1. Let X_1, \ldots, X_n be i.i.d. $U(0, \theta)$.
 a. Prove that $T_n(X) = ((n + 1)/n)X(n)$ is UMVU for θ.

 b. Calculate $\text{Var}_\theta(T_n)$ and compare its rate of decay to zero in n with what is typically expected in the Cramer Rao bound for estimates based on n i.i.d. observations.

2. Assuming differentiation under the integral is allowed, prove
 \[
 (I_X(\theta))_{ij} = -E_\theta \left(\frac{\partial^2 \log p(X, \theta)}{\partial \theta_i \partial \theta_j} \right).
 \]

3. Let X_1, \ldots, X_n be i.i.d. $\Gamma(\alpha, \beta)$.
 a. If α is known, prove that $\hat{\beta} = \bar{X}_n/\alpha$ is UMVU for β and achieves the Cramer Rao bound.

 b. Find the information matrix I and its inverse when both parameters are unknown, and show that the presence of an unknown α makes the lower bound for β increase.

4. a) Let \mathbf{u}_1 and \mathbf{u}_2 be non-zero vectors in \mathbb{R}^n, and define the projection of \mathbf{u}_1 along \mathbf{u}_2 to be
 \[
 P_{\mathbf{u}_2}\mathbf{u}_1 = \frac{\mathbf{u}_2}{||\mathbf{u}_2||} (\mathbf{u}_1 \cdot \frac{\mathbf{u}_2}{||\mathbf{u}_2||}).
 \]
 Show that $\mathbf{u}_2 \perp \mathbf{u}_1 - P_{\mathbf{u}_2}\mathbf{u}_1$ and interpret this fact geometrically with a diagram.

 b. Show that
 \[
 \|\mathbf{u}_1 - P_{\mathbf{u}_2}\mathbf{u}_1\|^2 = \|\mathbf{u}_1\|^2 - \frac{(\mathbf{u}_1 \cdot \mathbf{u}_2)^2}{\|\mathbf{u}_2\|^2}.
 \]
c. Consider a smooth density \(p(x, \theta), \theta \in \Theta \subset \mathbb{R}^2 \). By inverting the information matrix \(I = (I_{ij})_{1 \leq i, j \leq 2} \), show that the Cramer Rao bound lower bound for estimating \(\theta_1 \) in the presence of \(\theta_2 \) is the reciprocal of

\[
I_{11} - \frac{I_{12}^2}{I_{22}}.
\]

d. For random variables \(V, W \) define a dot product

\[
V \cdot W = EVW \quad \text{so that} \quad ||V||^2 = EV^2,
\]

and orthogonality and projections can be defined as usual. Let \(U_1 = U(X, \theta_1), U_2 = U(X, \theta_2) \) be score functions associated with \(\theta_1, \theta_2 \) respectively. Show that the lower bound for estimating \(\theta_1 \) in the presence of \(\theta_2 \) is the reciprocal of

\[
||U_1 - P_{U_2}U_1||^2.
\]

5. Let \((X_i, Y_i), i = 1, \ldots, n \) be i.i.d. from a bivariate normal distribution. When the correlation \(\rho \) is estimated by the sample correlation

\[
\hat{\rho} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\left(\sum_{i=1}^n (X_i - \bar{X})^2 \sum_{i=1}^n (Y_i - \bar{Y})^2\right)^{1/2}}
\]

it is known that

\[
\sqrt{n}(\hat{\rho} - \rho) \rightarrow_d \mathcal{N}(0, (1 - \rho^2)^2).
\]

Find a variance stabilizing transformation for \(\hat{\rho} \).