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ABSTRACT

We present two model-based methods for learning Granger
causality networks for multivariate categorical time series.
Our first proposal is based on the mixture transition dis-
tribution (MTD) model. Traditionally, MTD is plagued by
a nonconvex objective, non-identifiability, and presence of
many local optima. To circumvent these problems, we recast
inference in the MTD as a convex problem. The new formu-
lation facilitates the application of MTD to high-dimensional
multivariate time series. Our second proposal is based on
a multi-output logistic autoregressive model, which while a
straightforward extension, has not been previously applied
to the analysis of multivariate categorial time series. We
investigate identifiability conditions of both methods, devise
novel optimization algorithms for the MTD, and compare the
MTD and mLTD in simulated experiments. Our approach
simultaneously provides a comparison of methods for network
inference in categorical time series and opens the door to
modern, regularized inference in MTD model.

1. INTRODUCTION

Granger causality [1] is a popular framework for assessing
the relationships between time series, and has been widely ap-
plied in econometrics, neuroscience, and genomics, amongst
other fields. Given two time series z and y, the idea is to
use the temporal structure of the data to assess whether the
past values of one, say z, are predictive of future values of
the other, y, beyond what the past of y can predict alone;
if so, x is said to Granger cause y. Recently, the focus has
shifted to inferring Granger causality networks from multi-
variate time series data, with the goal of uncovering a sparse
set of Granger causal relationships amongst the individual
univariate time series. Building on the typical autoregres-
sive framework for assessing Granger causality, a majority
of approaches for inferring Granger causal networks have
focused on real-valued Gaussian time series using the vector
autoregressive model (VAR) with sparsity inducing penalties
12, [3]. More recently, this approach has been extended to
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non-Gaussian data such as multivariate point processes using
sparse Hawkes processes [4], count data using autoregressive
Poisson generalized linear models [5], or even time series with
heavy tails using VAR models with elliptical errors [6]. In
contrast, inferring networks for multivariate categorical time
series has not been studied under this paradigm.

Multivariate categorical time series arise naturally in many
domains. For example, we might have health states from
various indicators for a patient over time, voting records
for a set of politicians, action labels for players on a team,
social behaviors for kids in a school, or musical notes in
an orchestrated piece. There are also many datasets that
can be viewed as binary multivariate time series based on
the presence or absence of an action for some set of entities.
Likewise, in some applications, collections of continuous-
valued time series are each quantized into a set of discrete
values, like the weather data from multiple stations analyzed
in 7], wind data in [8], stock returns in [9], or sales volume
for a collection of products in [10].

Most literature on multivariate categorical time series is
based on the mizture transition distribution (MTD) model
[11} |8} |10]. The MTD model—which is more generally ap-
plicable to modeling high-dimensional probability tables—
simplifies the transition probability tensor for multivariate
Markov chain as a convex sum of pairwise probability tables.
The MTD model was originally developed for modeling higher
order Markov chains [8, [12], but has since been adopted for
multivariate Markov chains [10, 13} |9]. The resulting struc-
ture is one that provides a nice analog to VAR processes: the
probability of each component of the multivariate series at
time ¢ given past values decomposes into a sum over weight-
ings on terms based on individual components at lagged
times. While alluring due to its elegant construction and
intuitive interpretation, widespread use of the MTD model
has been simultaneously plagued by a non-convex objective
with many local optima and serious identifiability issues [9,
13} [14]. For this reason, most applications of the MTD model
to multivariate time series have looked at a maximum of
three or four time series. Another recent line of work has
proposed an autoregressive probit transition model to cap-
ture the transition dynamics in multivariate Markov chains
[9]. While developed to side step the computational thorns
of the MTD, the probit model is still highly nonconvex, both
in terms of the objective function, as well as the constraints
on parameters.

We present a scalable framework for inferring Granger
causality networks of categorical time series using the mul-
tivariate MTD model. Through a re-parameterization, we
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simultaneously provide the first convex formulation and rig-
orous identifiability conditions for the MTD model. The
convex MTD objective immediately invites both regular-
ized maximum likelihood inference for model selection and
the modern suite of convex optimization algorithms with
attractive computational properties.

In addition to the MTD framework, we also consider an
alternative approach based on generalized linear models
(GLMs), in particular a method we call multinomial logistic
transition distribution (mLTD). GLMs have been used in a
suite of structure learning problems, including learning time-
varying Ising models |15] and sparse autoregressive networks
of multivariate binary [16] and count [17] time series. Multi-
nomial logistic autoregressions have also been developed for
univariate categorical time series [18|. Although the proposed
mLTD is a straightforward extension that we simply view
as a comparison point to the MTD framework, we have not
seen such a model applied to multivariate categorical time
series. Importantly, our re-parameterization of the MTD
model allows us to more easily compare and contrast these
alternative procedures. Historically, the general MTD and
GLM frameworks appeared nearly concurrently in the 1980’s;
however, the GLM framework won out because of its supe-
rior computational properties. Based on the computational
advances presented herein, it is possible to now consider the
MTD model as a potential competitor to the GLM frame-
work. Studying the potential theoretical or practical benefits
(e.g., in the small sample size regime) of one framework over
the other is left as future work.

Our paper is structured as follows. After discussing iden-
tifiability conditions for both MTD and mLTD models, we
introduce the convex re-parametrization of MTD along with
a set of regularization approaches for model selection using
both MTD and mLTD. We then develop accelerated proxi-
mal gradient algorithms [19] for both the MTD and mLTD
models. For the MTD model, this computational approach
provides enormous gains over past methods, enabling this
model to be applied to large, modern datasets for the first
time. Importantly, the computational insights provided in
this paper carry over to the suite of other applications of
MTD models, beyond the categorical time series which are
the focus herein.

2. CATEGORICAL TIME SERIES AND
GRANGER CAUSALITY

Let ¢ = (z14, ... zpt) € X denote a p dimensional categor-
ical random variable indexed by time where
X = (X1 X Xa...x Xp), and A; denotes the set of possi-
ble values of z;;. Let m; = |X;| be the cardinality of
set X;, the number of categories series ¢ may take. A
length T" multivariate categorical time series is the sequence
X ={z1,...,2¢,...,z7}. An order k multivariate Markov
chain models the transition probability between the cate-
gories at lagged times t — 1,...,¢ — k and those at time ¢
using a transition probability tensor:

 Ti—k)- (1)

Due to the complexity of fully parameterizing this transition
distribution, it is common to simplify the model and assume
that the categories at time ¢ are conditionally independent

p($t|xt_1, . ) = p(:l:t|ll,‘t_1, e

of one another given the past realizations:

P

7$t7k) = Hp(xit|:rt—17 N

i=1

p(l‘t‘il?t_l,... ,il}t,k). (2)

For simplicity, we assume k = 1, but stress that all models
and results equally apply to higher order k. Based on the
decomposition in Eq. , we define Granger non-causality
for two categorical time series x; and x; as follows:

DEFINITION 1. Time series x; is not Granger causal for
time series x; iff

P(Tit|T1e—1) - o> Tj(e—1)s - - - Tp(t—1)) =

P(@it|T1(t-1), - BG-1)(t=1)> TG+ (E=1)5 - - - > Tp(t—1))

That is, the probability that time series z; is in a given state
at time ¢ is conditionally independent of the value of z; at
time ¢ — 1 given the values of all other series xx, k # 4, j,
at lag t — 1. In Sections and [2:2] we present modeling
frameworks in which we will devise methods for identifying
such Granger non-causality statements, using the results and
methods in Sections [3] and [ respectively.

In specifying our models, and throughout the remainder of
the paper, we focus in on a single conditional of x;; given x¢_1.
We do this for notational simplicity; otherwise, we would
add additional ¢ indices to all model parameters. Recall
that based on the decomposition of Eq. , the problem
of inference and estimation decomposes into independent
subproblems over 3.

2.1 MTD model

The MTD model [8] provides an elegant and intuitive
parameterization of the multivariate Markov transition dis-
tribution as a convex combination of pairwise transition
probabilities. Specifically, the MTD model is given by:

p(l’it|x1(t71)7 s 71";0(1&71)) =
p
Yopo(wir) + > vipj(atlja—),  (3)

j=1

where po is a probability vector, p;(.|.) is a pairwise tran-
sition probability table between Tj(e—1) and x;; and v =
(v0,71,---,7p) is a p+ 1 dimensional probability distribution
such that 17~ = 1 with v;>0,7=0,...,p. We let the ma-
trix PY € R™*™ with 17P/ =17, P}, >0,1=1,...,m;,
k=1,...,m;, denote the pairwise transitions and p° € R™i
the intercept. While past formulations of the MTD model
neglect the po intercept term, we show below that it is crucial
for model identifiability and consequently, Granger causality
inference. Finally, we note that the MTD model may be
extended by adding in interaction terms for pairwise effects
[11], such as pjr(@it|T;(¢—1), Tu(t—1)), though we focus our
presentation on the simple case above.

2.2 mLTD model

The multinomial logistic transition distribution (mLTD)
model is given by:

P(%‘t|$1<t71), Sy xp(tfl)) =
o )
exp(zzit + Z?:1 Zg?it:mj"(t—l)) (4)
Saren, @ + 30 2, )

where Z7 € R™*™i and z° € R™:. While not used before



to model multivariate categorical time series, its close cousin,
the probit model, has been utilized for this purpose |9]. The
model in [9] is not a natural fit for inferring Granger causality
networks both due to the non-convexity of the probit model
and the non-convex constraints imposed on the Z? matrices,
as explained in more detail in the Supplement. Note that, like
the MTD model, the mLTD model naturally allows adding
interaction terms, though we focus our presentation on the
simple case above.

3. IDENTIFIABILITY AND GRANGER
CAUSALITY

In this section, we examine conditions under which our
model parameterizations are equivalent to statements of
Granger non-causality. We also provide conditions on the
model parameterizations to ensure identifiability of the model
parameters. The proofs of all results are in the Supplement.

To analyze the identifiability of the MTD model, as well as
simplify the inference procedure (see Section, we introduce
the parameterization Z’ = v; P’ and z° = ~op°:

p
P@itlTi-1y, - Tpe1) = 2o, + > Lirwy s (5)
j=1

where the constraints now become 17Z7 = ;1% Z7 > 0 for
all j, and 17 = 1, v > 0. Under this MTD parameterization
and the mLTD specification of Eq. (@), we have the following
simple result:

PROPOSITION 2. In both the MTD model of Eq. and
the mLTD model of Eq. , time series x; is Granger non-
causal for time series x; iff the columns of Z’ are all equal.

Intuitively, if all columns of Z7 are equal, the transition
distribution for z;; does not depend on Tj(e—1)- Based on
this simple observation, we might select for Granger non-
causality by penalizing the columns of Z’ to be the same.
While this approach is potentially interesting, a more direct,
stable method takes into account the conditions required for
identifiability of the Z7 under both models.

ldentifiability for the MTD model.

It is well known that the MTD model is non-identifiable
|20]. However, the re-parameterization of the MTD model in
terms of Z7 instead of v;, P?, combined with the introduction
of an intercept term, allows us to explicitly characterize
identifiability conditions for this model.

THEOREM 3. Every MTD distribution has a unique pa-
rameterization such that the minimal element in each row of
P’ (Z) is zero for all j.

Under these identifiability conditions we may provide an inter-
pretation of the parameters in the MTD model. Specifically,
the element ZZ,,, denotes the additive increase in probability
that z; is in state m given that z; is in state n.

Identifiability for the mLTD model.

The non-identifiability of multinomial logistic models is
also well known, as is the non-identifiability of generalized
linear models with categorical covariates. Combining the
standard identifiability restrictions for both settings [21]
gives:

PROPOSITION 4. Every mLTD has a unique parameteri-
zation such that first column and last row Z’ are zero for all
j and the last element of z° is zero.

Under the identifiability constraints, at least one element
in each row of Z7 is fixed to zero. This implies that under
the required identifiability restrictions for both MTD and
mLTD models, z; is Granger non-causal for z; iff Z7 = 0 (a
special case of all columns being equal). Taken together, if
we enforce the identifiability constraints, we may uniquely
select for Granger non-causality by enforcing that Z is equal
to zero. The identifiability constraints for the mLTD model
are handled with linear constraints, while the constraints for
the MTD model are non-convex and are instead enforced
indirectly, as explained in Section [

4. ESTIMATION AND OPTIMIZATION

We now turn to procedures for inferring Granger non-
causality statements from observed multivariate categorical
time series. In Section [3] we derived that if Z7 = 0, then z;
is Granger non-causal for x;. To perform model selection,
we take a penalized likelihood approach and present a set
of penalty terms that encourage Z’ = 0 while maintaining
convexity of the overall objective. At first glance, this seems
like an ill-suited approach to the MTD model due to the
non-convex maximum likelihood problem in the (v, P) pa-
rameterization of Eq. . A key insight we make in this
section is that the same re-parameterization considered in
Section [3] which provided a framework for identifiability con-
ditions to be stated, also allows for a convex objective. This
change-of-variable trick opens up an array of possibilities
for the MTD framework beyond our multivariate categorical
time series focus, eliminating the primary barrier to adoption
of this method.

4.1 Convex MTD

Maximum likelihood inference for the MTD model un-
der the (v, P) parameterization is given by the non-convex
optimization problem:

T p
.. 0 I
mu};gllze a E log <70pm“ + Z %Pzit Zj(t1>>

t=1 j=1

subject to 17P7 =17, PP >0,V 1T4y=1,y>0

The non-convexity follows from the multiplication of the ~;
and P’ terms in the log. The surface is highly non-convex
with many local optima, made even worse by the general
non-identifiability. Indeed, the set of equivalent models forms
a non-convex region in the (v, P) parameterization (i.e., the
convex combination of equivalent models is not necessar-
ily another equivalent model), leading to many non-convex
shaped ridges and sets of equal probability. Fortunately,
optimization may be recast into a convex program using the
re-parameterization Z7 = v;P7 and z° = vp”:

T P
L 0 J
mmzmuze — Z log (Zzit + 21 Zzz‘t Zj(t1)>
j=

Y =1

subject to 1727 =17, Z7>0,v; 1Ty=1,7>0

which is convex since it is a linear function composed with
log and linear equality and inequality constraints. Further-
more, the sets of equivalent MTD parameterizations have
the appealing property:



PROPOSITION 5. The set of MTD parameters, Z, that
yield the same factorized conditional distribution p(xi|®—1))
forms a convex set.

Due to non-identifiability, the maximum likelihood solu-
tion is not unique, potentially leading to difficulties assess-
ing convergence. Rather than enforce the non-convex con-
straints given in Theorem [3] for model identifiability, we
instead add a penalty term Q(Z), or prior, that biases
the solution towards the uniqueness constraints. Letting

LMTD(Z) = - Z?:l log (Zgit + Z?:l Zgﬂit z_j(t—l)) the regu-
larized estimation problem is given by

minzimize LMTD(Z) + )\Q(Z)
3y

subject to 1727 =~;17, Z7 >0Vj, 17y=1,y>0.
(6)

THEOREM 6. For any A > 0 and Q(Z) that does not de-
pend on z° and is increasing with respect to the absolute
value of entries in Z7, the solution to the problem in Eq. @
is contained in the set of identifiable MTD models described
in Theorem|[3.

Intuitively, by penalizing the size of the Z? matrices, but not
the intercept term, the excess probability mass on the Z7
matrices is shifted over to the intercept. Thus, by introducing
a very small penalty or prior, we constrain the solution space
to the set of identifiable models. As we explain in Section
a convenient choice for (Z) coincides with a regularizer
for selecting for Granger causality.

4.2 Model selection in MTD

Recall from Section [3| that Granger non-causality occurs
when the columns of Z7 are identical, and for identification
we restricted this to the case of Z7 = 0. Combining with
the discussion in Section [} we may thus select for Granger
causality by performing penalized maximum likelihood esti-
mation under penalties that encourage the Z’ matrices to
be zero. Ideally, we would solve the problem:

rninzimize LMTD(Z) + A”’Yl:pHO
3

subject to 1777 = 'yle, 7' >0 V7, lT'y =1,vy>0

(7)
where A > 0 is a regularization parameter, ||y1.p|lo is the Lo
norm over the v weights and we do not regularize the intercept
weight vo. The Lo penalty simply counts the number of non-
zero +y;, which is equivalent to the number of non-zero Z7.
This results in a non-convex objective. Instead, we introduce
and compare two convex relaxations of this problem. One
is the standard L; relaxation, as in lasso regression, which
simply sums the absolute values of v;. One can show that
this penalty leads to soft-thresholding, where some estimated
v; are set exactly to zero while others are shrunk relative to
the estimates from the unpenalized objective. Note that if
Yo were included in the Lo regularization, the L; relaxation
would not be a suitable regularizer since 17y =1, ~v > 0 so
the L1 norm would always be equal to one [22]. Fortunately,

the intercept is not included so we may solve:

P
minzi,mize LMTD(Z) + A Zl Yi
im
subject to 172/ =;17, Z7 >0Vj, 1Ty=1,y>0,
(8)

where the absolute value of the L; norm is dropped due the
v > 0 constraint.

Another convex relation of the objective in Eq. , as we
show in the Supplement, is given by a group lasso penalty
on each Z7:

P
minimize Lvrp(Z) + )\Z:l AR
i=
subject to 1727 =~;17, Z7 >0Vj, 1Ty=1,7>0
9)
where ||.||F is the Frobenius norm. Here, we are penalizing
Z’ directly, rather than indirectly via ;. The group lasso
penalty drives all elements of Z7 to zero together, such that
the optimal solution automatically selects some Z’ to be all
zero and others not. This effect naturally coincides with
our conditions of Granger non-causality that all elements of
Z’ =0.
Both Eq. (8) and @ may be rewritten solely in terms of
the Z’ terms by noting that v; = ﬁlTZJL Defining 37 =
J

(vec(Z1)T,. .., vec(Z,)T), we can rewrite the constraints as:

(I, A)2=0, 1"2=m, 2>0 where (10)
) A, ) 0
o 1L a1 o ...
A= ) . . (11)
0 0 17 -1l
and I, is a p dimensional identity matrix and we have as-
sumed the same number of categories across time series,
| X;| = m Vi, for simplicity of presentation. As both Eq.
and @ are continuously differentiable in the interior of the
constraint set, we use a projected gradient algorithm for
optimization. At each gradient step we solve a quadratic
program to project onto the constraint set (see the Appendix
for more details).

Finally, we note that the L; and group regularizers in
Eq. and @ satisfy the conditions for Theorem @, imply-
ing that their solutions automatically lay in the identifiability
restricted set, without having to explicitly impose the con-
straints.

4.3 Model selection in mLTD

To select for Granger causality in the mLTD model, we add
a group lasso penalty to each of the Z7 matrices, analogously
to Eq. @D, leading to the following optimization problem:

T 14
C e 0 )
mlmzmlze E Zg,, + E Zﬂcitﬂf]‘(t—l)+
t=1 Jj=1

P P
0 J J
oo 3 on (S, )| S0
o/ eX; j=1 =1
subject to Z’, = 0,Z},.. =0 Vj.
(12)
For two categories, m; = 2 Vi, this problem reduces to sparse



logistic regression for binary time series, which was recently
studied theoretically [5]. For optimization, we utilize an
accelerated proximal gradient algorithm [19] as described in
the Supplement.

4.4 Comparing model selection in MTD and
mLTD

Approaches to model selection in MTD and mLTD models
are conceptually similar; both add regularizing penalties to
enforce elements in Z’ to zero. However, in practice these
two approaches differ.

Inference in the MTD model is still more computationally
demanding due to the large number of linear equality and
inequality constraints. The constraint projections that we
solve by a quadratic program solver become increasingly
costly as the number of time series and categories increases.
On the other hand, the mLTD model has no constraints and
scales more gracefully to higher dimensions. An ongoing line
of work is developing approximate projection methods for
the MTD that will scale to larger number of time series.

MTD and mLTD are also quite different models; the re-
sulting probability tensor is an additive combination in MTD
while in mLTD the parameter combination passes through
a nonlinearity. Our experiments in Section [j] explore the
difference in modeling power between MTD and mLTD in
the context of inferring sparse networks. We see that in some
cases the MTD formulation can outperform mLTD.

5. EXPERIMENTS

We perform a set of simulated experiments to compare the
MTD and mLTD model selection methods. Specifically, we
compare the MTD group lasso, MTD L;, and mLTD group
lasso methods on simulated categorical time series generated
from 1) a sparse MTD model 2) a sparse mLTD model and
3) a sparse latent VAR model with quantized outputs. For
all experiments we consider time series of length 7' = 200,
dimension p = 15, and number of categories m = 3. Future
work will explore a wider range of settings.

Sparse MTD.

For the MTD¢m0del, we randomly generate parameters
by Tig ™~ f=i Zi;d—’il
Bin(p). We let p = .15,a = 5. Columns of 79 are generated
according to Z!] ~ Dirichlet(y) with v = .7. (Note that here
we have added a superscript i to Z to specifically indicate the
j to i interaction, whereas previously we dropped the i index
for notational simplicity by assuming we were just looking at
the series i term.) To ensure that the columns are not nearly
identical in Z% (and thus Granger non-causal), Z' is sampled
until the average total variation norm between the columns
is greater than some tolerance p. For our simulations, we set
p = .3. A lower value of p makes it more difficult to learn the
Granger causality graph since some true interactions might
be extremely weak.

where ¢; ~ Dirichlet(a) and z; ~

Sparse mLTD. B
For the mTLD model, the Z’* parameters are generated
by Zi} ~ z;;N(0,0%) where z;; ~ Bin(p) with p = .15.

Sparse Latent VAR.
To examine data generated from neither of the models
considered, we simulate from a continuous time series y: € R?

mLTD group | MTD group | MTD L;
mLTD 0.930 0.915 0.903
MTD 0.833 0.850 0.837
latent VAR 0.667 0.770 0.616

Table 1: Average AUC for each data generating /
method pair. Results are averages over 5 different
simulation seeds.

according to a sparse VAR(1):
Y= Ayi—1 + &

where €; ~ N(0,0%I,). We then quantize each dimension,
Yti, into m categories to create a categorical time series ;.
For example, when m = 3, zy; = 1 if y4; is in the (0,.33)
quantile of {y14,...yr:}, and so forth. The sparse matrix A
is generated by first sampling entries B;; ~ N(0,¢%) and
then setting A;; = Bj;zi;, where z;; ~ Bin(p) with p = .15.

For all methods, MTD L;, MTD group lasso, and mLTD
group lasso, we use 5-fold cross validation to select the A
tuning parameter over a A range from [0, 100]. To compare
the different methods, we calculate the AUC, or area under
the ROC curve between the true Granger causality graph and
the estimated graph at various thresholds for the A chosen
by cross validation.

The results are displayed in Table We note that the
mLTD model performs best when the data are generated from
a mLTD, and likelwise for the MTD. Furthermore, it seems
the MTD with group lasso consistently outperforms the MTD
with L; across all conditions. Finally, the MTD with group
lasso penalty performs signficantly better than the mLTD
model when both methods are misspecified on the latent
VAR example. Taken together, these results display both
the utility of the MTD model for inference of categorical
Granger causality networks and highlight that the group
penalty performs best for MTD.

6. DISCUSSION

We have presented and compared two model-based meth-
ods for inferring Granger causality networks from multivari-
ate categorical time series. The penalized MTD method
leverages both a novel regularized convex objective that si-
multaneously promotes sparsity and constrains the solution
to an identifiable space. The mLTD model, while thoroughly
explored in i.i.d. settings, is also introduced for multivariate
categorical time series. For optimization, we have developed
a novel projected gradient algorithm for the MTD model
that harnesses the new convex formulation. Our experiments
demonstrate the utility of the MTD model for inference of
Granger categorical networks, even under model misspecifi-
cation. They also consistently suggest that the group lasso
MTD method is better than the L; method at this task.

There are a number of potential directions for future work.
First, we are currently exploring more scalable methods for
optimizing the convex sparse MTD objective based on ap-
proximate projections and/or active set methods. Active set
methods have the potential to greatly reduce computation
since the dimensionality of the constraint set becomes signif-
icantly smaller and more tractable when many parameters
are fixed at zero. We also intend to develop complimentary
theory for network recovery rates for both MTD and mLTD
models in the high dimensional setting. Finally, it would



also be interesting to explore other regularized MTD objec-

tives, such as the nuclear norm on Z’ when the number of
categories per time series is large.
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7. APPENDIX

7.1 Proofs

Proof of Proposition 2]

If the columns of Z7 are all equal then for all fixed values of
T\ j(t—1) the conditional distribution is the same for all values
of z;;—1). If one column is different then the conditional

distribution for all values of z\;—1) will depend on ;(;—1).

Proof of Theorem[3}

Let Z be the parameter set for an MTD model. For each
Z7 let the vector a; be the minimal element in each row. Let
Zi =7’ —o;and £ =z + 2.5y ;. This Z gives the same
MTD distribution as Z.

Suppose two parameter sets X and Y provide the same
MTD distribution. Let X be the unique reduction of X and
Y of Y. Suppose Y # X. There must exist some j and
some row k such that X7 # Y] . Let [x be the index such
that Xil = 0 and likewise for ly.

If Ix = ly, let I’ be an index such that Xil, + \?il,. Let
Z\j(t—1) be fixed arbitrarily. The value of

px (e = klay-1), -1 = 1)
—px (@ = klzya, 20— = Ix) = X],
#Y,
py (xe = kl2yje-1), 2-1); = 1)
—py (@t = klz\jie-1), Te—1); = ly) =

showing the MTD distributions parametrized by X and Y
are not the same.
If Ix # ly, then

px (Tt = k|2 j(t—1), Ti—1) = lv)
—px (z = klzyjo,z0-1 = Ix) = X},
#-Y,
py (e = kl@y\ 1), Tje-1) = ly)
—py (T = kloyj-1), Tie-1) = Ix) =

showing the MTD distributions parametrized by X and Y

are not the same, leading to a contradiction so that X =Y.

The same argument shows that the reduction is unique.

Proof of Proposition 3]

For any two MTD factorizations Z and Z and any xx: and

T(r—1)

p
Z (aziktmj(t,l) + (1 - a)zjlktzj(t—1)>

=1

<.

p P
= C“Z Zopiryoory T (1= ) Z 234y
j=1 i=1

= ap(@ke|re-1)) + (1 — O)p(@ke|T(-1))
= p(Trt|T(1-1))- (13)

Proof of Theorem |6}

First, we note that a solution always exists since the log like-
lihood L(Z) = — 3/, log (ijt +30. 75, zi(t—l)) and
penalty are both bounded below by zero and the feasible
set is closed and bounded. Suppose an optimal solution is
Z such that there exists some ¢ such that one row, call it k,
of Z7 does not have a zero element. Let a = min(ZJ.) be

the minimum value in row & and let Zi be equal to 77 Vi
except that Zig. = Z] — « and %] = 2] + . Due to the
nonidentifiability of the MTD model L(Z) = L(Z), while we
have that [|Z7||2 < ||Z7||2, implying for A > 0

L(Z) + 2\Q(Z) < L(Z) + 2\Q(Z), (14)
showing that Z cannot be an optima.
7.2 Optimization
7.2.1 Group lasso MTD

We show that a group lasso over entries in Z’ is a convex
relaxation to the Lo norm over i.,. For simplicity assume

m; = m Vj. Due to the equality and greater than zero
constraints
sllo = 11 (17vee(Z"), ..., 1 vec(Z")) [l (1)
= rank(H{ Hi) (16)
= rank(H,) (17)
where
vec(Zh) 0 0
0 vec(Z?) 0
H, = ) . (18)
0 " :
0 e ... vec(ZP)

Thus we can use the nuclear norm on H; as a convex relax-
ation,

P
Il =D 1127l (19)
i=1

7.2.2  Projected gradient MTD

The gradient of the MTD model over the feasible set is
given by:

T
Ly :
n = ’ " T
J wip=a’ @i _1)== P J
de',z” = qe= 73, + Z]*

j=1 Zl“itvzj(t—l)

ds?

+A— .
dZi/ IIJN

(20)

Note that for the L1 and L2 norms 2(Z) is not differentiable



when elements are equal to zero. However, note that due to
our problem constraints we have that Z7 > 0. Since the point
of non-differentiability occurs when elements are identically
zero, we modify the problem constraints so that Z7 > e
for some small €, so we may ignore the non-differentiability.
Following the notation from the main text, let the set C' =
{2]2 > ¢,(I, ® A)Z = 0,172 = m}. We perform projected
gradient descent:

1 — pg (2’“ - ’ykd—L) (21)

dz
where v is the step size, which we chose by line search, and
Pc(x) is the projection of x onto the set C:

o 2
minimize ||z — z||3
z

subject to z>¢€, (I, @ A)z=0, 17z=m.

This is a quadratic program which we solve using the dual
method of Goldfarb and Idnani (1982, 1983) as implemented
in the R quadratic programming package quadprog. Note that
simply projecting onto the simplex may be done efficiently
in (O)nlogn time [23]. Perhaps there is a similar type
algorithm for fast projection onto C'. We also utilize a
simple acceleration method which we find vastly improves
convergence in practice.
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