A BSDE Approach to Stochastic Differential Games with Incomplete Information

Christine Grün

Université Bretagne Occidentale Brest

6TH INTERNATIONAL SYMPOSIUM ON BSDE
Los Angeles, June 2011
Overview

Description of the Game

Existence and Uniqueness of the Value Function

BSDE Characterization of the Value Function

Outlook
Overview

Description of the Game

Existence and Uniqueness of the Value Function

BSDE Characterization of the Value Function

Outlook
General Setup (Aumann, R.J., Maschler, M. (1967)):

- Two opponent players: Player 1 minimizes a certain quantity, Player 2 maximizes.

- Both players observe the actions of the other one.

- \(i \in \{1, \ldots, I\} \) different scenarios. Before the game starts one is picked with probability \((p_i)_{i \in \{1, \ldots, I\}} \in \Delta(I)\).

- Player 1 knows in which scenario the game is played.

- Player 2 only knows \((p_i)_{i \in \{1, \ldots, I\}}\).
Underlying Dynamics

Let \((\Omega, \mathcal{F}, (\mathcal{F}_s)_{s \in [0,T]}, \mathbb{P})\) be a filtered probability space with the usual assumptions, which carries a \(d\)-dimensional Brownian motion \((B_s)_{s \in [0,T]}\).

For all \(t \in [0, T], x \in \mathbb{R}^d\) we consider the controlled diffusion

\[
\begin{align*}
 dX^{t,x,u,v}_s &= b(s, X^{t,x,u,v}_s, u_s, v_s) \, ds + \sigma(s, X^{t,x,u,v}_s) \, dB_s \\
 X^{t,x,u,v}_t &= x,
\end{align*}
\]

where \((u_s)_{s \in [t,T]}\) control of Player 1, \((v_s)_{s \in [t,T]}\) control of Player 2.

Assumption: controls only take their values in \(U, V\), compact subsets of some finite dimensional space.
Target

For $i = 1, \ldots, I$ we consider

(i) running costs: $l_i : [0, T] \times \mathbb{R}^d \times U \times V \to \mathbb{R}$

(ii) terminal payoffs: $g_i : \mathbb{R}^d \to \mathbb{R}$

and denote

$$J_i(t, x, u, v) = \mathbb{E} \left[\int_t^T l_i(s, X_s^{t,x,u,v}, u_s, v_s) ds + g_i(X_T^{t,x,u,v}) \right].$$

Before the game starts $i \in \{1, \ldots, I\}$ is chosen with $p \in \Delta(I)$.

Player 1 chooses his control to minimize, Player 2 chooses his control to maximize the expected payoff.

Assumption:

- Both players observe their opponents control.
- Player 1 knows scenario $i \in \{1, \ldots, I\}$.
- Player 2 just knows the probability p.
Standing Assumptions (A)

(i) \(b : [0, T] \times \mathbb{R}^d \times U \times V \to \mathbb{R}^d, \sigma : [0, T] \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \)
\((l_i)_{i \in I} : [0, T] \times \mathbb{R}^d \times U \times V \to \mathbb{R}, (g_i)_{i \in I} : \mathbb{R}^d \to \mathbb{R}\) are bounded, continuous, Lipschitz w.r.t. \((t, x)\) uniformly in \((u, v)\).

(ii) For all \((t, x) \in [0, T] \times \mathbb{R}^d\) \(\sigma^T(t, x)\) is non-singular and \((\sigma^T)^{-1}(t, x)\) is bounded, Lipschitz.

(iii) Isaacs condition: for all \((t, x, \xi, p) \in [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \Delta(I)\)

\[
\inf_{u \in U} \sup_{v \in V} \left\{ \langle b(t, x, u, v), \xi \rangle + \sum_{i=1}^I p_i l_i(t, x, u, v) \right\} = \sup_{v \in V} \inf_{u \in U} \left\{ \langle b(t, x, u, v), \xi \rangle + \sum_{i=1}^I p_i l_i(t, x, u, v) \right\}
\]
Overview

Description of the Game

Existence and Uniqueness of the Value Function

BSDE Characterization of the Value Function

Outlook
Strategies for Games with Information Incompleteness

Strategy for

(Players 1) \(\alpha : (v_s)_{s \in [t, t']} \rightarrow u_{t'} = \alpha (t', (B_s)_{s \in [t, t']}, (v_s)_{s \in [t, t']}) \)

(Players 2) \(\beta : (u_s)_{s \in [t, t']} \rightarrow v_{t'} = \beta (t', (B_s)_{s \in [t, t']}, (u_s)_{s \in [t, t']}) \).

Games with Incomplete Information

(i) Players learn new information during the game and adapt their behavior.

\[J_i(t, x, \alpha, \beta) := J_i(t, x, u, v) \]

with \((u, v)\) s.t. \(u = \alpha(v), v = \beta(u)\).

(ii) Players try to hide their information in an optimal way.
Strategies for Games with Information Incompleteness

Random strategy for

(Player 1) \(\alpha_\omega : (v_s)_{s \in [t, t']} \rightarrow u_{t'} = \alpha_\omega(t', (B_s)_{s \in [t, t']}, (v_s)_{s \in [t, t']}) \)

(Player 2) \(\beta_\omega : (u_s)_{s \in [t, t']} \rightarrow v_{t'} = \beta_\omega(t', (B_s)_{s \in [t, t']}, (u_s)_{s \in [t, t']}) \).

Games with Incomplete Information

(i) Players learn new information during the game and adapt their behavior.

\(\rightarrow \) Play strategy vs. strategy

\[J_i(t, x, \alpha, \beta) := J_i(t, x, u, v) \]

with \((u, v)\) s.t. \(u = \alpha(v), v = \beta(u)\).

(ii) Players try to hide their information in an optimal way.

\(\rightarrow \) They add randomness to their behavior.
Strategies for Games with Information Incompleteness

Random strategy for

(Players 1) \(\alpha_\omega : (v_s)_{s \in [t, t']} \rightarrow u_{t'} = \alpha_\omega(t', (B_s)_{s \in [t, t']}, (v_s)_{s \in [t, t']}) \)

(Players 2) \(\beta_\omega : (u_s)_{s \in [t, t']} \rightarrow v_{t'} = \beta_\omega(t', (B_s)_{s \in [t, t']}, (u_s)_{s \in [t, t']}) \).

Games with Incomplete Information

(i) Players learn new information during the game and adapt their behavior.

→ Play strategy vs. strategy

\(J_i(t, x, \alpha, \beta) := J_i(t, x, u, v) \)

with \((u, v)\) s.t. \(u = \alpha(v), v = \beta(u)\).

(ii) Players try to hide their information in an optimal way.

→ They add randomness to their behavior.

Denote \(A^r(t) \) (resp. \(B^r(t) \)) the set of random strategies for Player 1 (resp. 2), which are non anticipative with delay.
Value of the Game

For any \((t, x, p) \in [0, T] \times \mathbb{R}^d \times \Delta(l), \bar{\alpha} \in (\mathcal{A}^r(t))^l, \beta \in \mathcal{B}^r(t)\) set

\[
J(t, x, p, \bar{\alpha}, \beta) = \sum_{i=1}^l p_i J_i(t, x, \bar{\alpha}_i, \beta).
\]

Theorem ([CardaliaguetRainer09])

For any \((t, x, p) \in [0, T] \times \mathbb{R}^d \times \Delta(l)\) the value of the game \(V(t, x, p)\) is given by

\[
V(t, x, p) = \inf_{\bar{\alpha} \in (\mathcal{A}^r(t))^l} \sup_{\beta \in \mathcal{B}^r(t)} J(t, x, p, \bar{\alpha}, \beta)
= \sup_{\beta \in \mathcal{B}^r(t)} \inf_{\bar{\alpha} \in (\mathcal{A}^r(t))^l} J(t, x, p, \bar{\alpha}, \beta).
\] (1)
PDE Characterization

Define

\[H(t, x, \xi, p) = \inf_{u \in U} \sup_{v \in V} \left\{ \langle b(t, x, u, v), \xi \rangle + \sum_{i=1}^{l} p_i l_i(t, x, u, v) \right\}. \]

Theorem ([Cardaliaguet09])

\[V : [0, T[\times \mathbb{R}^d \times \Delta(I) \to \mathbb{R} \] is the unique viscosity solution to

\[
\min \left\{ \frac{\partial w}{\partial t} + \frac{1}{2} \text{tr}(\sigma \sigma^T(t, x) D_x^2 w) + H(t, x, D_x w, p), \right. \\
\left. \lambda_{\min} \left(\frac{\partial^2 w}{\partial p^2} \right) \right\} = 0
\]

with boundary

\[w(T, x, p) = \sum_i p_i g_i(x), \]

where for all \(A \in S^l \) \(\lambda_{\min}(A) \) denotes the smallest EV of \(A \).
Overview

Description of the Game

Existence and Uniqueness of the Value Function

BSDE Characterization of the Value Function

Outlook
Canonical space

We will work on \((\Omega, \mathcal{F}) = (\Omega_B \times \Omega_p, \mathcal{F}^B \otimes \mathcal{F}^p)\), where

- \(\Omega_B := \mathcal{C}([0, T]; \mathbb{R}^d)\) set of continuous functions from \(\mathbb{R}\) to \(\mathbb{R}^d\), constant on \((-\infty, 0]\) and on \([T, +\infty)\).
 Set \(B_s(\omega_B) = \omega(s) \ \forall \omega_B \in \Omega_B\). Denote \((\mathcal{F}^B_s)_{s \in \mathbb{R}}\) filtration generated by \(s \mapsto B_s\).

- \(\Omega_p := \mathcal{D}([0, T]; \Delta(I))\) set of càdlàg functions from \(\mathbb{R}\) to \(\Delta(I)\), constant on \((-\infty, 0)\) and on \([T, +\infty)\).
 Set \(p_s(\omega_p) = \omega_p(s) \ \forall \omega_p \in \Omega_p\). Denote \((\mathcal{F}^p_s)_{s \in \mathbb{R}}\) filtration generated by \(s \mapsto p_s\).

For any measure \(\mathbb{P}\) on \(\Omega\), denote by \(\mathbb{E}_\mathbb{P}[\cdot]\) the expectation w.r.t. \(\mathbb{P}\).
Set of probability measures $\mathcal{P}(t, p)$

For all $p \in \Delta(I)$, $t \in [0, T]$ denote by $\mathcal{P}(t, p)$ the set of probability measures \mathbb{P} on Ω such that, under \mathbb{P}

(i) $(B_s)_{s \in [0, T]}$ is a Brownian motion,

(ii) p is a martingale, such that:

- $p_s = p \ \forall s < t$,
- $p_s \in \{e_i, i = 1, ..., l\} \ \forall s \geq T \ \mathbb{P}\text{-a.s.}$,
- p_T is independent of $(B_s)_{s \in [-\infty, T]}$.

Furthermore denote $\mathcal{H}^2(\mathbb{P})$ the space of all predictable processes θ, such that $\mathbb{E}_\mathbb{P} \left[\int_0^T \theta_s^2 ds \right] < \infty$, $\mathcal{I}^2(\mathbb{P}) = \{ \int \theta dB : \theta \in \mathcal{H}^2(\mathbb{P}) \}$ and $\mathcal{M}_0^2(\mathbb{P})$ the space of square integrable martingales null at time zero.
BSDE Formulation

Fix \((t, x, p) \in [0, T] \times \mathbb{R}^d \times \Delta(I), \mathbb{P} \in \mathcal{P}(t, p)\). Define

\[
dX_{s}^{t,x} = \sigma(s, X_{s}^{t,x})dB_{s} \quad X_{t}^{t,x} = x
\]

and consider similar to [HamadèneLepeltier95]

\[
Y_{s}^{t,x,p} = \langle p_T, g(X_{T}^{t,x}) \rangle + \int_{s}^{T} H(r, X_{r}^{t,x}, Z_{r}^{t,x,p}, p_{r})dr
- \int_{s}^{T} \sigma(r, X_{r}^{t,x})Z_{r}^{t,x,p}dB_{r} - N_{T}^{t,x,p} + N_{s}^{t,x,p}, \tag{3}
\]

where \(N^{t,x,p} \in \mathcal{M}_0^2(\mathbb{P})\) is strongly orthogonal to \(\mathcal{I}^2(\mathbb{P})\).

(A) \Rightarrow BSDE (3) has a unique solution

\[
(Y^{t,x,p}, Z^{t,x,p}, N^{t,x,p}) \in \mathcal{H}^2(\mathbb{P}) \times \mathcal{H}^2(\mathbb{P}) \times \mathcal{M}_0^2(\mathbb{P}).
\]
Representation of the Value via BSDE

For any $\mathbb{P} \in \mathcal{P}(t, p)$

$$Y_{t-}^{t,x,\mathbb{P}} = \mathbb{E}_{\mathbb{P}} \left[\int_t^T H(r, X_r^{t,x}, Z_r^{t,x,\mathbb{P}}, p_r) dr + \langle p_T, g(X_T^{t,x}) \rangle \right]|_{F_{t-}}.$$

Theorem

For all $(t, x, p) \in [0, T] \times \mathbb{R}^d \times \Delta(I)$ the value of the game with incomplete information $V(t, x, p)$ is given by

$$V(t, x, p) = \text{essinf}_{\mathbb{P} \in \mathcal{P}(t,p)} Y_{t-}^{t,x,\mathbb{P}}. \quad (4)$$

Note: Definition of $\mathcal{P}(t, p) \Rightarrow \exists$ probability measure \mathbb{Q} on F_{t-}, such that $\forall \mathbb{P} \in \mathcal{P}(t, p)$ it holds $\mathbb{P}|_{F_{t-}} = \mathbb{Q}$, hence $\text{essinf}_{\mathbb{P} \in \mathcal{P}(t,p)} Y_{t-}^{t,x,\mathbb{P}}$ is \mathbb{Q}-a.s. defined.
Idea of proof

Define

\[W(t, x, p) = \text{essinf}_{\mathbb{P} \in \mathcal{P}(t,p)} Y_t^{t,x,\mathbb{P}} \quad \mathbb{Q}\text{-a.s.} \]

Show

\begin{itemize}
 \item W(t, x, p) is deterministic ([BuckdahnLi08])
 \item W(t, x, p) is convex in p, uniformly Lipschitz in x, p, uniformly Hölder in t
 \item Dynamic Programming Principle
 \item W(t, x, p) is viscosity solution to
 \[
 \min \left\{ \frac{\partial w}{\partial t} + \frac{1}{2} \text{tr}(\sigma \sigma^T(t, x) D_x^2 w) + H(t, x, D_x w, p), \right. \\
 \left. \lambda_{\text{min}} \left(\frac{\partial^2 w}{\partial p^2} \right) \right\} = 0.
 \]
 \item V(t, x, p) is unique viscosity solution
 \[\Rightarrow W(t, x, p) = V(t, x, p) \]
\end{itemize}
Overview

Description of the Game

Existence and Uniqueness of the Value Function

BSDE Characterization of the Value Function

Outlook
(Open) Questions

- Is there a $\mathbb{P}^* \in \mathcal{P}(t, p)$ under which
 $$V(t, x, p) = Y_{t-}^{t, x, \mathbb{P}^*}$$

- Can one find a characterization of an optimal $\mathbb{P}^* \in \mathcal{P}(t, p)$?

- Can one use the BSDE to derive optimal strategies for the informed player?

- Regularity?

- Numerics?
Literature

Thank you!