Weak Dynamic Programming
for Generalized State Constraints

Marcel Nutz
ETH Zurich and Columbia University
(with Bruno Bouchard)

Western Conference on Mathematical Finance, Los Angeles
June 7, 2011
Outline

1. Handwaving Part
2. Rigorous Part
Outline

1 Handwaving Part

2 Rigorous Part
Controlled System

Ingredients:

- $\mathcal{U} =$ set of controls ν
- Spacial position x in the state space S (separable metric)
- Time $t \in [0, T]$
- Controlled state process $X_{t,x}^\nu(\cdot)$ with values in S
 - $= \text{evolution under control } \nu \text{ for system started at } (t, x)$.

Example:

- $S = \mathbb{R}^d$, $\mathcal{U} =$ predictable processes, $X_{t,x}^\nu = \text{unique solution of}$

 $$X(s) = x + \int_t^s \mu(X(r), \nu_r) \, dr + \int_t^s \sigma(X(r), \nu_r) \, dW_r, \quad t \leq s \leq T,$$
Dynamic Programming Principle (DPP)

- Reward function $f : S \rightarrow \mathbb{R}$
- $\mathcal{U}(t, x) \subseteq \mathcal{U}$: controls admissible at (t, x).
- Value function

$$V(t, x) := \sup_{\nu \in \mathcal{U}(t, x)} E[f(X^\nu_{t, x}(T))], \quad (t, x) \in [0, T] \times S$$

- Under suitable conditions, we expect DPP: for $s \in [t, T]$,

$$V(t, x) = \sup_{\nu \in \mathcal{U}(t, x)} E[V(s, X^\nu_{t, x}(s))].$$

“Optimization $t \rightsquigarrow T$ is equivalent to separate optimization $t \rightsquigarrow s$ and $s \rightsquigarrow T$.”

- Main use: derive equation for V (e.g. Hamilton-Jacobi-Bellman PDE).
Recall DPP: \[V(t, x) = \sup_{\nu \in \mathcal{U}(t, x)} E[V(s, X^\nu_{t,x}(s))] \]

\[\leq \text{ “Continue using } \nu \text{ after } s”: \]

\[E[f(X^\nu_{t,x}(T))] \leq E[V(s, X^\nu_{t,x}(s))] \quad \text{for all } \nu \in \mathcal{U}(t, x). \]

\[\geq \text{ Given } \nu \in \mathcal{U}(t, x), \text{ construct } \tilde{\nu} \in \mathcal{U}(t, x) \text{ such that} \]

\[E[f(X^{\tilde{\nu}}_{t,x}(T))] \geq E[V(s, X^\nu_{t,x}(s))] - \varepsilon. \]

- Recipe for \(\tilde{\nu} \): Use \(\nu \) up to time \(s \), then state is at \(y = X^\nu_{t,x}(s)(\omega) \).
 Now continue with \(\nu^* = \varepsilon \)-optimal control at \((s, y) \).

Problems:
- \(V \) not known to be measurable: how to make sense of DPP?
- When \(S \) is uncountable: measurable selection problems since \(\nu^* \) depends on \(y \), hence on \(\omega \).
Recall DPP:
\[
V(t, x) = \sup_{\nu \in \mathcal{U}(t, x)} E\left[V(s, X^\nu_{t,x}(s))\right]
\]

\(\leq\): "Continue using \(\nu\) after \(s\):"

\[
E[f(X^\nu_{t,x}(T))] \leq E[V(s, X^\nu_{t,x}(s))] \quad \text{for all } \nu \in \mathcal{U}(t, x).
\]

\(\geq\): Given \(\nu \in \mathcal{U}(t, x)\), construct \(\tilde{\nu} \in \mathcal{U}(t, x)\) such that

\[
E[f(X^{\tilde{\nu}}_{t,x}(T))] \geq E[V(s, X^\nu_{t,x}(s))] - \varepsilon.
\]

• Recipe for \(\tilde{\nu}\): Use \(\nu\) up to time \(s\), then state is at \(y = X^\nu_{t,x}(s)(\omega)\).
 Now continue with \(\nu^* = \varepsilon\)-optimal control at \((s, y)\).

Problems:
• \(V\) not known to be measurable: how to make sense of DPP?
• When \(S\) is uncountable: measurable selection problems since \(\nu^*\) depends on \(y\), hence on \(\omega\).
Construction of $\tilde{\nu}$ when V is smooth

- Assume that $U(t,x) = U$.
- Selection made is easy if

 $$x \mapsto E[f(X_{t,x}^\nu(T))] \text{ lsc and } V \text{ usc} :$$

 Use same ν^* in a neighborhood of y and exploit separability.

- Combine countably many ε-optimizers to construct $\tilde{\nu}$.

Covering argument.
Weak DPP [Bouchard&Touzi 2011]

- $x \mapsto E[f(X_{t,x}^\nu(T))]$ Isc is usually okay, regularity for V is a problem.
- Weak DPP: Replace V by test function φ:

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}} E[\varphi(s, X_{t,x}^\nu(s))] \text{ for all usc } \varphi \leq V.$$

- Covering argument works like for smooth V.
- For viscosity solutions, weak DPP is as good as DPP.
Add state constraint:

- Constraint that $X_{t,x}^\nu$ has to remain in given set $\mathcal{O} \subseteq \mathcal{S}$
- l.e., $\mathcal{U}(t, x) := \{ \nu \in \mathcal{U} : X_{t,x}^\nu(s) \in \mathcal{O} \text{ for } s \in [t, T], \text{ P-a.s.} \}$
- Under typical regularity:

$$
\nu^* \in \mathcal{U}(t, x) \not\Rightarrow \nu^* \in \mathcal{U}(t, x') \text{ even if } x' \text{ close to } x.
$$

Covering argument fails.
Deterministic case:

- Closed constraint

Stochastic case:

- Open constraint

Marcel Nutz (ETH)

Weak Dynamic Programming
For x' close to x, constraint O will be violated with at most small probability $\delta \geq 0$.

Relaxed problem for fixed $\delta > 0$:

$$\mathcal{U}(t, x, \delta) := \{ \nu \in \mathcal{U} : P[X_{t,x}^\nu \in O] \geq 1 - \delta \}$$

- Corresponding value function $V(t, x, \delta)$.
- We expect $V(t, x, \delta) \downarrow V(t, x, 0) \equiv V(t, x)$ as $\delta \downarrow 0$.
Idea for $V(t, x, \delta) \downarrow V(t, x, 0)$: manipulate $\nu \in \mathcal{U}(t, x, \delta)$

Switch to admissible control at distance $\varepsilon > 0$ to $\partial \mathcal{O}$.
Expectation Constraints

General expectation constraint:

- Fix \(g : S \rightarrow \mathbb{R} \). For \(m \in \mathbb{R} \), define

\[
U(t, x, m) := \{ \nu \in U : E[g(X_{t,x}^\nu(T))] \leq m \},
\]

\[
V(t, x, m) := \sup_{\nu \in U(t,x,m)} E[f(X_{t,x}^\nu(T))].
\]

- Is of independent interest (quantile hedging, ...)

Example of state constraint:

- Augment \(X \) by \(Y_{t,x,y}^\nu(s) := y \land \inf_{r \in [t,s]} d_{\mathcal{O}^c}(X_{t,x}^\nu(r)) \)

- Take \(g(x, y) := 1_{(-\infty,0]}(y) \),

- then \(E[g(X_{t,x}^\nu(T), Y_{t,x,1}^\nu(T))] = P[X_{t,x}^\nu \text{ leaves } \mathcal{O}] \).

No dynamic programming for fixed \(m \).
Expectation Constraints

General expectation constraint:

- Fix $g : S \to \mathbb{R}$. For $m \in \mathbb{R}$, define

 $$\mathcal{U}(t, x, m) := \{ \nu \in \mathcal{U} : E[g(X_{t,x}^{\nu}(T))] \leq m \},$$

 $$V(t, x, m) := \sup_{\nu \in \mathcal{U}(t,x,m)} E[f(X_{t,x}^{\nu}(T))].$$

- Is of independent interest (quantile hedging, ...)

Example of state constraint:

- Augment X by $Y_{t,x,y}^{\nu}(s) := y \wedge \inf_{r \in [t,s]} d_{\mathcal{O}^c}(X_{t,x}^{\nu}(r))$
- Take $g(x, y) := 1_{(-\infty,0]}(y)$,
- then $E[g(X_{t,x}^{\nu}(T), Y_{t,x,1}^{\nu}(T))] = P[X_{t,x}^{\nu} \text{ leaves } \mathcal{O}].$

No dynamic programming for fixed m.

No switching for “leave \mathcal{O} with probability $\leq 1/2$.”
Dynamic Formulation [Bouchard, Elie, Touzi 2009]

- Let $\mathcal{M}_{t,m}$ be a rich enough family of martingales M with $E[M(\cdot)] = m$. Then

 \[\nu \in \mathcal{U}(t, x, m) \quad \iff \quad g(X_{t,x}^\nu(T)) \leq M(T) \text{ for some } M \in \mathcal{M}_{t,m}.\]

 \[\Rightarrow\text{ For } \nu \in \mathcal{U}(t, x, m), \text{ let } M(s) = E[g(X_{t,x}^\nu(T))|\mathcal{F}_s]. \text{ Then}\]

 \[g(X_{t,x}^\nu(T)) \leq M(T) \quad \text{and} \quad E[M(\cdot)] = E[g(X_{t,x}^\nu(T))] \leq m.\]

 \[\Leftarrow \text{ Conversely, if } M \text{ is a martingale with } E[M(\cdot)] = m, \text{ then}\]

 \[g(X_{t,x}^\nu(T)) \leq M(T) \quad \text{implies} \quad E[g(X_{t,x}^\nu(T))] \leq E[M(T)] = m.\]

- Dynamic programming works.
Summary of Ideas

- Using test function in DPP allows treatment like for smooth value function.
- Covering argument fails for state constraints . . .
- . . . but works if constraints are relaxed.
- Relaxed problem has dynamic programming if the martingale formulation is used.

→ General (relaxed) weak DPP for expectation constraints.
→ Recover classical state constraint by passing to limit and eliminating the extra dimension for the martingale.
Summary of Ideas

- Using test function in DPP allows treatment like for smooth value function.
- Covering argument fails for state constraints . . .
- . . . but works if constraints are relaxed.
- Relaxed problem has dynamic programming if the martingale formulation is used.

→ General (relaxed) weak DPP for expectation constraints.
→ Recover classical state constraint by passing to limit and eliminating the extra dimension for the martingale.
Weak DPP for Expectation Constraints

Theorem (under natural assumptions):

Let

- \((t, x, m) \in [0, T] \times S \times \mathbb{R},\)
- \(\nu \in \mathcal{U}(t, x, m),\)
- \(M \in \mathcal{M}_{t,m}\) such that \(M(T) \geq g(X_{t,x}^\nu(T)).\)
- \(t \leq s \leq T.\)

(i) Let \(\varphi \geq V\) be a test function. Then

\[
E[f(X_{t,x}^\nu(T))] \leq E[\varphi(s, X_{t,x}^\nu(s), M(s))].
\]

(ii) Assume that \(x \mapsto E[g(X_{t,x}^\nu(T))]\) is u.s.c. and let \(\varphi \leq V\) be a test function (l.s.c.). Then

\[
V(t, x, m + \delta) \geq E[\varphi(s, X_{t,x}^\nu(s), M(s))]
\]

for all \(\delta > 0.\)
Example: Controlled Diffusion

- Controls: U-valued predictable square-integrable processes.
- $X_{t,x}^\nu(\cdot) = \text{unique strong solution of}$

$$X(s) = x + \int_t^s \mu(X(r), \nu_r) \, dr + \int_t^s \sigma(X(r), \nu_r) \, dW_r, \quad t \leq s \leq T,$$

- where $\mu : \mathbb{R}^d \times U \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^d \times U \to \mathbb{M}^d$ jointly Lipschitz.
- $f : S \to \mathbb{R}$ lsc, quadratic growth, f^- subquadratic growth.
- $g : S \to \mathbb{R}$ usc, quadratic growth, g^+ subquadratic growth.
PDE for Expectation Constraint

Theorem: Assume that V is locally bounded on $\text{int} \, D$, $D := \{ V > -\infty \}$.

(i) V^* is a viscosity subsolution on $\overline{D} \setminus \{ t = T \}$ of

$$-\partial_t \varphi + H^*(\cdot, D \varphi, D^2 \varphi) \leq 0.$$

(ii) V^* is a viscosity supersolution on $\text{int} D$ of

$$-\partial_t \varphi + H^*(\cdot, D \varphi, D^2 \varphi) \geq 0.$$

- $H(x, p, Q) := \inf_{(u, a) \in U \times \mathbb{R}^d} \left(- L^{u,a}(x, p, Q) \right)$,
- $L^{u,a}(x, p, Q) := \mu_{X,M}(x, u) \top p + \frac{1}{2} \text{Tr}[\sigma_{X,M}(x, u, a)Q]$,
- $\mu_{X,M}(x, u) := \begin{pmatrix} \mu(x, u) \\ 0 \end{pmatrix}$ and $\sigma_{X,M}(x, u, a) := \begin{pmatrix} \sigma(x, u) \\ a \top \mu(x, u) \end{pmatrix}$.
- $H^*(x, p, Q) := \limsup_{(x', p', Q') \to (x, p, Q)} H(x', p', Q')$,
- $V^*(t, x, m) := \limsup_{(t', x', m') \to (t, x, m) \in \text{int} D} V(t', x', m')$.

Marcel Nutz (ETH) Weak Dynamic Programming 19 / 21
Assumption C: There exists a Lipschitz mapping \(\hat{u} : \mathcal{O} \to U \) such that for all \((t, x) \in [0, T] \times \mathcal{O}\), the process \(X = X_{t,x}^{\hat{u}(X)} \) stays in \(\mathcal{O} \), where

\[
X(s) = x + \int_t^s \mu(X(r), \hat{u}(X(r))) \, dr + \int_t^s \sigma(X(r), \hat{u}(X(r))) \, dW_r, \quad s \in [t, T].
\]

Assumption D: \(\mu(x, u), \sigma(x, u) \) have linear growth in \(x \), uniformly in \(u \).

→ Yields uniform integrability to get right-continuity of \(V \) as \(m \downarrow 0 \).
Theorem: Assume that \bar{V} is locally bounded on $[0, T) \times \mathcal{O}$.

(i) \bar{V}^* is a viscosity subsolution on $[0, T) \times \overline{\mathcal{O}}$ of

$$-\partial_t \varphi + \bar{H}^*(\cdot, D\varphi, D^2\varphi) \leq 0.$$

(ii) Under Assumptions C and D, \bar{V}^* is a viscosity supersolution on $[0, T) \times \mathcal{O}$ of

$$-\partial_t \varphi + \bar{H}^*(\cdot, D\varphi, D^2\varphi) \geq 0.$$

- $\bar{H}(x, p, Q) := \inf_{u \in U} \left(- \bar{L}^u(x, p, Q) \right)$,
- $\bar{L}^u(x, p, Q) := \mu(x, u)^\top p + \frac{1}{2} \text{Tr} \left[\sigma \sigma^\top (x, u) Q \right]$.

\bar{H} and \bar{L}^u are defined as above.
Outline

1. Handwaving Part

2. Rigorous Part
Abstract Setup

- (Ω, \mathcal{F}, P) with filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}, \ T \in (0, \infty)$
- Auxiliary filtrations $\mathbb{F}^t \subseteq \mathbb{F}$ for $t \in [0, T]$
- S metric separable
- Augmented state spaces $S := [0, T] \times S$ and $\hat{S} := [0, T] \times S \times \mathbb{R}$
- $\mathcal{U}_t = \text{set of controls at time } t$

For $(t, x) \in S$:

- $X_{t,x}^\nu(\cdot)$ càdlàg \mathbb{F}^t-adapted S-valued process for $\nu \in \mathcal{U}_t$
- $f, g : S \rightarrow \mathbb{R}$ measurable functions such that $f(X_{t,x}^\nu(T)) \in L^1$, $g(X_{t,x}^\nu(T)) \in L^1$ for all $\nu \in \mathcal{U}_t$
- Define $F(t, x; \nu) := E[f(X_{t,x}^\nu(T))]$ and $G(t, x; \nu) := E[g(X_{t,x}^\nu(T))]$
- Admissible controls $\mathcal{U}(t, x, m) := \{\nu \in \mathcal{U}_t : G(t, x; \nu) \leq m\}$
- Value function $V(t, x, m) := \sup_{\nu \in \mathcal{U}(t, x, m)} F(t, x; \nu)$ for $(t, x, m) \in \hat{S}$
\(M_{t,0} = \) family of càdlàg martingales \(M = \{ M(s), s \in [t, T] \} \)

\(\mathbb{F}^t \)-adapted and with initial value \(M(t) = 0 \).

\(M_{t,m} := \{ m + M : M \in M_{t,0} \} \) for \(m \in \mathbb{R} \)

Richness: for all \((t, x) \in S\) and \(\nu \in \mathcal{U}_t \), there exists \(M^\nu_t[x] \in M_{t,m} \) such that \(M^\nu_t[x](T) = g(X^\nu_{t,x}(T)) \), where \(m = E[g(X^\nu_{t,x}(T))] \).

With \(M^+_{t,m,x}(\nu) := \{ M \in M_{t,m} : M(T) \geq g(X^\nu_{t,x}(T)) \} \), we have

\[\mathcal{U}(t, x, m) = \{ \nu \in \mathcal{U}_t : M^+_{t,m,x}(\nu) \neq \emptyset \}. \]

\(\mathcal{T}^t = \) set of \(\mathbb{F}^t \)-stopping times with values in \([t, T] \)

Assumption A: For all \((t, x, m) \in \hat{S}, \nu \in \mathcal{U}(t, x, m), M \in M^+_{t,m,x}(\nu), \tau \in \mathcal{T}^t \) and \(P \)-a.e. \(\omega \in \Omega \), there exists \(\nu_\omega \in \mathcal{U}(\tau(\omega), X^\nu_{t,x}(\tau)(\omega), M(\tau)(\omega)) \) such that

\[E[f(X^\nu_{t,x}(T))|\mathcal{F}_\tau](\omega) \leq F(\tau(\omega), X^\nu_{t,x}(\tau)(\omega); \nu_\omega). \]
\(\mathcal{M}_{t,0} \) = family of càdlàg martingales \(M = \{ M(s), s \in [t, T] \} \) \(\mathbb{F}^t \)-adapted and with initial value \(M(t) = 0 \).

\(\mathcal{M}_{t,m} := \{ m + M : M \in \mathcal{M}_{t,0} \} \) for \(m \in \mathbb{R} \)

Richness: for all \((t, x) \in \mathcal{S} \) and \(\nu \in \mathcal{U}_t \), there exists \(M^\nu_t [x] \in \mathcal{M}_{t,m} \) such that \(M^\nu_t [x](T) = g(X^\nu_{t,x}(T)) \), where \(m = E[g(X^\nu_{t,x}(T))] \).

With \(\mathcal{M}^+_t, m, x(\nu) := \{ M \in \mathcal{M}_{t,m} : M(T) \geq g(X^\nu_{t,x}(T)) \} \), we have

\[\mathcal{U}(t, x, m) = \{ \nu \in \mathcal{U}_t : \mathcal{M}^+_t, m, x(\nu) \neq \emptyset \}. \]

\(\mathcal{T}^t \) = set of \(\mathbb{F}^t \)-stopping times with values in \([t, T]\)

Assumption A: For all \((t, x, m) \in \hat{\mathcal{S}} \), \(\nu \in \mathcal{U}(t, x, m) \), \(M \in \mathcal{M}^+_t, m, x(\nu) \), \(\tau \in \mathcal{T}^t \) and \(P \)-a.e. \(\omega \in \Omega \), there exists \(\nu_\omega \in \mathcal{U}(\tau(\omega), X^\nu_{t,x}(\tau)(\omega), M(\tau)(\omega)) \) such that

\[E[f(X^\nu_{t,x}(T)) | \mathcal{F}_\tau](\omega) \leq F(\tau(\omega), X^\nu_{t,x}(\tau)(\omega); \nu_\omega). \]
Assumption B: Let \((t, x) \in S, \nu \in U_t, s \in [t, T], \bar{\nu} \in U_s\) and \(\Gamma \in \mathcal{F}_s^t\).

(B1) There exists a control \(\tilde{\nu} \in U_t\) such that

\[
X_{t,x}(\cdot) = X_{t,x}^\nu(\cdot) \quad \text{on } [t, T] \times (\Omega \setminus \Gamma);
\]

\[
X_{t,x}(\cdot) = X_{s,x}(s)(\cdot) \quad \text{on } [s, T] \times \Gamma;
\]

\[
E\left[f\left(X_{t,x}^\nu(T) \right) \right] \geq F(s, X_{t,x}^\nu(s); \bar{\nu}) \quad \text{on } \Gamma.
\]

The control \(\tilde{\nu}\) is denoted by \(\nu \otimes_{(s, \Gamma)} \bar{\nu}\) and called a concatenation of \(\nu\) and \(\bar{\nu}\) on \((s, \Gamma)\).

(B2) Let \(M \in \mathcal{M}_{t,0}\). There exists a process \(\bar{M} = \{\bar{M}(r), r \in [s, T]\}\) such that

\[
\bar{M}(\cdot)(\omega) = \left(M_s^\nu [X_{t,x}^\nu(s)(\cdot)](\cdot) \right)(\omega) \quad \text{on } [s, T] \quad P\text{-a.s.}
\]

and

\[
M1_{[t,s]} + 1_{[s,T]} \left(M1_{\Omega \setminus \Gamma} + [\bar{M} - \bar{M}(s) + M(s)] 1_{\Gamma} \right) \in \mathcal{M}_{t,0}.
\]

(B3) Let \(m \in \mathbb{R}\) and \(M \in \mathcal{M}_{t,m,x}^+(\nu)\). For \(P\text{-a.e. } \omega \in \Omega\), there exist a control \(\nu_\omega \in U(s, X_{t,x}^\nu(s)(\omega), M(s)(\omega))\).
Example for concatenation: if controls are predictable processes,

\[\nu \otimes_{(\tau, \Gamma)} \bar{\nu} := \nu 1_{[0, \tau]} + 1_{(\tau, \tau]}(\bar{\nu} 1_\Gamma + \nu 1_{\Omega \setminus \Gamma}) \]

Assumption B': Let \((t, x) \in S, \nu \in U_t, \tau \in T^t, \Gamma \in F^t_t\) and \(\bar{\nu} \in U_{\|\tau\|_L_\infty} \cdot\)

\((B0')\) \(U_s \supseteq U_{s'}\) for all \(0 \leq s \leq s' \leq T\).

\((B1')-(B3')\) Like (B1)–(B3), with \(s\) replaced by \(\tau\).

Domain is invariant:
Let \(D = \{(t, x, m) \in \hat{S} : U(t, x, m) \neq \emptyset\}\). Under (B3'),

\((\tau, X_{t,x}^\nu(\tau), M(\tau)) \in D \)

for all \(\tau \in T^t, \nu \in U(t, x, m), M \in M_{t,m,x}^+(\nu)\).
Theorem (DPP):

Let \((t, x, m) \in \hat{S}, \nu \in \mathcal{U}(t, x, m), M \in \mathcal{M}_{t,m,x}^+(\nu)\) and \(\tau \in \mathcal{T}^t\) and let \(D \subseteq \hat{S}\) be a set such that \((\tau, X_{t,x}^\nu(\tau), M(\tau)) \in D\).

(i) Let Assumption A hold true and let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \leq \varphi\) on \(D\). Then

\[
F(t, x; \nu) \leq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))]. \tag{1}
\]

(ii) Let \(\delta > 0\), let Assumption B hold true and assume that \(\tau\) takes countably many values \((t_i)_{i \geq 1}\). Let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \geq \varphi\) on \(D\). Assume that for fixed \(\bar{\nu} \in \mathcal{U}_{t_i}, \varphi(t_i, \cdot) \in USC, \ F(t_i, \cdot; \bar{\nu}) \in LSC, \ G(t_i, \cdot; \bar{\nu}) \in USC\). Then

\[
V(t, x, m + \delta) \geq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))]. \tag{2}
\]

(ii') Let \(\delta > 0\), let Assumption B' hold true, \(V \geq \varphi\) on \(D\). Assume that that for fixed \(\bar{\nu} \in \mathcal{U}_{t_0}, \ t_0 \in [t, T], \varphi(\cdot) \in USC, \ F(\cdot; \bar{\nu}) \in LSC, \ G(\cdot; \bar{\nu}) \in USC\). Moreover, assume that \(\mathcal{D} \cap \mathcal{D}\) is \(\sigma\)-compact. Then (2) holds true.
Theorem (DPP):

Let \((t, x, m) \in \hat{S}, \nu \in \mathcal{U}(t, x, m), M \in \mathcal{M}^+_{t,m,x}(\nu)\) and \(\tau \in \mathcal{T}^t\) and let \(D \subseteq \hat{S}\) be a set such that \((\tau, X_{t,x}^\nu(\tau), M(\tau)) \in D\).

(i) Let Assumption A hold true and let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \leq \varphi\) on \(D\). Then

\[
F(t, x; \nu) \leq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))].
\]

(1)

(ii) Let \(\delta > 0\), let Assumption B hold true and assume that \(\tau\) takes countably many values \((t_i)_{i \geq 1}\). Let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \geq \varphi\) on \(D\). Assume that for fixed \(\bar{\nu} \in \mathcal{U}_{t_i}, \varphi(t_i, \cdot) \in USC, F(t_i, \cdot; \bar{\nu}) \in LSC, G(t_i, \cdot; \bar{\nu}) \in USC\). Then

\[
V(t, x, m + \delta) \geq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))].
\]

(2)

(iii') Let \(\delta > 0\), let Assumption B' hold true, \(V \geq \varphi\) on \(D\). Assume that for fixed \(\bar{\nu} \in \mathcal{U}_{t_0}, t_0 \in [t, T], \varphi(\cdot) \in USC, F(\cdot; \bar{\nu}) \in LSC, G(\cdot; \bar{\nu}) \in USC\).
Moreover, assume that \(D \cap D\) is \(\sigma\)-compact. Then (2) holds true.
Theorem (DPP):

Let \((t, x, m) \in \hat{S}, \nu \in U(t, x, m), M \in \mathcal{M}_{t,m,x}^+(\nu)\) and \(\tau \in \mathcal{T}^t\) and let \(D \subseteq \hat{S}\) be a set such that \((\tau, X_{t,x}^\nu(\tau), M(\tau)) \in D\).

(i) Let Assumption A hold true and let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \leq \varphi\) on \(D\). Then

\[
F(t, x; \nu) \leq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))].
\] (1)

(ii) Let \(\delta > 0\), let Assumption B hold true and assume that \(\tau\) takes countably many values \((t_i)_{i \geq 1}\). Let \(\varphi : \hat{S} \to [-\infty, \infty]\) be a measurable function such that \(V \geq \varphi\) on \(D\). Assume that for fixed \(\bar{\nu} \in U_{t_i}, \varphi(t_i, \cdot) \in USC, \quad F(t_i, \cdot; \bar{\nu}) \in LSC, \quad G(t_i, \cdot; \bar{\nu}) \in USC\). Then

\[
V(t, x, m + \delta) \geq E[\varphi(\tau, X_{t,x}^\nu(\tau), M(\tau))].
\] (2)

(ii') Let \(\delta > 0\), let Assumption B' hold true, \(V \geq \varphi\) on \(D\). Assume that that for fixed \(\bar{\nu} \in U_{t_0}, \quad t_0 \in [t, T], \quad \varphi(\cdot) \in USC, \quad F(\cdot; \bar{\nu}) \in LSC, \quad G(\cdot; \bar{\nu}) \in USC\).

Moreover, assume that \(D \cap D\) is \(\sigma\)-compact. Then (2) holds true.
Application to State Constraints

Setup:

- \(\mathcal{O} \subseteq S := \mathbb{R}^d \) open.
- \(\bar{\mathcal{U}}(t, x) = \{ \nu \in \mathcal{U}_t : X^\nu_{t,x}(s) \in \mathcal{O} \text{ for all } s \in [t, T], P\text{-a.s.} \} \).
- \(\bar{V}(t, x) = \sup_{\nu \in \bar{\mathcal{U}}(t, x)} F(t, x; \nu) \text{ for } (t, x) \in S \)
- \(X^\nu_{t,x} \) has continuous paths.
- \((t, x) \mapsto X^\nu_{t,x}(\cdot) \) is continuous in probability, uniformly in time.
- \(\bar{\mathcal{U}}(t, x) \neq \emptyset \) for \((t, x) \in [0, T] \times \mathcal{O} \).

Assumption \(\bar{A} \): For all \((t, x) \in S, \nu \in \bar{\mathcal{U}}(t, x), \tau \in \mathcal{T}^t \) and \(P\text{-a.e. } \omega \in \Omega \), there exists \(\nu_\omega \in \bar{\mathcal{U}}(\tau(\omega), X^\nu_{t,x}(\tau)(\omega)) \) such that

\[
E \left[f(X^\nu_{t,x}(T)) \big| \mathcal{F}_\tau \right](\omega) \leq F(\tau(\omega), X^\nu_{t,x}(\tau)(\omega); \nu_\omega).
\]

Marcel Nutz (ETH)
Weak Dynamic Programming
Application to State Constraints

Setup:

- $\mathcal{O} \subseteq S := \mathbb{R}^d$ open.
- $\bar{U}(t, x) = \{ \nu \in \mathcal{U}_t : X^\nu_{t,x}(s) \in \mathcal{O} \text{ for all } s \in [t, T], \text{ } P\text{-a.s.} \}$.
- $\bar{V}(t, x) = \sup_{\nu \in \bar{U}(t, x)} F(t, x; \nu)$ for $(t, x) \in S$
- $X^\nu_{t,x}$ has continuous paths.
- $(t, x) \mapsto X^\nu_{t,x}(\cdot)$ is continuous in probability, uniformly in time.
- $\bar{U}(t, x) \neq \emptyset$ for $(t, x) \in [0, T] \times \mathcal{O}$.

Assumption \bar{A}: For all $(t, x) \in S$, $\nu \in \bar{U}(t, x)$, $\tau \in \mathcal{T}^t$ and P-a.e. $\omega \in \Omega$, there exists $\nu_\omega \in \bar{U}(\tau(\omega), X^\nu_{t,x}(\tau)(\omega))$ such that

\[
E \left[f(X^\nu_{t,x}(T)) \big| \mathcal{F}_\tau \right](\omega) \leq F(\tau(\omega), X^\nu_{t,x}(\tau)(\omega); \nu_\omega).
\]
Application to State Constraints

Special case of expectation constraint:
- $Y_{t,x,y}^\nu (s) := y \land \inf_{r \in [t,s]} d_{\mathcal{O}^c} (X_{t,x}^\nu (r))$
- Consider $\tilde{X}_{t,x,y}^\nu := (X_{t,x}^\nu, Y_{t,x,y}^\nu)$ on $\mathbb{R}^d \times \mathbb{R}$.

Recall: $E[g(\tilde{X}_{t,x}^\nu (T))] = P[X_{t,x}^\nu \text{ leaves } \mathcal{O}]$ for $g(x,y) := 1_{(-\infty,0]}(y)$
DPP for State Constraints

Theorem: Consider \((t, x) \in S\) and a family \(\{\tau^\nu, \nu \in \bar{U}(t, x)\} \subseteq T^t\).

(i) Let Assumption \(\bar{A}\) hold true and let \(\phi\) be a measurable function such that \(\bar{V} \leq \phi\). Then

\[
\bar{V}(t, x) \leq \sup_{\nu \in \bar{U}(t, x)} E \left[\phi(\tau^\nu, X_{t, x}^\nu(\tau^\nu)) \right].
\]

(ii) Let Assumption \(B'\) hold true for the state process \(\bar{X}\) on \(\mathbb{R}^d \times \mathbb{R}\).

Assume that

\[
V(t, x, 1, 0) = V(t, x, 1, 0+)
\]

and that \(F(\cdot; \nu) \in LSC([0, t_0] \times \mathcal{O})\) for all \(t_0 \in [t, T]\) and \(\nu \in \mathcal{U}_{t_0}\). Then

\[
\bar{V}(t, x) \geq \sup_{\nu \in \bar{U}(t, x)} E \left[\phi(\tau^\nu, X_{t, x}^\nu(\tau^\nu)) \right]
\]

for any \(\phi \in USC\) such that \(\bar{V} \geq \phi\).
Setup for Controlled Diffusion I

- \(S = \mathbb{R}^d, \quad \Omega = C([0, T]; \mathbb{R}^d) \), \(W = \) canonical process, \(P = \) Wiener measure
- \(F = \mathbb{F}^W \) and \(F_t = \) filtration generated by \(W_s - W_t \), \(s \geq t \).
- \(U = \) set of \(U \)-valued predictable \(\nu \) with \(E[\int_0^T |\nu_t|^2 \, dt] < \infty \), where \(U \subseteq \mathbb{R}^d \) closed subset.
- \(U_t = \{ \nu \in U : \nu \) is \(F_t \)-predictable\}

\[X_{t,x}^\nu(\cdot) = \text{unique strong solution of} \]

\[X(s) = x + \int_t^s \mu(X(r), \nu_r) \, dr + \int_t^s \sigma(X(r), \nu_r) \, dW_r, \quad t \leq s \leq T, \]

- where \(\mu : \mathbb{R}^d \times U \rightarrow \mathbb{R}^d \) and \(\sigma : \mathbb{R}^d \times U \rightarrow M^d \) jointly Lipschitz.
Setup for Controlled Diffusion II

- $\mathcal{M}_{t,0} = \text{càdlàg martingales starting at 0 and adapted to } \mathbb{F}^t$.
- Using Brownian representation: $\mathcal{M}_{t,0} = \{ \int_t^T \alpha_s^\top dW_s, \alpha \in \mathcal{A}_t \}$,
- $\mathcal{A}_t = \mathbb{F}^t$-predictable processes α such that $\int_0^T |\alpha_t|^2 \, dt < \infty$ P-a.s.

- $f : S \to \mathbb{R}$ lsc, quadratic growth, f^- subquadratic growth.
- $g : S \to \mathbb{R}$ usc, quadratic growth, g^+ subquadratic growth.

Then the previous assumptions are satisfied.
PDE for Expectation Constraint

Theorem: Assume that V is locally bounded on $\text{int} \ D$.

(i) V^* is a viscosity subsolution on $\overline{D} \setminus \{t = T\}$ of

$$-\partial_t \varphi + H^*(\cdot, D\varphi, D^2\varphi) \leq 0.$$

(ii) V^* is a viscosity supersolution on $\text{int} \ D$ of

$$-\partial_t \varphi + H^*(\cdot, D\varphi, D^2\varphi) \geq 0.$$

- $H(x, p, Q) := \inf_{(u,a) \in U \times \mathbb{R}^d} \left(- L^{u,a}(x, p, Q)\right)$,
- $L^{u,a}(x, p, Q) := \mu_{X,M}(x, u)^\top p + \frac{1}{2} \text{Tr}[\sigma_{X,M}(x, u, a) Q]$,
- $\mu_{X,M}(x, u) := \begin{pmatrix} \mu(x, u) \\ 0 \end{pmatrix}$ and $\sigma_{X,M}(x, u, a) := \begin{pmatrix} \sigma(x, u) \\ a^\top \end{pmatrix}$,
- $H^*(x, p, Q) := \limsup_{(x', p', Q') \to (x, p, Q)} H(x', p', Q')$,
- $V^*(t, x, m) := \limsup_{(t', x', m') \to (t, x, m)} V(t', x', m')$.
Assumption C: There exists a Lipschitz mapping \(\hat{u} : \mathcal{O} \to U \) such that for all \((t, x) \in [0, T] \times \mathcal{O},\) the process \(X = X_{t, x}^{\hat{u}}(X) \) stays in \(\mathcal{O}, \) where

\[
X(s) = x + \int_t^s \mu(X(r), \hat{u}(X(r))) \, dr + \int_t^s \sigma(X(r), \hat{u}(X(r))) \, dW_r, \quad s \in [t, T].
\]

Assumption D: \(\mu(x, u), \sigma(x, u) \) have linear growth in \(x, \) uniformly in \(u. \)

\(\rightarrow \) Yields uniform integrability to get right-continuity of \(V \) as \(m \downarrow 0. \)

\[
\begin{align*}
\bar{H}(x, p, Q) &:= \inf_{u \in U} \left(-\bar{L}^u(x, p, Q) \right), \\
\bar{L}^u(x, p, Q) &:= \mu(x, u)^\top p + \frac{1}{2} \text{Tr}[\sigma \sigma^\top(x, u)Q].
\end{align*}
\]
Theorem: Assume that \bar{V} is locally bounded on $[0, T) \times \mathcal{O}$.

(i) \bar{V}^* is a viscosity subsolution on $[0, T) \times \mathcal{O}$ of

$$-\partial_t \varphi + \bar{H}^*\left(\cdot, D\varphi, D^2\varphi\right) \leq 0.$$

(ii) Under Assumptions C and D, \bar{V}^* is a viscosity supersolution on $[0, T) \times \mathcal{O}$ of

$$-\partial_t \varphi + \bar{H}^*\left(\cdot, D\varphi, D^2\varphi\right) \geq 0.$$
PDE for State Constraint: Uniqueness

Proposition: Let f be continuous and let Assumptions C and D hold true. Then

$$\bar{V}^*(T, \cdot) \leq f \quad \text{and} \quad \bar{V}_*(T, \cdot) \geq f \quad \text{on} \quad \bar{O}.$$

Assume in addition that \bar{V}_* is of class $\mathcal{R}(O)$. Then

- \bar{V} is continuous on $[0, T] \times O$ and admits a continuous extension to $[0, T] \times \bar{O}$,
- \bar{V} is the unique (discontinuous) viscosity solution of

$$-\partial_t \varphi + \bar{H}(\cdot, D\varphi, D^2\varphi) = 0, \quad \varphi(T, \cdot) = f$$

in the class of functions having polynomial growth and having a lower semicontinuous envelope of class $\mathcal{R}(O)$.

Marcel Nutz (ETH)
Regularity: Class $\mathcal{R}(\mathcal{O})$

Proposition: Consider a set $\mathcal{O} \subseteq \mathbb{R}^d$ and a function $w : [0, T] \times \overline{\mathcal{O}} \to \mathbb{R}$. Then w is of class $\mathcal{R}(\mathcal{O})$ if the following hold for any $(t, x) \in [0, T) \times \partial \mathcal{O}$:

- There exist $r > 0$, an open neighborhood B of x in \mathbb{R}^d and a function $\ell : \mathbb{R}_+ \to \mathbb{R}^d$ such that
 \[
 \liminf_{\varepsilon \to 0} \varepsilon^{-1} |\ell(\varepsilon)| < \infty \quad \text{and} \quad y + \ell(\varepsilon) + o(\varepsilon) \in \mathcal{O} \quad \text{for all } y \in \overline{\mathcal{O}} \cap B \text{ and } \varepsilon \in (0, r).
 \]

- There exists a function $\lambda : \mathbb{R}_+ \to \mathbb{R}_+$ such that
 \[
 \lim_{\varepsilon \to 0} \lambda(\varepsilon) = 0 \quad \text{and} \quad \lim_{\varepsilon \to 0} w(t + \lambda(\varepsilon), x + \ell(\varepsilon)) = w(t, x).
 \]
Sufficient Condition for $\mathcal{R}(\mathcal{O})$

Proposition: Let \tilde{V}_* be finite-valued and assume:

- There exists a C^1-function δ, defined on a neighborhood of $\overline{\mathcal{O}} \subseteq \mathbb{R}^d$, such that $D\delta$ is locally Lipschitz continuous and
 \[
 \delta > 0 \text{ on } \mathcal{O}, \quad \delta = 0 \text{ on } \partial \mathcal{O}, \quad \delta < 0 \text{ outside } \overline{\mathcal{O}}.
 \]

- There exists a locally Lipschitz continuous mapping $\tilde{u}: \mathbb{R}^d \to U$ such that for all $x \in \overline{\mathcal{O}}$ there exist an open neighborhood B of x and $\iota > 0$ satisfying
 \[
 \mu(z, \tilde{u}(z))^\top D\delta(y) \geq \iota \quad \text{and} \quad \sigma(y, \tilde{u}(y)) = 0 \quad \text{for all } y \in B \cap \overline{\mathcal{O}} \text{ and } z \in B.
 \]

Then \tilde{V}_* is of class $\mathcal{R}(\mathcal{O})$.

On Closed State Constraints

\[\overline{V}(t, x) := \sup \left\{ E[f(X_{t,x}^\nu(T))] : \nu \in \mathcal{U}_t, X_{t,x}^\nu(\cdot) \in \overline{O} \right\}. \]

Proposition: Let \(f \) be continuous, let Assumptions C (on \(\overline{O} \)) and D hold true and assume that \(\overline{V}_* \) is of class \(\mathcal{R}(O) \). Then \(\overline{V} = \overline{V} \) on \([0, T] \times O\).

- One side of DPP works \(\Rightarrow \overline{V}_* \) subsolution of PDE.
- Clearly \(\overline{V} \geq \overline{V} \).
- Use comparison result.
On Closed State Constraints

\[\overline{V}(t, x) := \sup \{ E[f(X_{t,x}(T))] : \nu \in \mathcal{U}_t, X_{t,x}^\nu(\cdot) \in \overline{\mathcal{O}} \}. \]

Proposition: Let \(f \) be continuous, let Assumptions C (on \(\overline{\mathcal{O}} \)) and D hold true and assume that \(\overline{V}_* \) is of class \(\mathcal{R}(\mathcal{O}) \). Then \(\overline{V} = \overline{V} \) on \([0, T] \times \mathcal{O}\).

- One side of DPP works \(\Rightarrow \overline{V}_* \) subsolution of PDE.
- Clearly \(\overline{V} \geq \overline{V} \).
- Use comparison result.
Consider $\rho \varphi - \partial_t \varphi + \mathcal{H}(\cdot, D\varphi, D^2\varphi) = 0$.

Assumption E:

There exists $\alpha > 0$ such that

$$\liminf_{\eta \downarrow 0} (\mathcal{H}(y, p, Y^n) - \mathcal{H}(x, p + q, X^n))$$

$$\leq \alpha \left(|x - y| (1 + |p| + n^2 |x - y|) + (1 + |x|) |q| + (1 + |x|^2) |Q| \right)$$

for all $(x, y) \in \overline{O}$ with $|x - y| \leq 1$ and for all $(p, q, Q) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathcal{M}^2d$, $(X^n, Y^n)_{\eta > 0} \subset \mathcal{M}^d \times \mathcal{M}^d$ and $n \geq 1$ such that

$$\begin{pmatrix} X^n & 0 \\ 0 & -Y^n \end{pmatrix} \leq A_n + \eta A^2_n \quad \text{for all } \eta > 0,$$

where

$$A_n := n^2 \begin{pmatrix} I_d & -I_d \\ -I_d & I_d \end{pmatrix} + Q.$$
Theorem: Let Assumption E hold true,
- w_1 usc subsolution on \overline{O},
- w_2 lsc supersolution on O.

If w_1 and w_2 have polynomial growth on \overline{O} and if w_2 is of class $\mathcal{R}(O)$, then

$$w_2 \geq w_1 \text{ on } \{T\} \times \overline{O} \quad \text{implies} \quad w_2 \geq w_1 \text{ on } [0, T] \times \overline{O}.$$
Thanks for your attention!