Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks

Michael Neely
MIT - LIDS
mjneely@mit.edu

Eytan Modiano (LIDS)
Charlie Rohrs (LIDS)

Consider a constant service rate routing problem:
(heterogeneous service rates \(\{\mu_1, \mu_2, ..., \mu_n\} \))

2 Natural Routing Strategies:

Greedy: \(\pi_{greedy} \)

Choose queue \(k \) such that
\[
k = \arg\min_{j \in \{1, ..., n\}} \left\{ \frac{L_i + U_j(t)}{\mu_j} \right\}.
\]

Work Conserving: \(\pi_{WC} \)

Choose queue \(k \) such that
\[
k = \arg\min_{j \in \{1, ..., n\}} \left\{ \frac{U_j(t)}{\mu_j} \right\}.
\]

\(U_{greedy}(t) \) can be arbitrarily larger than \(U_{WC}(t) \). However, \(U_{WC}(t) \) stays within a fixed upper bound from any other strategy.
Multiplexing Inequality:

\[U_{\text{single}}(t) \leq U_{\text{multi}}(t) \]

(For any routing strategy over the parallel queues)

However, for the work conserving strategy \(\pi_{WC} \), we also have an upper bound:

\[U_{\text{single}}(t) \leq U_{\text{WC}}(t) \leq U_{\text{single}}(t) + (n - 1)L_{\text{max}} \]

Comparing \(\pi_{WC} \) to any other routing strategy \(\pi \):

\[U_{\text{WC}}(t) \leq U_{\pi}(t) + (n - 1)L_{\text{max}} \]

...and it can be shown that \((n-1)L_{\text{max}}\) is the best bound possible for non-predictive, non-preemptive routing schemes, hence \(\pi_{WC} \) is minimax optimal.
The π_{WC} routing algorithm uses a pre-queue to achieve work conservation in systems with time-varying server speeds (route to a server immediately when it empties).

How do we route when no pre-queue is available? (Ex: Queues are in different physical locations)

Input process $X(t)$ --- rate ergodic, rate λ.
Processing rates $\{\mu_i(t)\}$ --- ergodic, time average rates $\{\mu_i^{av}\}$.

How do we stabilize the system without knowing the input stream, and without knowing future processing rates?

Consider Join-the-Shortest-Queue strategy: π_{JSQ}
($JSQ =$ Route the incoming packet to the queue j with the smallest unfinished work $U_j(t)$).
New notion of stability useful for understanding stability issues in systems with general ergodic inputs:

Consider a single server queue with a finite buffer of size M:

$$X(t) \sim \text{rate } \lambda$$

Define $DR(M) = \text{Packet drop rate when buffer size is } M \text{ bits}$. (clearly $DR(M)$ is a non-increasing function of M).

Definition:
A system is *loss rate stable* if $DR(M) \to 0$ as $M \to \infty$.

This definition is closely related to the existing notion of stability defined in terms of a vanishing complementary occupancy distribution $Pr[U > m] \to 0$ as $m \to \infty$. It can be shown:

$$\lambda \leq \mu_{av} : \text{ necessary condition for stability.}$$

$$\lambda < \mu_{av} : \text{ sufficient condition if inputs and linespeeds are Markov Modulated.}$$
Compare drop rate under JSQ policy to a single-server queue:

Let $DR_{JSQ}(M+nL_{max})$ represent the packet drop rate in the multi-queue system under the JSQ routing policy when all queues have buffer size M.

Theorem:

\[DR_{JSQ}(M+nL_{max}) \leq DR_{single-queue}(M) \]

Thus, the system under π_{JSQ} is loss rate stable iff the single queue system is loss rate stable. (Hence, it is stable whenever the system is stabilizable).

Joint routing and Power Allocation:
Power Allocation--Processing rates depend on power allocation $p_i(t)$ and time varying channel state $c_i(t)$: $\mu_i(p_i(t), c_i(t))$.

Each satellite s has multiple beams and a fixed power resource $P_{tot}(s)$.

Must jointly route packets and allocate power to the different queues subject to a fixed power resource $\sum p_i(t) \leq P_{tot}$.

Decoupled Policy:
- Routing: JSQ
- Power Allocation:

Maximize $\sum \mu_i(p_i, c_i(t))$ subject to $\sum p_i = P_{tot}$
Example: Poisson arrival process, fixed length packets (size L).

Assume, for the simplicity of the example, that the time varying linespeeds $\mu_i(t)$ are arbitrary but sum to a constant rate μ.

Let $N_i(t) =$ Number of packets in queue i at time t.

Translate unfinished work into number of packets: $N = \lceil U / L \rceil$

$$DR_{JSQ}(M) \leq DR_{Single}(M - k) \leq Pr[N_{M/D/1} > n]$$
Theorem:

\[DR_{JSQ}(M+nL_{\text{max}}) \leq DR_{\text{single-queue}}(M) \]

Proof outline: Let \(G(t) \) represent packet drops during \([0, t]\).

We show \(G_{JSQ}(t) \leq G_{\text{single}}(t) \) for all time \(t \).

Prove claim over “completely busy periods”:

Let: \(a = \) arrivals during \([t_B, t]\).
\(d = \) departures during \([t_B, t]\).

1. Packet Conservation equalities:

\[U_{JSQ}(\tau) = U_{JSQ}(t_B) + a \quad d_{JSQ} - g_{JSQ} \]
\[U_{\text{single}}(\tau) = U_{\text{single}}(t_B) + a \quad d_{\text{single}} - g_{\text{single}} \]

2. \(d_{JSQ} \geq d_{\text{single}} \):

\[d_{JSQ} \geq d_{\text{single}} \]
3. Just before c.b.p., at least one queue of multi-server system is empty:

\[U_{JSQ}(t_B) \leq (n - 1)[M + nL_{max}] \]

4. JSQ Strategy: When a packet is dropped at time \(\tau \), all queues must have more than \([M + (n-1)L_{max}]\) unfinished work:

\[U_{JSQ}(\tau) > n[M + (n - 1)L_{max}] \]

These facts plus algebra yield the result. \(\square \)