satisfy the growth condition

\[
U^*(\varepsilon x^*) \leq \zeta(\varepsilon)(U^*(x^*)^+ + 1)
\]

for all \(x^* \in \mathbb{R}^d_{++} \), \(\varepsilon \in (0, 1] \) and for some positive function \(\zeta \).

Then, both \(U \) and \(x \mapsto u(\mathcal{E} + x) \) are asymptotically satiable if \(\mathcal{E} \in \mathcal{O} \cap L^\infty \).

- As in the case with no random endowment (see C.-Owen), a suitable notion of RAE with more concavity (Multivariate Risk Aversion) implies the growth condition for \(U^* \).
- Liquidation to, e.g., the first asset can be included in the picture taking \(U(x_1 \ldots x_d) = U(x_1) \) (as in C.-Owen).
Sufficient conditions for existence

- The asymptotic satiability of $u(\mathcal{E} + x)$ is difficult to check. Nonetheless ...
- Let U^* satisfy the growth condition

$$U^*(\epsilon x^*) \leq \zeta(\epsilon)(U^*(x^*)^+ + 1)$$

for all $x^* \in \mathbb{R}^d_+, \epsilon \in (0, 1]$ and for some positive function ζ. Then, both U and $x \mapsto u(\mathcal{E} + x)$ are asymptotically satiable if $\mathcal{E} \in \mathcal{O} \cap L^\infty$.

- As in the case with no random endowment (see C.-Owen), a suitable notion of RAE with more concavity (Multivariate Risk Aversion) implies the growth condition for U^*.

- Liquidation to, e.g., the first asset can be included in the picture taking $U(x_1 \ldots x_d) = U(x_1)$ (as in C.-Owen).
Let B be a given contingent claim and let $j = 1, \ldots, d$.

Definition

The *utility indifference (bid) price* (UIP), expressed in units of asset j, for B is the solution $p_j(B) = p_j(B; U, \mathcal{E}) \in \mathbb{R}$ to the equation

$$u(\mathcal{E} + B - e_jp_j) = u(\mathcal{E})$$

(4.1)

Define $m_j(X) := \frac{m(X)}{m_j(\Omega)}$ and $\hat{m}_j(X) := \inf_{m \in \mathcal{D} \cap \text{dom}(U^*_0)} m_j(X)$.

Proposition

Assume $\mathcal{E} \in \mathcal{O}$ and $\mathcal{E} + B - e_j\hat{m}_j(B) \in \mathcal{O}$. Thus there exists a unique UIP for B.
Utility indifference pricing II

Proposition

Under the assumptions $E \in \mathcal{O}$ and $E + B - e_j \hat{m}_j(B) \in \mathcal{O}$ we have

1. $m_j(B) \leq p_j(B) \leq \hat{m}_j(B)$;
2. for $c \in \mathbb{R}$ we have $p_j(B + e_j c) = p_j(B) + c$;
3. if $B \preceq C$ then $p_j(B) \leq p_j(C)$ for any $j = 1, \ldots, d$;
4. given contingent claims B_1, B_2 and $\lambda \in [0, 1]$

$$p_j(\lambda B_1 + (1 - \lambda) B_2) \geq \lambda p_j(B_1) + (1 - \lambda) p_j(B_2)$$

for any $j = 1, \ldots, d$;
Utility indifference pricing III: dual representation

Proposition

Under the previous assumptions, the UIP can be expressed as

\[p_j(B) = \inf_{m \in D^j(1) \cap \text{dom}(U^*_0)} \{ m_j(B) + \alpha_j(m) \} \]

where

\[D^j(k) := \{ m \in D : m_j(1) = k \} \]

\[\alpha_j(m) := \inf_{k > 0} \frac{1}{k} \left\{ \mathbb{E} \left[U^* \left(\frac{dm^k,c}{dP} \right) \right] + m^k(\mathcal{E}) - v_{\mathcal{E}} \right\} \]

and \(m^k \) is such that \(m^k_i = m_i \) if \(i \neq j \) and \(m^k_j = km_j \).
Conclusions

- Utility function U supported on \mathbb{R}_+^d satisfying multivariate Inada's type conditions.
- No duality gap under the weak assumption $\mathcal{E} \in \mathcal{O}$.
- Existence of the optimizer under the stronger $\mathcal{E} \in \mathcal{O} \cap L^\infty$.
- Existence and uniqueness of UIP as in Owen-Zitkovic.
- UIP is convex risk measure, dual representation ...
- First step towards Kramkov-Sirbu type results for UIP’s asymptotic expansion in financial markets with proportional transaction costs ...

Luciano Campi
Université Paris-Dauphine
Multivariate utility maximization with proportional transaction costs and random endowment
Conclusions

- Utility function U supported on \mathbb{R}^d_+ satisfying multivariate Inada’s type conditions
- No duality gap under the weak assumption $\mathcal{E} \in \mathcal{O}$
- Existence of the optimizer under the stronger $\mathcal{E} \in \mathcal{O} \cap L^\infty$
- Existence and uniqueness of UIP as in Owen-Zitkovic
- UIP is convex risk measure, dual representation ...
- First step towards Kramkov-Sirbu type results for UIP’s asymptotic expansion in financial markets with proportional transaction costs ...
Conclusions

- Utility function U supported on \mathbb{R}_d^+ satisfying multivariate Inada's type conditions
- No duality gap under the weak assumption $\mathcal{E} \in \mathcal{O}$
- Existence of the optimizer under the stronger $\mathcal{E} \in \mathcal{O} \cap L^\infty$
- Existence and uniqueness of UIP as in Owen-Zitkovic
- UIP is convex risk measure, dual representation ...
- First step towards Kramkov-Sirbu type results for UIP's asymptotic expansion in financial markets with proportional transaction costs ...
Conclusions

- Utility function U supported on \mathbb{R}_+^d satisfying multivariate Inada’s type conditions
- No duality gap under the weak assumption $\mathcal{E} \in \mathcal{O}$
- Existence of the optimizer under the stronger $\mathcal{E} \in \mathcal{O} \cap L^\infty$
- Existence and uniqueness of UIP as in Owen-Zitkovic
- UIP is convex risk measure, dual representation ...
- First step towards Kramkov-Sirbu type results for UIP’s asymptotic expansion in financial markets with proportional transaction costs ...