1 Matrix Basics

Literature to this topic: [1–4].

\[x^\top y \iff \langle y, x \rangle \] standard inner product.

\[x^\top x = 1 : x \text{ is normalized} \]

\[x^\top y = 0 : x, y \text{ are orthogonal} \]

\[x^\top y = 0, x^\top x = 1, y^\top y = 1 : x, y \text{ are orthonormal} \]

\[Ax = y \text{ is uniquely solvable if } A \text{ is linear independent (nonsingular).} \]

Majorization: Arrange \(b \) and \(a \) in increasing order \((b_1, b_2, \ldots, b_n)\), then:

\[\text{b majorizes a} \iff \sum_{i=1}^{k} b_m i \geq \sum_{i=1}^{k} a_m i \quad \forall k \in [1, \ldots, n] \tag{1} \]

The collection of all vectors \(b \in \mathbb{R}^n \) that majorize a given vector \(a \in \mathbb{R}^n \) may be obtained by forming the convex hull of \(n! \) vectors, which are computed by permuting the \(n \) components of \(a \).

Direct sum of matrices \(A \in \mathbb{M}_{n1}, B \in \mathbb{M}_{n2} \):

\[A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \in \mathbb{M}_{n1+n2} \tag{2} \]

\[[A, B] = \text{trace} A B^\top \text{: matrix inner product.} \]

1.1 Trace

\[\text{trace} A = \sum_{i=1}^{n} \lambda_i \tag{3} \]

\[\text{trace}(A + B) = \text{trace} A + \text{trace} B \tag{4} \]

\[\text{trace} AB = \text{trace} BA \tag{5} \]

1.2 Determinants

The determinant \(\det(A) \) expresses the volume of a matrix \(A \).

\[\det(A) = 0 \iff \begin{cases} A \text{ is singular.} \\
\text{Linear equation is not solvable.} \\
A^{-1} \text{ does not exists} \\
\text{vectors in } A \text{ are linear dependent} \end{cases} \tag{6} \]

\[\det(A) \neq 0 \iff A \text{ is regular/nonsingular.} \]

\[A_{ij} \in \mathbb{R} \rightarrow \det(A) \in \mathbb{R} \quad A_{ij} \in \mathbb{C} \rightarrow \det(A) \in \mathbb{C} \]

If \(A \) is a square matrix \((A_{n \times n})\) and has the eigenvalues \(\lambda_i \), then \(\det(A) = \prod \lambda_i \)

\[\det A^T = \det A \tag{7} \]

\[\det A^\top = \det A \tag{8} \]

\[\det AB = \det A \det B \tag{9} \]

Elementary operations on matrix and determinant:

Interchange of two rows : \(\det A \neq -1 \)

Multiplication of a row by a nonzero scalar \(c \) : \(\det A \neq c \)

Addition of a scalar multiple of one row to another row : \(\det A = \det A \)
2.1 Characteristic Polynomial

\[p_A(t) = \det(tI - A) \quad (11) \]

\[p_A(t) = \prod_{i=1}^{m} (t - \lambda_i)^{s_i}, \quad 1 \leq s_i \leq n, \quad \sum_{i} s_i = n, \quad \lambda_i \in \sigma(A) \quad (12) \]

2.2 Eigendecomposition

\[MV = \lambda V \quad (13) \]

If \(M = \frac{1}{\sqrt{\text{det}(\text{Re}(x), \text{Im}(x))^T \text{[Re}(x), \text{Im}(x)]}} \) then \(\lambda \) is the variance of \(M \) along \(v \). \(\text{sdev}(M) \) along \(v \) is then \(\sqrt{\lambda} \).

Characteristic function: \[|\lambda I - M| = 0 \]

\[\begin{align*}
& \text{trace } M = \sum \lambda_i \\
& \det M = |M| = \prod \lambda_i \\
& \sigma(AB) = \sigma(BA) \quad \text{even if } AB \neq BA \\
& M = M^T \\& M^k \rightarrow \lambda^k
\end{align*} \quad (14) \]

\(M \) is squared matrix. With \(D = \text{diag} \lambda_i \) and \(V = [v_0, v_1, \ldots] \):

\[MV = DV \quad \iff \quad M = VD^{-1} \quad (19) \]

\[M^2 = (VDV^{-1})(VDV^{-1}) = VDV^{-1} \quad (20) \]

\[M^n = VD^nV^{-1} \quad \text{with } n \in \mathbb{N}^+ \quad (21) \]

\[M^{-1} = VD^{-1}V^{-1} \quad \text{with } D^{-1} = \text{diag} \lambda_i^{-1} \quad (22) \]

\[e^M = Ve^DV^{-1} \quad \text{with } e^D = \text{diag} e^{\lambda_i} \quad (23) \]

\[M^{1/2} = VD^{1/2}V^{-1} \quad \text{with } D^{1/2} = \text{diag} \lambda_i^{1/2} \quad (24) \]

(24) is also known as square root of the matrix \(M \) with \(M = M^{1/2}M^{1/2} \).

\(A \) triangular \(\iff \sigma(A) = \{a_{ii}|1 \leq i \leq n\} \)

2.3 Similarity

\(A \) is similar to \(B \) if \(\exists S \) such that:

\[B = S^{-1}AS \quad \iff \quad A \sim B \iff B \sim A \quad (25) \]

\[\begin{align*}
& \sigma(A) = \sigma(B) \\
& \det A = \det B \\
& \text{trace } A = \text{trace } B \\
& \text{rank } A = \text{rank } B \\
& p_A(t) = p_B(t) \quad p_A(t) : \text{characteristic polynomial of } A
\end{align*} \quad (26) \]

\(\forall A \in \mathbb{M}_n \quad A \sim A^T \iff \text{rank } A = \text{rank } A^T \) (row rank = column rank).

\(\forall A \in \mathbb{M}_n \quad A \sim S \quad S = S^T \Rightarrow S \) is a symmetric matrix.

\(A \) is diagonalizable \(\iff \exists D : \quad A \sim D \)

\(A \sim D \iff A \) has \(n \) linearly independent eigenvectors \(V = \{v_1, \ldots, v_n\} \):

\[A \sim D \iff D = S^{-1}AS \quad \text{with } S = V_a, \quad D = \Lambda_a \quad (27) \]

\(A, B \) (\(A \neq B \)) are simultaneously diagonalizable, if:

\[\exists S : \quad D_a = S^{-1}AS, \quad D_b = S^{-1}BS \quad (28) \]

\(A, B \) commute \(\iff A, B \) are simultaneously diagonalizable.
Commuting family \(\mathcal{W} \subseteq \mathbb{M}_n \): each pair of matrices in \(\mathcal{W} \) is commutative under multiplication \(\iff \) \(\mathcal{W} \) is a simultaneously diagonalizable family.

If \(\mathcal{W} \) is a commuting family, then there is a vector \(\mathbf{x} \) that is an eigenvector of every \(\mathbf{A} \in \mathcal{W} \).

2.4 Eigenvectors, Eigenspace

Eigenspace is the set of eigenvectors corresponding to the eigenvalue (one or more) of \(\mathbf{A} \).

Geometric multiplicity of \(\lambda \) is the dimension of the eigenspace of \(\mathbf{A} \) corresponding to the eigenvalue \(\lambda \). It is the maximum number of linearly independent eigenvectors associated with an eigenvalue.

Algebraic multiplicity of \(\lambda \) is the multiplicity of the eigenvalue \(\lambda \) as a zero in the characteristic polynomial. It is the amount of same values of \(\lambda \) in \(\sigma(\mathbf{A}) \). In general, the term *multiplicity* usually refers to the algebraic multiplicity.

Geometric multiplicity of \(\lambda \) \(\leq \) algebraic multiplicity of \(\lambda \).

\[\exists \lambda \in \sigma(\mathbf{A}): \text{geometric mult.} < \text{algebraic mult.} \quad \Rightarrow \mathbf{A} \text{ is defective.} \quad (29) \]

\[\forall \lambda \in \sigma(\mathbf{A}): \text{geometric mult.} = \text{algebraic mult.} \quad \Rightarrow \mathbf{A} \text{ is nondefective.} \quad (30) \]

If \(\text{rank}(\mathbf{A}) = k \) then \(\exists \mathbf{x}_i, \mathbf{y}_i : \mathbf{A} = \mathbf{x}_1^{\dagger} \mathbf{y}_1 + \ldots + \mathbf{x}_k^{\dagger} \mathbf{y}_k \)

3 Unitary Equivalence, Normal and Unitary Matrices (real orthogonal matrices in \(\mathbb{R}^n \))

Unitary Equivalence implies similarity, but not conversely. It corresponds, like similarity, to a change of basis, but of a special type – a change from one orthonormal basis to another. An orthonormal change of basis leaves unchanged the sum of squares of the absolute values of the entries (trace \(\mathbf{A}^\dagger \mathbf{A} = \text{trace} \mathbf{B}^\dagger \mathbf{B} \) if \(\mathbf{A} \) is unitarily equivalent to \(\mathbf{B} \)).

Schur’s theorem: Every matrix \(\mathbf{A} \) is unitarily equivalent to a upper(lower) triangular matrix \(\mathbf{T} \):

\[\forall \mathbf{A} \exists \mathbf{U}, \mathbf{T} : \quad \mathbf{U}^\dagger \mathbf{A} \mathbf{U} = \mathbf{T} \quad (34) \]

Where \(\mathbf{U} \) is unitary, \(\mathbf{T} \) is triangular. \(\mathbf{U}, \mathbf{T} \) are not unique.

3.1 Normal matrices

Normal matrices generalize the unitary, real symmetric, Hermitian, and skew–Hermitian matrices(and other). The class of normal matrices is closed under unitary equivalence. Condition:

\[\mathbf{A} \text{ normal} \iff \begin{cases} \mathbf{A} \text{ is normal} \\ \mathbf{A} \text{ is unitarily diagonalizable} \\ \sum_{ij} |a_{ij}|^2 = \sum_i |\lambda_i|^2 \\ \exists \text{ orthonormal set of } n \text{ eigenvectors of } \mathbf{A} \\ \exists \mathbf{U} : \mathbf{A}^\dagger = \mathbf{A} \mathbf{U} \quad \text{U is unitary} \end{cases} \quad (37) \]

\[\mathbf{A} \text{ normal } \rightarrow \mathbf{A} \text{ is nondefective (geom.mult.=}\text{algb.mult.}) \quad (38) \]
4 Canonical Forms

Jordan block $J_{k}(\lambda) \in M_{k}$ and Jordan matrix $J \in M_{n}$:

$$J_{k}(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\
& \ddots & \ddots & \ddots \\
& & \ddots & 1 \\
& & & \lambda \\
\end{bmatrix} \quad J = \begin{bmatrix} J_{n_{1}}(\lambda_{1}) & 0 \\
& \ddots & \ddots \\
& & 0 & J_{n_{k}}(\lambda_{k}) \end{bmatrix}, \quad \sum_{i} n_{i} = n \quad (39)$$

Jordan canonical form theorem: \(\forall A \in M_{n} \ni \exists S, J : A = SJS^{-1} \) Where J is unique up to permutations of the diagonal Jordan blocks. By convention, the Jordan blocks corresponding to each distinct eigenvalue are presented in decreasing order with the largest block first.

Minimal Polynomial $q_{A}(t)$ of A is the unique monic polynomial $q_{A}(t)$ of minimum degree that annihilates A. (monic: a polynomial whose highest-order term has coefficient +1; annihilates: a polynomial whose value is the 0 matrix).

Similar matrices have the same minimal polynomial. Minimal polynomial $q_{A}(t)$ divides the characteristic polynomial $p_{A}(t) = q_{A}(t)h_{A}(t)$. Also, $q_{A}(\lambda) = 0 \iff \lambda \in \sigma(A)$.

$$q_{A}(t) = \prod_{i=1}^{m} (t - \lambda_{i})^{r_{i}}, \quad \lambda_{i} \in \sigma(A) \quad (40)$$

Where r_{i} is the order of the largest Jordan block of A corresponding to λ_{i}.

Polar decomposition: (rank $P = \text{rank } A$)

$$\forall A : \begin{cases} A = PU & P \text{ positive semidefinite, } U \text{ unitary} \\
\forall A \text{ nonsingular} : A = GQ & G = G^{T}, QQ^{T} = I \end{cases} \quad (41)$$

Singular value decomposition:

$$\forall A : A = V \Sigma W^{T}, \quad V, W \text{ unitary, } \Sigma \text{ nonnegative diagonal, } \text{rank } \Sigma = \text{rank } A \quad (42)$$

Triangular factorization:

$$\forall A : A = URU^{T} \quad U \text{ unitary, } R \text{ upper triangular} \quad (43)$$

Others:

$$\forall A \text{ Hermitian} : A = SI_{A}S^{\dagger} \quad S \text{ nonsingular, } I_{A} = \text{diag} \in \{-1, 0, +1\} \quad (44)$$

Where I_{A} is a diagonal matrix with entries in $\{-1, 0, +1\}$. The number of $+1(-1)$ entries in I_{A} is the same as the number of positive (negative) eigenvalues of A, the number of 0 entries is equal to $(n - \text{rank } A)$.

$$\begin{align*}
\forall A \text{ normal} : & \quad A = UAU^{\dagger} \quad U \text{ unitary, } A = \text{diag } \lambda \in \sigma(A) \\
\forall A \text{ symmetric} : & \quad A = SK_{A}S^{T} \quad S \text{ nonsingular, } K_{A} = \text{diag} \in \{0, +1\}, \\
& \text{rank } K_{A} = \text{rank } A \\
\forall A \text{ symmetric} : & \quad A = USU^{T} \quad U \text{ unitary, } \Sigma = \text{diag } \geq 0, \text{rank } \Sigma = \text{rank } A \quad (45) \\
\forall U \text{ unitary} : & \quad U = Qe^{E} \quad Q \text{ real orthogonal, } E \text{ real symmetric} \\
\forall P \text{ orthogonal} : & \quad P = Qe^{F} \quad Q \text{ real orthogonal, } E \text{ real skew-symmetric} \\
\forall A : & \quad A = SUU^{T}S^{-1} \quad S \text{ nonsingular, } U \text{ unitary, } \Sigma = \text{diag } \geq 0
\end{align*}$$

LU factorization: is not unique. Only if all upper left principal submatrices of A are nonsingular (and A is nonsingular):

$$A = LU \quad L \text{ lower triangular, } U \text{ upper triangular, } \det A(\{1, \ldots, k\}) \neq 0, k = 1, \ldots, n \quad (46)$$

$$\begin{align*}
\forall A \text{ nonsingular} : & \quad A = PLU \quad P \text{ permutation, } L, U \text{ lower/upper triangular} \\
\forall A : & \quad A = PLUQ \quad P, Q \text{ permutation, } L, U \text{ lower/upper triangular} \quad (47)
\end{align*}$$

5 Hermitian and Symmetric Matrices

$$\forall A : \begin{cases} A + A^{\dagger}, AA^{\dagger}, A^{\dagger}A & \text{Hermitian} \\
A - A^{\dagger} & \text{skew-Hermitian} \\
A = H_{A} + S_{A} & H_{A} = \frac{A + A^{\dagger}}{2} \text{ Hermitian, } S_{A} = \frac{A - A^{\dagger}}{2i} \text{ skew-Hermitian} \\
A = E_{A} + iF_{A} & E_{A}, F_{A} \text{ Hermitian, } E_{A} = H_{A}, F_{A} = -iS_{A} \end{cases} \quad (48)$$

$H_{A}, S_{A}, E_{A}, F_{A}$ are unique $\forall A$. $H_{A}, E_{A}, F_{A} \in M(\mathbb{R})$.

$$H_{A}S_{A} = S_{A}H_{A} \iff A \text{ is normal} \quad (49)$$
Analog is Geometrical interpretation:

Rayleigh–Ritz ratio

A class of matrices where \(A \) is similar to its Hermitian \(A \):

\[
\begin{align*}
\forall \ A, B \text{ Hermitian } & \rightarrow \\
A^k & \text{ Hermitian } \forall k \in \mathbb{N}^0 \\
A^{-1} & \text{ Hermitian } \quad (A \text{ nonsingular}) \\
aA + bB & \text{ Hermitian } \forall a, b \in \mathbb{R} \\
iA & \text{ skew–Hermitian} \\
x^\dagger Ax \in \mathbb{R} & \forall x \in \mathbb{C}^n \\
\sigma(A) & \in \mathbb{R} \\
S^\dagger AS & \text{ Hermitian } \forall S
\end{align*}
\]

\[
A = UAU^\dagger \\
D = U^\dagger AU \\
v_j^\dagger v_j = 0 & \quad i \neq j \\
\text{rank}(A) = (\text{trace}\, A^2)^2 & \quad \text{number of nonzero eigenvalues}
\]

\[
\forall \ A, B \text{ skew–Hermitian } & \rightarrow \\
aA + bB & \text{ skew–Hermitian } \forall a, b \in \mathbb{R} \\
iA & \text{ Hermitian} \\
\sigma(A) & \in \text{Imaginary}
\]

Commutivity of Hermitian matrices! Let \(\mathcal{W} \) be a given family of Hermitian matrices:

\[
\exists \ U \text{ unitary: } D_A = UAU^\dagger \quad D_A \text{ is diagonal } \forall A \in \mathcal{W} \iff AB = BA \forall A, B \in \mathcal{W}
\]

\[
A, B \text{ Hermitian } \rightarrow AB \text{ Hermitian } \iff AB = BA
\]

But in general: \(AB \neq BA \) !!! and \(AB \) is in general not Hermitian!!!

A matrix \(A \in M_\mathbb{R} \) is uniquely determined by the Hermitian (sesquilinear) form \(x^\dagger Ax \):

\[
x^\dagger Ax = x^\dagger Bx \quad \forall x \in \mathbb{C}^n \iff A = B
\]

The class of hermitian matrices is closed under unitary equivalence.

\[
A = A^\dagger, \quad \forall x: \quad x^\dagger Ax = \begin{cases}
\geq 0 & \rightarrow \sigma(A) \geq 0 \quad \text{A is positive semidifinite} \\
\not\geq 0 & \rightarrow \sigma(A) \\
\end{cases} \quad \text{A is positive definite}
\]

5.1 Variational characterization of eigenvalues of Hermitian matrices

Matrix \(A \) is a Hermitian matrix with eigenvalues \(\lambda_i \in \mathbb{R} \).

Convention for eigenvalues of Hermitian matrices: \(\lambda_{\text{min}} = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n = \lambda_{\text{max}} \)

Rayleigh–Ritz ratio: \(\frac{\nabla^\dagger Ax}{x^\dagger x} \)

\[
\begin{align*}
\lambda_1 x^\dagger x \leq x^\dagger Ax \leq \lambda_n x^\dagger x & \quad \forall x \in \mathbb{C}^n \\
\lambda_{\text{max}} &= \lambda_n = \max_{x \neq 0} \frac{x^\dagger Ax}{x^\dagger x} = \max_{x^\dagger x = 1} x^\dagger Ax \\
\lambda_{\text{min}} &= \lambda_1 = \min_{x \neq 0} \frac{x^\dagger Ax}{x^\dagger x} = \min_{x^\dagger x = 1} x^\dagger Ax
\end{align*}
\]

Geometrical interpretation: \(\lambda_{\text{max}} \) is the largest value of the function \(x^\dagger Ax \) as \(x \) ranges over the unit sphere in \(\mathbb{C}^n \), a compact set. Analog is \(\lambda_{\text{min}} \) the smallest (negative) value.

\[
\lambda_{n-1} = \inf_{w \in \mathbb{C}^n} \sup_{x \perp w} \frac{x^\dagger Ax}{x^\dagger x} \quad \lambda_2 = \sup_{x \in \mathbb{C}^n} \inf_{x \perp w} x^\dagger Ax
\]
Courant–Fischer:

\[
\begin{align*}
\min_{w_1, w_2, \ldots, w_n \in \mathbb{C}^n} & \quad \max_{x, \text{s.t. } x = w_1, w_2, \ldots, w_n} x^T A x = \lambda_k \\
\max_{w_1, w_2, \ldots, w_n \in \mathbb{C}^n} & \quad \min_{x, \text{s.t. } x = w_1, w_2, \ldots, w_n} x^T A x = \lambda_k
\end{align*}
\]

∀ B (even B ≠ B*) \rightarrow \min_{x' x = 1} |x'Bx| \leq |\lambda_0| \leq \max_{x' x = 1} |x'Bx|, 1 \leq i \leq n

The diagonal entries of A majorizes the vector of eigenvalues of A (comp. (1)):

∀ A, B Hermitian \rightarrow \left\{ \begin{array}{l}
\text{diag}(A) \text{ majorizes } \text{diag}(A) \\
|\text{diag}(A)| \geq |\text{diag}(A)| = |\lambda_i = \det(A) \\
\lambda_i(A + B) \leq \min\{\lambda_i(A) + \lambda_j(B) : i + j = k + n\}
\end{array} \right.

5.2 Complex symmetric matrices

A complex symmetric matrix need not to be normal.

\[A \text{ symmetric } \Rightarrow A = U \Sigma U^T \]

U is unitary and contains an orthonormal set of eigenvectors of \(A \overline{A} \); \(\Sigma \) is a diagonal matrix with the nonnegative square roots of eigenvalues of \(A \overline{A} \).

\[A = A^T \iff \exists B : A = BB^T \]

∀ A ∈ Mn \rightarrow \left\{ \begin{array}{l}
A \sim S \quad S \text{ symmetric!!} \\
A = BC \quad B, C \text{ symmetric!!}
\end{array} \right.

5.3 Congruence and simultaneous diagonalization of Hermitian and symmetric matrices

General quadratic form: \(Q_A(x) = x^T A x = \sum_{i,j=1}^{n} a_{ij} x_i x_j, \quad x \in \mathbb{C}^n \)

(General) Hermitian form: \(H_B(x) = x^T B x = \sum_{i,j=1}^{n} b_{ij} x_i x_j, \quad x \in \mathbb{C}^n \)

\[
Q_A(Sx) = (Sx)^T A(Sx) = x^T (S^T A S)x = Q_{S^T A S}(x)
\]

\[
H_B(Sx) = (Sx)^T B(Sx) = x^T (S^T B S)x = H_{S^T B S}(x)
\]

\[i f \exists S : B = SAS^\dagger \quad B \text{ is } \text{congruent} \text{("star–congruent") to } A \]

\[i f \exists S : B = SAS^T \quad \text{B is } \text{congruent} \text{("tee–congruent") to } A \]

Congruence is an equivalence relation.

\[A = A^T \rightarrow SAS^\dagger = (SAS^\dagger)^\dagger \quad \text{congruence preserves type of matrix} \]

\[A \text{ congruent to } B \rightarrow \left\{ \begin{array}{l}
\text{rank } A = \text{rank } B \\
B \text{ congruent to } A
\end{array} \right. \]

Inertia of Hermitian A : i(A) = (i_+(A), i_-(A), i_0(A)), where i_+ is the number of positive eigenvalues, i_- of negative eigenvalues, and i_0 is the number of zero eigenvalues.

Signature of Hermitian A : i_+(A) – i_-(A)

Inertia matrix: \(I(A) = \text{diag}(1, 1, \ldots, 1, -1, -1, \ldots, -1, 0, \ldots, 0) \)

Sylvester’s law of inertia: A, B Hermitian \rightarrow \exists S : A = SBS^\dagger \iff i(A) = i(B) \rightarrow A \text{ is congruent to } B.

A, B are simultaneously diagonalizable by congruence if \(\exists U \) unitary : \(UAU^\dagger \) and \(UBU^\dagger \) are both diagonal, or \(\exists S : SAS^\dagger \) and \(SBS^\dagger \) are both diagonal. The same works for symmetric matrices with the transpose operator.

5.4 Consimilarity and condiagonalization

A, B are consimilar if \(\exists S : A = SBS^{-1} \). If S can be taken to be unitary, A and B are unitarily consimilar. Special cases of consimilarity include \(^T \) congruence, \(^* \) congruence, and ordinary similarity. Consimilarity is an equivalence relation.

A is contriangularizable if \(\exists S : S^\dagger AS \) is upper triangular. A is condiagonalizable if S can be chosen so that \(S^{-1} AS \) is diagonal.

A is unitarily condiagonalizable \(\iff \) A is symmetric.
\(A \mathbf{x} = \lambda \mathbf{x} \) \(\mathbf{x} \) is a \textit{conveigenvector} of \(A \), corresponding to the \textit{conveigenvalue} \(\lambda \). A matrix may have infinitely many distinct \textit{conveigenvalues} or it may have no \textit{conveigenvalues} at all.

\[
A \mathbf{x} = \mathbf{I} \iff \exists \mathbf{S} : \ A = \mathbf{S} \mathbf{S}^{-1} \tag{72}
\]

\(\forall A \in M_n : A \) is consimilar to \(\mathbf{A} \mathbf{A}^\dagger, \mathbf{A}^\dagger \), to a Hermitian matrix, and to a real matrix.

\(\forall A \in M_n : \exists S_1, S_2 \) (symmetric), \(H_1, H_2 \) (Hermitian) such that \(A = S_1 H_1 = H_2 S_2 \)

6 \ Norms for vectors and matrices

Let \(V \) be a vector space over a field \(F \) (\(\mathbb{R} \) or \(\mathbb{C} \)).

A function \(\| \cdot \| : V \to \mathbb{R} \) is a \textit{vector norm} if \(\forall \mathbf{x}, \mathbf{y} \in V \):

\[
\begin{align*}
\| \mathbf{x} \| & \geq 0 \quad \text{Nonnegative} \\
\| \mathbf{x} \| & = 0 \iff \mathbf{x} = 0 \quad \text{Positive} \\
\| c \mathbf{x} \| & = c \| \mathbf{x} \| \quad \forall c \in F \quad \text{Homogeneous} \\
\| \mathbf{x} + \mathbf{y} \| & \leq \| \mathbf{x} \| + \| \mathbf{y} \| \quad \text{Triangle inequality}
\end{align*}
\tag{73}
\]

The \textit{Euclidean norm} (or \(l_2 \) norm) on \(\mathbb{C}^n \):

\[\| \mathbf{x} \|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2} \]

The \textit{sum norm} (or \(l_1 \) norm) on \(\mathbb{C}^n \):

\[\| \mathbf{x} \|_1 = |x_1| + \ldots + |x_n| \]

The \textit{max norm} (or \(l_\infty \) norm) on \(\mathbb{C}^n \):

\[\| \mathbf{x} \|_\infty = \max \{|x_1|, \ldots, |x_n|\} \]

The \(l_p \) norm on \(\mathbb{C}^n \):

\[\| \mathbf{x} \|_p = \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} \]

A function \(\langle \cdot, \cdot \rangle : V \times V \to F \) is an \textit{inner product} if \(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V \):

\[
\begin{align*}
\langle \mathbf{x}, \mathbf{x} \rangle & \geq 0 \quad \text{Nonnegative} \\
\langle \mathbf{x}, \mathbf{y} \rangle & = 0 \iff \mathbf{x} = 0 \quad \text{Positive} \\
\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle & = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle \quad \text{Additive} \\
\langle c \mathbf{x}, \mathbf{y} \rangle & = c \langle \mathbf{x}, \mathbf{y} \rangle \quad \forall c \in F \quad \text{Homogeneous} \\
\langle \mathbf{x}, \mathbf{y} \rangle & = \langle \mathbf{y}, \mathbf{x} \rangle \quad \text{Hermitian property}
\end{align*}
\tag{74}
\]

A function \(\| \cdot \| : M_n \to \mathbb{R} \) is a \textit{matrix norm} if \(\forall A, B \in M_n \):

\[
\begin{align*}
\| A \| & \geq 0 \quad \text{Nonnegative} \\
\| A \| & = 0 \iff A = 0 \quad \text{Positive} \\
\| cA \| & = |c| \| A \| \quad \forall c \quad \text{Homogeneous} \\
\| A + B \| & \leq \| A \| + \| B \| \quad \text{Triangle inequality} \\
\| AB \| & \leq \| A \| \| B \| \quad \text{Submultiplicative}
\end{align*}
\tag{75}
\]

The \textit{maximum column sum matrix norm} \(\| \cdot \|_1 \) on \(M_n \):

\[\| A \|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}| \]

The \textit{maximum row sum matrix norm} \(\| \cdot \|_\infty \) on \(M_n \):

\[\| A \|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \]

The \textit{spectral norm} \(\| \cdot \|_2 \) on \(M_n \):

\[\| A \|_2 = \max \{ \sqrt{\lambda} : \lambda \text{ is an eigenvalue of } A^\dagger A \} \]

General properties:

\[
\begin{align*}
\langle \mathbf{x}, \mathbf{y} \rangle & \leq \| \mathbf{x} \| \| \mathbf{y} \| \\
\rho(A) & = \| A \|_2 \quad \text{spectral radius of } A
\end{align*}
\tag{76}
\]

7 \ Positive Definite Matrices

A positive definite \(A^\dagger A \mathbf{x} > 0 \ \forall \mathbf{x} \in \mathbb{C}^n \neq 0 \)

A positive semidefinite \(A^\dagger A \mathbf{x} \geq 0 \ \forall \mathbf{x} \in \mathbb{C}^n \neq 0 \)

Similarly are the terms \textit{negative definite} and \textit{negative semidefinite} defined. If a Hermitian matrix is neither positive, nor negative semidefinite, it is called \textit{indefinite}.

Any principal submatrix of a positive definite matrix is positive definite.

\[
A \text{ positive definite } \rightarrow \begin{cases}
\sigma(A) > 0 \\
\text{trace } A > 0 \\
\det A > 0
\end{cases}
\tag{79}
\]
8 Matrices

Block diagonal matrix \(\iff\) diagonal block matrix, is a square diagonal matrix in which the diagonal elements are square matrices of any size (possibly even 1x1), and the off-diagonal elements are 0. A block diagonal matrix is therefore a block matrix in which the blocks off the diagonal are the zero matrices, and the diagonal matrices are square.

The determinant of the a block diagonal matrix is the product of the determinants of the diagonal elements.

\[
\text{rank of a matrix } A = \min(m, n)
\]

\[\sigma(A) \geq 0 \iff A \text{ positive semidefinite} \]

\[A^{-1} \text{ positive definite} \iff A \text{ nonsingular lower triangular with positive diag elements}\]

\[A^k \text{ positive definite } \forall k \in \mathbb{N} > 0\]

\[A \text{ Hermitian} \implies \det(A) > 0\]

\[A \text{ Hermitian} \iff \exists C : A = C^T C \text{ C nonsingular}\]

Skew--Hermitian matrix \(A\) \(\iff A = -A^\dagger\)

Positive semidefinite \(A \iff A = A^\dagger, \sigma(A) \in \mathbb{R} \geq 0\)

Scalar matrix \(A\) \(\iff A = aI, \ a \in \mathbb{C}\)

9 Rank and Range VS. Nullity and Null Space

The rank of a matrix \(A_{n \times m}\) is the smallest value \(r\) for which exist \(F_{n \times r}\) and \(G_{r \times m}\) so that \(A_{n \times m} = F_{n \times r}, G_{r \times m}\):

\[
\text{rank} A_{n \times m} = \text{rank} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = r \quad \text{with } A_{n \times m} = F_{n \times r}, G_{r \times m}
\]

Examples:

\[
\text{rank } T_6 = \begin{cases} \ 1 & \text{if } k \vdash \ \text{kk}^1 \\
 \geq 1 & \text{if } k \vdash (k\vdash) \end{cases}
\]

\[
T_6 \rightarrow A_6 \vdash, \ k \rightarrow F_6 \vdash 1
\]

\[
\text{rank} A_{n \times m} = \begin{cases} \text{number of linearly independent vectors in } A \\
\leq \min(m, n) \\
\text{dimension of the range of } A \\
\text{rank} AX = \text{rank} YA \quad \text{X, Y non-singular} \\
= m - \text{nullity } A_{n \times m} \\
< n \iff \det A_{n \times n} = 0 \iff |A| = 0
\end{cases}
\]

Range The range (or image) of \(A_{n \times m} \in \mathbb{F}^{n \times m}\) is the subspace of vectors that equal \(Ax\) for all \(x \in \mathbb{F}^m\). The dimension of this subspace is the rank of \(A\):

\[
\text{range } A_{n \times m} = \{Ax : x \in \mathbb{F}^m\}
\]

Null space and Nullity The null space (or kernel) of \(A_{n \times m} \in \mathbb{F}^{n \times m}\) is the subspace of vectors \(x \in \mathbb{F}^m\) for which \(Ax = 0\). The dimension of this subspace is the nullity of \(A\):

\[
\text{null space } A_{n \times m} = \{x \in \mathbb{F}^m : Ax = 0\}
\]

The range of \(A\) is the orthogonal complement of the null space of \(A^\dagger\) and vice versa (the null space of \(A\) is the orthogonal complement of the range of \(A^\dagger\)).

The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix.
10 Diverse

10.1 Basis Transformation

Vector: \(v = Mu \)
Matrix: \(V = MUM^\dagger \)

If \(M \in \mathbb{R}^{n \times n} \) is real symmetric, then is \(\omega^\dagger M \omega \) also real (\(\omega \in \mathbb{C}^n \)).

10.2 Nilpotent Matrix

A matrix \(A \) is nilpotent to index \(k \) if \(A^k = 0 \), but \(A^{k-1} \neq 0 \).

\[
A \text{ nilpotent at index } k \rightarrow \left\{ \begin{array}{l}
\det A = 0 \\
\sigma(A) = \{0\} \\
\text{minimal polynomial of } A \text{ is } t^k
\end{array} \right.
\]

11 Groups

A group is a set that is closed under a single associative binary operation (multiplication) and such that the identity for and inverses under the operation are contained in the set.

1. The nonsingular matrices in \(M_n(\mathbb{F}) \) form the general linear group — \(GL(n, \mathbb{F}) \)
2. The set of unitary (respectively real orthogonal) matrices in \(M_n \) form the \(n \)-by-\(n \) unitary group (subgroup of \(GL(n, \mathbb{C}) \)).

12 Diverse

12.1 Joint Diagonalization

The joint diagonalization of a set of square matrices consists in finding the orthonormal change of basis which makes the matrices as diagonal as possible. When all the matrices in the set commute, this can be achieved exactly. When this is not the case, it is always possible to optimize a joint diagonality criterion. This defines an approximate joint diagonalization. When the matrices in the set are ‘almost exactly jointly diagonalizable’, this approach also defines something like the ‘average eigen-spaces’ of the matrix set.

A Example 2 × 2 Matrix

\[
A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \in \mathbb{C}^{2 \times 2}
\]

\[
p_A(t) = t^2 - (a + d)t + (ad - bc)
\]

\[
\sigma(A) = \left\{ a + d \pm \sqrt{(a - d)^2 + 4bc} \right\}
\]

\[
\det A = ad - bc
\]

B IDL–SAR convention: mathematical notation!

Always mathematically correct!!! First index: row number, second: column number. \(M_{row,col} = C[row,col] \)

\[
A_{n \times m} = \begin{bmatrix}
a_{11} & \cdots & a_{1m} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nm}
\end{bmatrix} = a[y,x]
\]

Always: transpose the given mathematical matrix after generation!!! (no complex conjugate!)

Matrix \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \(M_{1,2} = b, M_{2,1} = c \)
In IDL: \(M \leftrightarrow C = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = M^T, \) so that \(C[1, 2] = b, \ C[2, 1] = c \)

Examples:

\[
\begin{align*}
A_r & \iff \text{IDL: } A \leftarrow A^T & \text{$A=$transpose(Ar)} \\
C_r = A, B_r & \iff \text{IDL: } C \leftarrow C_r^T = (A, B_r)^T & \text{$C=$transpose(Ar \# Br)} \\
C_r = A, B_r^T & \iff C \leftarrow C_r^T = (A, B_r^T)^T & \text{$C=$transpose(Ar \# A#B)} \\
A, k_r & \iff \text{(} A, k_r \text{)}^T = (A^T k)^T = k A & \text{A#k} \\
A_r^{-1} & \iff (A_r^{-1})^T = (A_r^T)^{-1} & \text{?}
\end{align*}
\]

Short summary: every matrix and vector should be considered as transposed, in relation between math and IDL.

In mathematics first index is the y–row–index, the second is the x–column–index! In IDL its reversed: first x–column– and then y–row–index.

Using these notations one can use all kinds of matrix multiplications and transpose/conjugate in the mathematical order with \#. (e.g. in mathematics \(w^T Tw \) will correspond in IDL to \(adj(w)\# T\# w \), but it should be considered that \(w \) and \(T \) are transposed: \(T = T^T \) and \(w = w^T \). i.e. \(w \) is a row–array during \(w \) is a column–vector.)

Matrix input/output in IDL: To give a matrix from math–book or paper into IDL you have to transpose it (before input or right after). To read out the correct values, you have also to transpose the IDL matrix. Since the mathematical matrix indexing and the IDL matrix indexing are transposed and we also transpose the matrix between these systems, the values have the same indices in mathematical matrices with mathematical indexing as in IDL matrices with IDL indexes! (i.e. \(A(1, 2)_m = A[1, 2]_{IDL} \))

Consider these (right!) cases: \(T6 = T^T_6, T_{12} = T_6[0 : 2, 3 : 5]m = T_6[3 : 5, 0 : 2]_{IDL}, T12 = T6[0 : 2, 3 : 5]_{IDL} = T6(3 : 5, 0 : 2)m, T_{12} = transpose(T_{12}). \)

Conclusion: Transpose matrices by input/output! And everything else can be used as in mathematical notation: order, matrix multiplication (with \#), indices, transpose, conjugate, etc...

C Notation Conventions

Capital bold letters reference to matrices, small bold letter to vectors.

\(A \) is a matrix with dimensions \(n \times n \) if no other dimensions are supplied.

\(^T \): transpose

\(^\dagger \): transpose conjugate complex.

\(^* \): conjugate complex.

D Mathematical Glossary

inf: is the infimum of a set (max over a set with bounds)

sup: is the supremum of a set (min over a set with bounds)

\(\text{inf}(S) = - \text{sup}(-S) \)

Hadamard Product: \(A \circ B \) is the element-wise multiplication of matrices.

References

