Drs. Sha & Liu

\{feisha, yanliu.cs\}@usc.edu

September 22, 2014
Outline

1. Administration
2. Logistic Regression - continued
3. Multiclass classification
A few announcements

- Homework 1: due 9/24 (see the homework sheets for detailed submission information)
- Revised lecture slides are on Blackboard and the course website
Outline

1 Administration

2 Logistic Regression - continued
 - Logistic regression
 - Numerical optimization
 - Gradient descent
 - Gradient descent for logistic regression
 - Newton method

3 Multiclass classification
Logistic classification

Setup for two classes

- Input: \(\mathbf{x} \in \mathbb{R}^D \)
- Output: \(y \in \{0, 1\} \)
- Training data: \(\mathcal{D} = \{(\mathbf{x}_n, y_n), n = 1, 2, \ldots, N\} \)
- Model of conditional distribution

\[
p(y = 1|\mathbf{x}; b, \mathbf{w}) = \sigma[g(\mathbf{x})]
\]

where

\[
g(\mathbf{x}) = b + \sum_d w_d x_d = b + \mathbf{w}^T \mathbf{x}
\]

- Linear decision boundary

\[
g(\mathbf{x}) = b + \mathbf{w}^T \mathbf{x} = 0
\]
Maximum likelihood estimation

Cross-entropy error (negative log-likelihood)

\[\mathcal{E}(b, w) = - \sum_{n} \{ y_n \log \sigma(b + w^T x_n) + (1 - y_n) \log[1 - \sigma(b + w^T x_n)] \} \]

Numerical optimization

- Gradient descent: simple, scalable to large-scale problems
- Newton method: fast but not scalable
Logistic Regression - continued

Shorthand notation

This is for convenience

- Append 1 to \mathbf{x}
 \[\mathbf{x} \leftarrow [1 \ x_1 \ x_2 \ \cdots \ x_D] \]
- Append b to \mathbf{w}
 \[\mathbf{w} \leftarrow [b \ w_1 \ w_2 \ \cdots \ w_D] \]
- Cross-entropy is then
 \[\mathcal{E}(\mathbf{w}) = - \sum_{n} \{ y_n \log \sigma(\mathbf{w}^T \mathbf{x}_n) + (1 - y_n) \log[1 - \sigma(\mathbf{w}^T \mathbf{x}_n)] \} \]

NB. We are not using the $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{w}}$ (as in several textbooks) for cosmetic reasons.
How to find the optimal parameters for logistic regression?

We will minimize the error function

\[E(w) = -\sum_n \{y_n \log \sigma(w^T x_n) + (1 - y_n) \log[1 - \sigma(w^T x_n)]\} \]

However, this function is complex and we cannot find the simple solution as we did in Naive Bayes. So we need to use numerical methods.

- Numerical methods are messier, in contrast to cleaner analytic solutions.
- In practice, we often have to tune a few optimization parameters — patience is necessary.
An overview of numerical methods

We describe two

- Gradient descent (our focus in lecture): simple, especially effective for large-scale problems
- Newton method: classical and powerful method

Gradient descent is often referred to as an first-order method as it requires only to compute the gradients (i.e., the first-order derivative) of the function.

In contrast, Newton method is often referred as to an second-order method.
Example: \(\min f(\theta) = 0.5(\theta_1^2 - \theta_2)^2 + 0.5(\theta_1 - 1)^2 \)

- We compute the gradients

\[
\frac{\partial f}{\partial \theta_1} = 2(\theta_1^2 - \theta_2)\theta_1 + \theta_1 - 1 \quad (1)
\]

\[
\frac{\partial f}{\partial \theta_2} = -(\theta_1^2 - \theta_2) \quad (2)
\]

- Use the following iterative procedure for gradient descent

1. Initialize \(\theta_1^{(0)} \) and \(\theta_2^{(0)} \), and \(t = 0 \)
2. do

\[
\theta_1^{(t+1)} \leftarrow \theta_1^{(t)} - \eta \left[2(\theta_1^{(t)^2} - \theta_2^{(t)})\theta_1^{(t)} + \theta_1^{(t)} - 1 \right] \quad (3)
\]

\[
\theta_2^{(t+1)} \leftarrow \theta_2^{(t)} - \eta \left[-(\theta_1^{(t)^2} - \theta_2^{(t)}) \right] \quad (4)
\]

\[
t \leftarrow t + 1 \quad (5)
\]
3. until \(f(\theta^{(t)}) \) does not change much
Gradient descent

General form for minimizing $f(\theta)$

$$\theta^{t+1} \leftarrow \theta - \eta \frac{\partial f}{\partial \theta}$$

Remarks

- η is often called *step size* – literally, how far our update will go along the direction of the negative gradient.
- Note that this is for *minimizing* a function, hence the subtraction ($-\eta$).
- With a *suitable* choice of η, the iterative procedure converges to a stationary point where
 $$\frac{\partial f}{\partial \theta} = 0$$
- A stationary point is only necessary for being the minimum.
Seeing in action

Choose the right η is important

small η is too slow?
Seeing in action

Choose the right η is important

small η is too slow?

large η is too unstable?
How do we do this for logistic regression?

Simple fact: derivatives of $\sigma(a)$

$$
\frac{d \sigma(a)}{da} = \frac{d}{da} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2}
$$
How do we do this for logistic regression?

Simple fact: derivatives of \(\sigma(a) \)

\[
\frac{d \sigma(a)}{d a} = \frac{d}{d a} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2} \\
= \frac{e^a}{(1 + e^{-a})^2} = \frac{1}{1 + e^{-a}} \left(1 - \frac{1}{1 + e^{-a}}\right)
\]
How do we do this for logistic regression?

Simple fact: derivatives of $\sigma(a)$

\[
\frac{d \sigma(a)}{da} = \frac{d}{da} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2}
\]

\[
= \frac{e^a}{(1 + e^{-a})^2} = \frac{1}{1 + e^{-a}} \left(1 - \frac{1}{1 + e^{-a}} \right)
\]

\[
= \sigma(a) [1 - \sigma(a)]
\]

\[
\frac{d \log \sigma(a)}{da} = 1 - \sigma(a)
\]
Gradients of the cross-entropy error function

Gradients

\[
\frac{\partial E(w)}{\partial w} = - \sum_n \{ y_n [1 - \sigma(w^T x_n)] x_n - (1 - y_n) \sigma(w^T x_n) x_n \} \tag{6}
\]

\[
= \sum_n \{ \sigma(w^T x_n) - y_n \} x_n \tag{7}
\]

Remarks

- \(e_n = \{ \sigma(w^T x_n) - y_n \} \) is called error for the \(n \)th training sample.
- Stationary point (in this case, the optimum):
 \[
 \sum_n \sigma(w^T x_n) x_n = \sum_n x_n y_n
 \]

Intuition: on average, the error is zero.
Numerical optimization

Gradient descent

- Choose a proper step size $\eta > 0$
Numerical optimization

Gradient descent

- Choose a proper step size $\eta > 0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$w(t+1) \leftarrow w(t) - \eta \sum_{n} \left\{ \sigma(w^T x_n) - y_n \right\} x_n$$

Remarks

- The step size needs to be chosen carefully to ensure convergence.
- The step size can be adaptive (i.e. varying from iteration to iteration). For example, we can use techniques such as line search.
- There is a variant called stochastic gradient descent, also popularly used (later in this semester).
Intuition for Newton method

Approximate the true function with an easy-to-solve optimization problem

\[f(x) \approx f_{quad}(x) \]
Approximation

Taylor expansion of the cross-entropy function

\[\mathcal{E}(\mathbf{w}) \approx \mathcal{E}(\mathbf{w}^{(t)}) + (\mathbf{w} - \mathbf{w}^{(t)})^T \nabla \mathcal{E}(\mathbf{w}^{(t)}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{(t)})^T \mathbf{H}^{(t)}(\mathbf{w} - \mathbf{w}^{(t)}) \]

where

- \(\nabla \mathcal{E}(\mathbf{w}^{(t)}) \) is the gradient
- \(\mathbf{H}^{(t)} \) is the Hessian matrix evaluated at \(\mathbf{w}^{(t)} \)

Example: a scalar function

\[\sin(\theta) \approx \sin(0) + \theta \cos(\theta = 0) + \frac{1}{2} \theta^2 [- \sin(\theta = 0)] = \theta \]

where \(\nabla \sin(\theta) = \cos(\theta) \) and \(\mathbf{H} = \nabla \cos(\theta) = - \sin(\theta) \)
So what is the Hessian matrix?

The matrix of second-order derivatives

$$H = \frac{\partial^2 \mathcal{E}(w)}{\partial w w^T}$$

In other words,

$$H_{ij} = \frac{\partial}{\partial w_j} \left(\frac{\partial \mathcal{E}(w)}{\partial w_i} \right)$$

So the Hessian matrix is $\mathbb{R}^{D \times D}$, where $w \in \mathbb{R}^D$.
Optimizing the approximation

Minimize the approximation

\[\mathcal{E}(w) \approx \mathcal{E}(w^{(t)}) + (w - w^{(t)})^T \nabla \mathcal{E}(w^{(t)}) + \frac{1}{2} (w - w^{(t)})^T H^{(t)} (w - w^{(t)}) \]

and use the solution as the new estimate of the parameters

\[w^{(t+1)} \leftarrow \min_w (w - w^{(t)})^T \nabla \mathcal{E}(w^{(t)}) + \frac{1}{2} (w - w^{(t)})^T H^{(t)} (w - w^{(t)}) \]
Optimizing the approximation

Minimize the approximation

\[
E(w) \approx E(w(t)) + (w - w(t))^T \nabla E(w(t)) + \frac{1}{2} (w - w(t))^T H(t) (w - w(t))
\]

and use the solution as the new estimate of the parameters

\[
w^{(t+1)} \leftarrow \min_w (w - w(t))^T \nabla E(w(t)) + \frac{1}{2} (w - w(t))^T H(t) (w - w(t))
\]

The quadratic function minimization has a \textit{closed} form, thus, we have

\[
w^{(t+1)} \leftarrow w(t) - \left(H(t) \right)^{-1} \nabla E(w(t))
\]

i.e., the Newton method.
Contrast gradient descent and Newton method

Similar

Both are iterative procedures.

Difference

- Newton method requires second-order derivatives.
- Newton method does not have the magic η to be set.
Our cross-entropy error function is convex

\[
\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_n \{ \sigma(w^T x_n) - y_n \} x_n
\]

\[\Rightarrow H = \frac{\partial^2 \mathcal{E}(w)}{\partial w w^T} = \text{homework}\]
Our cross-entropy error function is convex

\[
\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_n \{ \sigma(w^T x_n) - y_n \} x_n
\]

\[\Rightarrow H = \frac{\partial^2 \mathcal{E}(w)}{\partial w w^T} = \text{homework} \]

For any vector \(v\),

\[v^T H v = \text{homework} \geq 0\]

Thus, positive definite. Thus, the cross-entropy error function is convex, with only one global optimum.
Good about Newton method

Fast!

Suppose we want to minimize \(f(x) = x^2 + 2x \) and we have its current estimate at \(x^{(t)} \neq -1 \). So what is the next estimate?

\[
x^{(t+1)} \leftarrow x^{(t)} - \left[f''(x)\right]^{-1} f'(x) = x^{(t)} - \frac{1}{2} (2x^{(t)} + 2) = -1
\]

Namely, the next step (of iteration) immediately tells us the global optimum! (In optimization, this is called \textit{superlinear convergence rate}).

In general, the better our approximation, the fast the Newton method is in solving our optimization problem.
Bad about Newton method

Not scalable!

- Computing and inverting Hessian matrix can be very expensive for large-scale problems where the dimensionally D is very large.
- Newton method does not guarantee convergence if your starting point is far away from the optimum

NB. There are fixes and alternatives, such as Quasi-Newton/Quasi-second order method.
Outline

1. Administration

2. Logistic Regression - continued

3. Multiclass classification
 - Use binary classifiers as building blocks
 - Multinomial logistic regression
Suppose we need to predict multiple classes/outcomes:
C_1, C_2, \ldots, C_K

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits + 26 characters (lower and upper cases) + special characters, etc

Studied methods

- Nearest neighbor classifier
- Naive Bayes
- Gaussian discriminant analysis
- Logistic regression
Logistic regression for predicting multiple classes? Easy

The approach of “one versus the rest”

- For each class C_k, change the problem into binary classification
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel all the rest data into NEGATIVE (or ‘0’)

This step is often called 1-of-K encoding. That is, only one is nonzero and everything else is zero.

Example: for class C_2, data go through the following change

$$(x_1, C_1) \rightarrow (x_1, 0), (x_2, C_3) \rightarrow (x_2, 0), \ldots, (x_n, C_2) \rightarrow (x_n, 1), \ldots,$$
Logistic regression for predicting multiple classes? Easy

The approach of “one versus the rest”

- For each class C_k, change the problem into binary classification
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel all the rest data into NEGATIVE (or ‘0’)

This step is often called 1-of-K encoding. That is, only one is nonzero and everything else is zero.

Example: for class C_2, data go through the following change

$$(x_1, C_1) \rightarrow (x_1, 0), (x_2, C_3) \rightarrow (x_2, 0), \ldots, (x_n, C_2) \rightarrow (x_n, 1), \ldots,$$

- Train K binary classifiers using logistic regression to differentiate the two classes
Logistic regression for predicting multiple classes? Easy

The approach of “one versus the rest”
- For each class C_k, change the problem into binary classification
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel all the rest data into NEGATIVE (or ‘0’)

This step is often called 1-of-K encoding. That is, only one is nonzero and everything else is zero.

Example: for class C_2, data go through the following change

\[(x_1, C_1) \rightarrow (x_1, 0), (x_2, C_3) \rightarrow (x_2, 0), \ldots, (x_n, C_2) \rightarrow (x_n, 1), \ldots,\]

- Train K binary classifiers using logistic regression to differentiate the two classes
- When predicting on x, combine the outputs of all binary classifiers
 1. What if all the classifiers say NEGATIVE?
Logistic regression for predicting multiple classes? Easy

The approach of “one versus the rest”

- For each class C_k, change the problem into binary classification
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel all the rest data into NEGATIVE (or ‘0’)

This step is often called 1-of-K encoding. That is, only one is nonzero and everything else is zero.

Example: for class C_2, data go through the following change

$$(x_1, C_1) \rightarrow (x_1, 0), (x_2, C_3) \rightarrow (x_2, 0), \ldots, (x_n, C_2) \rightarrow (x_n, 1), \ldots,$$

- Train K binary classifiers using logistic regression to differentiate the two classes
- When predicting on x, combine the outputs of all binary classifiers
 1. What if all the classifiers say NEGATIVE?
 2. What if multiple classifiers say POSITIVE?

Take-home exercise: there are different combination strategies. Can you think of any?
Yet, another easy approach

The approach of “one versus one”

- For each pair of classes C_k and $C_{k'}$, change the problem into binary classification
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel training data with label $C_{k'}$ into NEGATIVE (or ‘0’)
 3. *Disregard* all other data

Ex: for class C_1 and C_2,

$$(x_1, C_1), (x_2, C_3), (x_3, C_2), \ldots \rightarrow (x_1, 1), (x_3, 0), \ldots$$
Yet, another easy approach

The approach of “one versus one”

- For each pair of classes C_k and $C_{k'}$, change the problem into binary classification
 1. Relabel training data with label C_k, into positive (or ‘1’)
 2. Relabel training data with label $C_{k'}$ into negative (or ‘0’)
 3. Disregard all other data

Ex: for class C_1 and C_2,

$$(x_1, C_1), (x_2, C_3), (x_3, C_2), \ldots \rightarrow (x_1, 1), (x_3, 0), \ldots$$

- Train $K(K - 1)/2$ binary classifiers using logistic regression to differentiate the two classes
Multiclass classification

Use binary classifiers as building blocks

Yet, another easy approach

The approach of “one versus one”

- For each *pair* of classes C_k and $C_{k'}$, change the problem into binary classification
 1. Relabel training data with label C_k, into **POSITIVE** (or ‘1’)
 2. Relabel training data with label $C_{k'}$ into **NEGATIVE** (or ‘0’)
 3. *Disregard* all other data

Ex: for class C_1 and C_2,

$$(x_1, C_1), (x_2, C_3), (x_3, C_2), \ldots \rightarrow (x_1, 1), (x_3, 0), \ldots$$

- Train $K(K-1)/2$ binary classifiers using logistic regression to differentiate the two classes
- When predicting on x, combine the outputs of all binary classifiers
 There are $K(K-1)/2$ votes! **Take-home exercise:** *can you think of any good combination strategies?*
Contrast these two approaches

Pros and cons of each approach

- **one versus the rest**: only needs to train K classifiers. Make a huge difference if you have a lot of classes to go through. Can you think of a good application example where there are a lot of classes?
Contrast these two approaches

Pros and cons of each approach

- **one versus the rest**: only needs to train K classifiers. Make a huge difference if you have a lot of *classes* to go through. Can you think of a good application example where there are a lot of classes?

- **one versus one**: only needs to train a smaller subset of data (only those labeled with those two classes would be involved). Make a huge difference if you have a lot of *data* to go through.
Contrast these two approaches

Pros and cons of each approach

- **one versus the rest**: only needs to train \(K \) classifiers. Make a huge difference if you have a lot of classes to go through. Can you think of a good application example where there are a lot of classes?

- **one versus one**: only needs to train a smaller subset of data (only those labeled with those two classes would be involved). Make a huge difference if you have a lot of data to go through.

Bad about both of them

Combining classifiers’ outputs seem to be a bit tricky. Any other good methods?
Multinomial logistic regression

Intuition: from the decision rule of our naive Bayes classifier

\[y^* = \arg \max_c p(y = c \mid \mathbf{x}) = \arg \max_c \log p(x \mid y = c) p(y = c) \]
\[= \arg \max_c \log \pi_c + \sum_k z_k \log \theta_{ck} = \arg \max_c \mathbf{w}_c^T \mathbf{x} \]

Essentially, we are comparing

\[\mathbf{w}_1^T \mathbf{x}, \mathbf{w}_2^T \mathbf{x}, \cdots, \mathbf{w}_C^T \mathbf{x} \]

with one for each category.
So, can we define the following conditional model?

\[p(y = c | \mathbf{x}) = \sigma\left[\mathbf{w}_c^T \mathbf{x} \right] \]
So, can we define the following conditional model?

\[p(y = c|x) = \sigma [w_c^T x] \]

This would not work at least for the reason

\[\sum_c p(y = c|x) = \sum_c \sigma [w_c^T x] \neq 1 \]

as each the summand can be any number (independently) between 0 and 1. But we are close
Definition of multinomial logistic regression

Model

For each class C_k, we have a parameter vector \mathbf{w}_k and model the posterior probability as

$$p(C_k|x) = \frac{e^{\mathbf{w}_k^T \mathbf{x}}}{\sum_{k'} e^{\mathbf{w}_{k'}^T \mathbf{x}}} \quad \leftarrow \quad \text{This is called softmax function}$$
Definition of multinomial logistic regression

Model

For each class C_k, we have a parameter vector \mathbf{w}_k and model the posterior probability as

$$p(C_k|\mathbf{x}) = \frac{e^{\mathbf{w}_k^T \mathbf{x}}}{\sum_{k'} e^{\mathbf{w}_{k'}^T \mathbf{x}}} \quad \text{← This is called softmax function}$$

Decision boundary: assign \mathbf{x} with the label that is the maximum of posterior

$$\arg \max_k P(C_k|\mathbf{x}) \rightarrow \arg \max_k \mathbf{w}_k^T \mathbf{x}$$

Note: the notation is changed to denote the classes as C_k instead of just c