Efficient MU-MIMO via Switched-beam Antennas
Yonglong Zhang and Konstantinos Psounis
yonglonz,kpsounis@usc.edu

ABSTRACT
The demand for wireless bandwidth is rising to unprecedented levels. The industry has responded with the inclusion of advanced PHY techniques, most notably multi-user (MU) MIMO, in the most recent WiFi and LTE standards. However, despite the theoretical promise for large multiplexing gains, in practice the rate gains are modest due to a combination of large overhead to collect channel state information and not-so-well-conditioned channel matrices.

In this paper we propose to replace omni-directional antennas with inexpensive switched-beam antennas to produce well-conditioned channel matrices for MU-MIMO purposes with very low overhead. Remarkably, experimental results with both software defined radios and commercial WiFi chipsets show that, when appropriate antenna modes are used, this leads to a 3.5x-5x average throughput improvement in indoor environments. What is more, our backward compatible protocol extension coupled with an efficient algorithm to select appropriate antenna modes, achieve the aforementioned gains with almost zero overhead.

CCS CONCEPTS
Networks →Network experimentation; Wireless local area networks; Network protocol design; Mobile networks;

KEYWORDS
MU-MIMO, Switched-beam antennas, Greedy algorithm

ACM Reference format:

1 INTRODUCTION
The rapid increase in the quantity and capability of consumer mobile wireless devices has accelerated the growth in demand for wireless bandwidth tremendously. The government has responded to this wireless bandwidth crunch with an effort to release new spectrum for wireless communications and promote spectrum sharing technologies. The industry has responded with including in the latest standards novel, highly promising PHY techniques. Most notably, MU-MIMO was included in the latest WiFi and LTE standards, 802.11ac and LTE-Advanced, and implemented in the 2nd wave of 802.11ac chipsets.

In theory, MU-MIMO offers significant spatial multiplexing gains: a transmitter with \(n \) antennas may concurrently transmit to \(n \) users, yielding an \(n \) times performance gain. In practice however, this requires the collection of instantaneous channel state information (CSI) from the \(n \) users and a corresponding channel matrix which is well-conditioned. Since it is rarely the case that a randomly selected set of \(n \) users will yield a well-conditioned channel matrix, more than \(n \) users need to be probed. But, unfortunately, the overhead to collect instantaneous CSI is so large that the industry has settled with probing \(n \) users only, and, in the likely event that the resulting channel matrix is not well-conditioned, go for a smaller than \(n \) multiplexing gain.

In this paper we propose to use inexpensive switched-beam antennas in place of typical omni-directional antennas at transmitters to pre-condition the channel and ensure that the channel matrix of any random selection of users is well conditioned. Pre-conditioning the channel with analog front ends is not a new idea. However, we do so using inexpensive antennas that can find their way in commercial WiFi access points (APs), and, more importantly, not only conduct extensive experiments using software defined radios (SDRs) and commercial chipsets showcasing under real world conditions that we can achieve surprisingly large gains thanks to this pre-conditioning (3.5x-5x on average in indoors environments depending on the number of antennas) but also present (i) protocol extensions which are compatible with the 802.11ac standard to collect long-term channel statistics with zero overhead, and (ii) efficient algorithms which use those long-term channel statistics to appropriately configure the switched-beam antennas such that gains are materialized in practice.

The rest of the paper is organized as follows. Section 2 discusses prior work, Section 3 motivates this work by showing how large the gap can be when using omnidirectional versus directional antennas for indoors MU-MIMO, Section 4 discusses how to efficiently select the antenna configurations to achieve the 3.5x-5x gains, Section 5 presents extensive experiments with SDRs and commercial devices, and Section 6 discusses how to collect long-term channel statistics, used by the antenna configuration algorithms, in an 802.11ac backward compatible manner and with zero overhead, and what is the effect of mobility on performance.

2 PRIOR WORK
There is a large body of work on switched-beam antennas, ranging from traditional Butler matrix antennas [24, 31] to more compact ones [14, 23] with varying directionality properties and price.

Researchers first focused on the use of switched-beam antennas in cellular networks [19, 25] to improve the signal to noise ratio (SNR) of SISO transmissions. Recently, researchers have used the directionality of switched-beam antennas to allow concurrent nearby transmissions, e.g. [28] uses switched-beam antennas to minimize...
inter-cell interference in a multi-cell setup via coordination. Also, switched-beam antennas have found their way to commercial WiFi products [35]. In all these prior instances, switched-beam antennas are used to improve the SNR thanks to their directionality. In contrast, in our work we use switched-beam antennas to improve the channel matrix in the context of MU-MIMO transmissions, and, as a matter of fact, the line-of-sight directions are not the ones that yield the best improvement.

MU-MIMO can increase wireless capacity sizably thanks to its multiplexing gain [37] and a large body of experimental work has showcased MIMO benefits in various real world setups [7, 10, 17, 21, 22, 33, 40]. To achieve the large multiplexing gain in practice, the MU-MIMO channel matrix needs to have a small condition number [4, 16, 26]. Motivated by this, in recent years researchers have proposed various approaches to achieve a channel matrix with a small condition number. The most classic approach is to choose the best subset from a large group of users in each round of MU-MIMO transmission such that the resulting channel matrix is well conditioned and the sum data rate of users is maximized, see, for example, [15, 41, 42]. However, not only is it NP-hard to select the best user group, but also the overhead from collecting instantaneous CSI from all these users is prohibitively large. Thus, while greedy approaches have been proposed to select a good enough user group [15, 29], the fact of the matter is commercial chipsets collect CSI from the minimum possible number of users and it is very unlikely that a large number of users will ever be sampled for CSI purposes in practice, due to the significant overhead.

Another approach to get a good channel matrix may be to pre-condition the channel using directional antennas. For example, the authors in [21] have observed that directional antennas may yield higher MIMO performance not thanks to higher signal strength, but rather thanks to a better ensuing channel. However, they didn’t proceed to design a scheme that would collect CSI information and then select the best directions using this information. Other recent work on directional antennas has considered the use of re-configurable phased-array antennas in conjunction with MIMO to either reduce the number of RF chains [3] or to reduce inter-cell interference in the context of a multi-cell environment [2, 39] with [39] also making the observation that directionality helps to decorrelate users within a cell and thus achieve a better channel matrix. However, reconfigurable phased-array antennas are too expensive and large, especially for commercial WiFi systems which is the focus of our work, and, we consider instead inexpensive switched-beam antennas which leads to a fundamentally different antenna configuration problem due to the small number of predetermined modes that switched-beam antennas offer.

Last, even though no prior work has attempted to build a system to configure and use switched-beam antennas for MIMO channel pre-conditioning, there are works that have discussed metrics to select “good” directions of directional antennas or “good” user groups. We do consider such metrics, e.g. the signal-to-leakage ratio and the user orthogonality, and establish that they lead to suboptimal selection of directions in our setup, further motivating our work.

3 MOTIVATION

In this section, we present experimental results where a single AP transmits to a number of users using MU-MIMO over OFDM. We highlight scenarios where omni-directional antennas yield bad performance whereas switched-beam antennas can significantly increase the throughput thanks to channel pre-conditioning.

Recall that in theory and under appropriate conditions an AP with n antennas can transmit to up to n users’ antennas concurrently on the same frequency band by precoding the transmitting signal based on CSI. Each user antenna receives its own signal while interference (from signals for other user antennas) is cancelled, yielding a spatial diversity multiplexing gain of n.

3.1 Omni-mode can be bad

Today’s MU-MIMO-enabled APs are mostly equipped with omni-directional antennas. Due to size limitations of commercial APs, those omni-directional antennas are tightly placed in a small area and end up with high spatial correlation [11]. As a result, the correlation of the eventual channel matrix H will be significantly increased (see, for example, the widely used Kronecker model), especially when users are located close to each other, severely affecting the capacity of the MIMO channel.

To see this experimentally, we conduct 4x4 MU-MIMO communication between one AP with 4 omni-directional antennas and 4 users, each equipped with one omni-directional antenna (for more details see Section 5). We measure the channel capacity based on the receivers’ SNRs and constantly change their locations while maintaining the same distance towards the AP. As shown in Figure 1a, the system capacity has a huge variation when users are
on different locations even though they are under the same RSS level. For example, when users are located closely in the room, we measured a sum capacity of only 1.7 bits/s/Hz, which is nearly one fifth of the average capacity over all tested topologies.

3.2 Condition number matters

The condition number of an n-by-n channel matrix H is defined as the ratio of the largest to the smallest singular value [37], is directly determined by the channel correlation coefficient [27], and it is a good indication of the multipath richness of the channel [16].

A channel matrix that has a low condition number (often referred as “well-conditioned”) benefits MIMO transmissions in two ways: (i) it implies a higher effective channel gain for each user [37, 41], and (ii) more importantly, it reduces the effect of the error caused by noise when the pseudo-inverse of the (noisy) channel matrix is computed to perform the so called ZFBF precoding. (ZFBF is the most popular MU-MIMO precoding scheme.) Note that the latter effect is directly related to the notion of condition number in the context of numerical analysis, which is used to measure how sensitive a system is to the imprecision in the input and how much imprecision in the output results from the input imprecision [9]. As a result, the lower the condition number, the higher the capacity that the channel can support [4, 26].

We perform a total of 500 MU-MIMO communication measurements to show the relationship between the condition number of H and the channel capacity. We take the average of all the 64 OFDM sub-carriers’ condition numbers and plot them in Figure 1b where we use an exponential function to fit the individual measurements. It is evident that the condition number has a drastic effect on the channel capacity.

3.3 Finding a good user group is expensive

To get a good condition number an AP needs to collect CSI from a number of users and select a good user group. Consider an AP with n omni-directional antennas. The AP may randomly pick n users and examine their CSI to form the n-by-n channel matrix H. If H is ill-conditioned, the AP may pick another user, examine its CSI and try all the $\binom{n}{r}$ combinations to see if it is possible to get a well-conditioned channel matrix with this new user and $n−1$ of the old users. If not, the AP may pick yet another user and so on and so forth.

Finding the best user group among many users is NP-hard and a number of greedy approaches have been suggested. But the main issue is not the computational cost, it is the overhead of collecting the CSI for all those users. As a concrete example, today’s WiFi chipsets implement the so-called “explicit feedback” mechanism which involves the AP transmitting channel sounding symbols to the users, followed by each user sending one by one its channel estimation back to the AP under the lowest data rate. This is so expensive that 4x4 MU-MIMO WiFi chipsets randomly select 4 users and settle with a user group of cardinality 3 or less if the resulting channel matrix is not full rank. This means the AP would rather not take advantage of the maximum multiplexing gain than engage in collecting additional CSI from more users.

Instead of explicit feedback, in theory one may use the so called implicit feedback mechanism which has less overhead. But, because in this case the system needs to be calibrated [34], the WiFi industry has rejected its use for practical reasons.

3.4 Directionality to the rescue

Consider the scenario illustrated in Figure 2. We replace the 4 antennas with compact switched-beam antennas with 9 modes (8 directional modes, and an omni-directional one, which, as a matter of fact, is the mode we used for the omni-directional experiments above) and select the directional modes illustrated in the lower Figure 2a. Figure 2b shows that we get 6x the performance of the omni mode by using a carefully selected antenna direction configuration.

While the rest of the paper discusses important issues such as how and at what cost one may select the right directional modes, it is interesting to note that the best modes are not necessarily the ones corresponding to a line-of-sight. Also, the channel pre-conditioning achieved by the antennas is apparently enough to yield the maximum multiplexing gain even in the most correlated scenarios. Further, as we will establish later, any random set of 4 users with appropriate directional modes can achieve near-optimal rates, the results hold even in the case of 8x8 MIMO channels (which are of interest given that the maximum number of antennas in the
it changes very fast and focus on the amplitude \(|a_i^{k,c}|\) which remains relatively steady as long as neither of the antennas change their physical location. Thus, we take the average amplitude of all OFDM sub-carrriers between user \(i\) and antenna \(j\) on direction \(k\), and save it as \(g_{ij}^k\). Without loss of generality consider 20MHz channels where 52 of the total 64 subcarriers are not null and we have \(g_{ij}^k = \frac{\sum_{c=1}^{52} |a_i^{k,c}|}{52}\).

To verify the time-invariant nature of the long-term gain, we perform an experiment where we constantly measure the elements of \(G\) for 3 minutes in a typical office room. In the first minute and a half the environment is relatively steady: about 6 people work on their desks. In the middle of the experiment we change the location of the user by about 1 meter. In the second half of the experiment, the 6 people begin to walk around in the office, opening and closing doors. As shown in Figure 3a, the long-term channel gains are quite steady during the first half of the experiment. In the second half, the long-term gains vary a little bit due to moving objects, but within a small magnitude (less than 10%). Last, as expected, there is a sizable change when the user/antenna moves. Concluding, we confirm that in a typical office environment the entries in \(G\) stay valid for a relatively long time since the location of laptops, tablets, etc. changes in the order of minutes [6, 8, 36].

4.2 Formulating the problem of finding the best antenna configuration

We address how to populate and keep on updating the G matrix in Section 6. Here we assume that the AP has access to the G matrix and solve the following problem. Let \(G_{a,d}\) denote an \(n\) by \(n\) submatrix of \(G\) formed by the rows whose indices are dictated by vector \(\mu\) and the columns whose indices are dictated by vector \(\nu\). For a given subset of users with user indices \(u = (u_1, u_2, \ldots, u_N)\), find a vector of column indices \(\nu = (\nu_1, \nu_2, \ldots, \nu_N)\) where \(\nu_i \in [i - 1]N + 1, iN]\) for all \(i \in [1, N]\) such that the condition number of \(G_{\mu, \nu}\) is minimized. That is,

\[
\nu^* = \arg \min_{(\nu_1, \ldots, \nu_N), (\mu_1, \ldots, \mu_N) \in \{1, \ldots, \mu\}} \kappa(G_{\mu_1, \nu_1}, \ldots, G_{\mu_N, \nu_N}; (\mu_1, \ldots, \mu_N), (\nu_1, \ldots, \nu_N))
\]

where \(\kappa(\cdot)\) denotes the 2-norm condition number of a matrix. Note that the “feasibility” constraint \(\nu_i \in [i - 1]N + 1, iN]\) ensures that we assign exactly one direction to each antenna and we will refer to vectors \(\nu^*\) that satisfy this as “feasible”.

Such column selection problems are NP-hard even without the feasibility constraint [13]. In our setting, an AP with 4 antennas and 9 modes per antenna yields a modest 6561 possible antenna configurations, but, raising the antennas to 8 (max number of antennas on 802.11ac) raises the number of possible configurations to 43 million. Thus, a brute-force approach to find \(\nu^*\) is not appealing.

4.3 Greedy algorithms for the best antenna configuration problem

As already discussed, there is a large body of work on greedy approaches to improve channel matrices. For example, multiple researchers including [41] proposed different greedy user selection algorithms to maximize users’ orthogonality, while some other authors proposed to maximize the system’s signal-to-leakage ratio (SLR). We apply these approaches to our problem and show (in Section 5) that they fail to select very good modes. Motivated
by this, we propose a novel algorithm based on singular value
and orthogonal-triangular decomposition. We will refer to this
algorithm as the Condition Number SVD (CN-SVD) algorithm.

Before we describe the CN-SVD algorithm, we briefly describe
how to apply to our problem the two prior-work approaches men-
tioned above. First, the orthogonality of two vectors \(h \) and \(g \) is
determined by the ratio \(\frac{|h^\top g|}{\|h\| \|g\|} \). (The smaller the ratio, the more
orthogonal the two vectors are.) Using this approach, the goal is
to find the feasible direction vector \(d \) such that for the given set of
users \(u \), the columns of indices in \(d \) are as orthogonal to each other
as possible. This approach, applied to the user grouping problem
under a very large number of choices has been shown to work
well, but when applied to our directional antenna mode selection
problem which has much more limited number of feasible choices
it does not perform well, see Section 5. Second, the algorithm based
on SLR maps each transmit antenna \(i \) to a unique user \(j \). As a re-

4.4 Long-term gains versus instantaneous CSI

We use long-term channel gains to select antenna modes which
yield a low condition number, whereas it is the instantaneous CSI
that determines the actual condition number. Thus, it is interesting
to investigate the difference among the condition number of the
actual channel matrix \(H \) (with phase information) versus that of
the \(G_{u,d} \) matrix. To do so we start with a measured long-term gain
matrix \(G_{u,d} \) and add a random phase \(\theta \) and some amplitude
turbulence to create a corresponding channel matrix \(H \). We do this
for all the OFDM sub-carriers and compute the resulting average
condition number. Figure 3b plots the condition number of \(G_{u,d} \)
and \(H \) for 1000 different long-term gain matrices. As conjectured,
it is evident from the plot that well-conditioned \(G_{u,d} \) matrices are
strongly correlated with well-conditioned \(H \) matrices, see the green
circle on the plot.

5 EXPERIMENTAL RESULTS

5.1 Experiments with SDRs

We first conduct experiments with 2 WARPv3 boards, each with 4
RF ports. We use one WARP as a transmitter with 4 switched-beam
antennas (Adant Star 160 [1]), while the other WARP acts as 4 inde-
pendent users by using WARP’s ability to separately process each
RF chain and by positioning the antennas corresponding to each
user at different locations using long cables. Each user is equipped

Algorithm 1 The CN-SVD Algorithm

```
procedure CN-SVD(a, u, G, df)
    c ← getColumns(a)
    d ← ALG(G_u,c, |a|)
    a_us ← getUniqueSelectAnt(d)
    a_ns ← getMultiSelectAnt(d)
    d_f ← d_f ∪ {\{a_us, a_ms, a_ns\}}
    if a ns ≠ ∅ then
        d_f ← CN-SVD(a ns, u, G, df)
    else
        return d_f
    end if
    for all a ∈ a ms do
        d∗ ← arg min d ∈ d\{getColumns(a)} \kappa(G_u,(d ∪ d_f))
        d_f ← d_f ∪ {d∗}
    end for
    return d_f
end proc
```
with an omni-directional antenna. We conduct MU-MIMO downlink communication between the AP and the 4 users using ZFBF with explicit feedback (as in 802.11ac).

The experiments are done in a typical office room as shown in Figure 4a. We place users in different locations and measure their SNR and the resulting sum capacity under: (i) the omni-directional mode for all AP antennas (Omni), (ii) directional modes selected by minimizing the condition number using brute-force (CN-BF), (iii) directions selected by the CN-SVD algorithm (CN-SVD), (iv) directions selected by maximizing the SLR using brute-force (SLR) and (v) directions selected by maximizing the orthogonality using brute-force (Orthogonal).

5.1.1 Typical topologies. We choose 10 typical topologies of varying spatial user correlation. These topologies range from cases where users are well-separated to cases where all four users are close to each other. Figure 4a shows one typical topology where three users are close to each other. For each topology, we get 10 measurements and report the average. Figure 4b plots the results, where topologies are numbered in decreasing level of spatial user correlation. It is evident that the algorithms which minimize the condition number (CN-BF and CN-SVD) outperform the others, especially when users are highly correlated. Note that the SLR and Orthogonal approaches do not have a steady performance. We discuss the reasons for this in the next subsection.

5.1.2 Randomly generated topologies. We compare the performance of the algorithms under 100 random topologies. For each topology we decide the location of each user by uniformly generating two values and using them as coordinates. Like before, for each topology we measure the channel capacity 10 times and compute the average. Figure 4c plots the empirical CDF of those averages, where, like before, the algorithms based on the condition number outperform the others, and, Figure 4d plots the CDF of the relative gain of CN-BF and CN-SVD over Omni. Note that we zoom in the interesting part and don’t show the CDF when the gain is more than 10x, since in such scenarios Omni has such a poorly-conditioned matrix that in practice it makes sense to find a well-conditioned submatrix than insisting on transmitting to 4 users concurrently. Last, Figure 5a plots the relative performance of all 4 schemes over Omni, averaged over all 100 topologies. CN-BF and CN-SVD outperform Omni by about 3.5x, while SLR and Orthogonal outperform it by 1.7x and 2.4x respectively.

To better understand the results, we order the topologies in increasing Omni performance and group them in three cases: (i) bottom third w.r.t Omni performance due to relatively high correlation of users, (ii) middle third due to mild correlation and (iii) top third due to almost no user correlation. Figure 5b plots the sum capacity in the first case. Omni yields a bad condition number but the CN-BF and CN-SVD algorithms search for antenna directions which minimize the channel condition number and achieve 5x the Omni’s performance. Figure 5c shows the results when users have mild correlation. In this case Omni performs much better than before, CN-BF and CN-SVD achieve about 1.5x the performance of Omni, and SLR and Orthogonal perform similar to Omni. Figure 5d shows the results when users have almost no correlation. All algorithms perform well since the channel is well-conditioned.

To explain the large fluctuations on the performance of SLR and Orthogonal as well as their lower-than-Omni performance when users are not spatially correlated, we compare the condition number of the $G_{u.d}$ matrix resulting from selecting directions using the 4 selection algorithms. Figure 6a plots the results for 40 topologies...
under the 4x4 MU-MIMO setup. The spikes on the condition number for SLR and Orthogonal cause the performance fluctuations noticed in Figure 4b and the lower-than-Omni performance observed in Figure 5d. Figure 6b plots the results for the same 40 topologies under a 2x2 MU-MIMO setup. In this smaller scale problem, SLR and Orthogonal make better directional mode selections and are expected to perform similar to the CN-BF and CN-SVD schemes, which is consistent with the 2x2 MU-MIMO results reported in [39] for SLR.

5.1.3 Multiplexing downgrading. An AP may choose to serve less than the maximum number users when the channel matrix is ill-conditioned, such that the extra transmit antennas can be used to increase the diversity gain and thus obtain a better-conditioned channel matrix (of lower dimension). For example, downgrading from a multiplexing gain of 4 to 3 causes a 25% multiplexing loss but if the 4x3 sub-matrix is well-conditioned while the original 4x4 is not we may end up with a better throughput overall. To investigate this idea we proceed as follows: If the condition number of the original 4x4 channel matrix is less than a threshold (equal to 30) then we transmit to the 4 users like before. If not, we select the best 3 users to transmit to, by computing the condition number of the ensuing four 4x3 sub-matrices and selecting the one with the smallest condition number, unless no 4x3 sub-matrix has a condition number smaller than the threshold, in which case we select the best 2 users to transmit to by computing the condition number of the ensuing six 4x2 sub-matrices. (We never had to downgrade to a single user only.)

We apply the above procedure to Omni, CN-BF, CN-SVD, and Orthogonal. Also, motivated by real-world chipsets which, in the interest of simplicity, may randomly choose 3 (or 2) out of the 4 users to serve when the original 4x4 channel matrix is ill-conditioned, we also consider Omni with such random user selection for downgrading purposes and denote this as Omni-rand. Figure 7a shows the average capacity for all the five schemes over both typical and random topologies as before. We can see that both CN-BF and CN-SVD achieve a sizable improvement over Omni, thought the gains are smaller than when we enforce to serve 4 users utilizing the maximum multiplexing gain.

To better understand the tradeoff between the multiplexing gain and the ensuing condition number, we measure and sort the capacity of 4x4, 4x3 and 4x2 transmissions over all 9^4 = 6561 antenna configurations for one specific topology in Figure 7b. As expected, 4x2 and 4x3 transmissions are more robust than 4x4 due to the diversity gain from the extra transmit antennas. However a 4x4 transmission may still achieve higher performance when the correct configuration is used thanks to the combination of a low condition number with the highest multiplexing gain. The plot also indicates the performance of Omni for each of the three multiplexing gain cases for comparison purposes.

5.1.4 8x8 MIMO experiments. We conduct the same set of experiments under an 8x8 MIMO setup, since 802.11ac allows up to 8 antennas at the transmit side. Note that CN-BF can no longer be computed easily so we do not report results for it. Figure 7c reports the throughput averaged over the same typical and random topologies used before. CN-SVD achieves a nearly 5x gain over Omni, higher than the 3.5x average gain in the 4x4 case. Note however that the absolute throughput of the CN-SVD algorithm in the 8x8 case does not increase significantly comparing to the 4x4 case. This is because the larger the multiplexing gain the harder it is to get a channel matrix with a low condition number [32]. The significant spikes in Figure 8a, which shows the condition numbers achieved by different direction-selecting algorithms under the 8x8 setup, is further evidence of the difficulty to get the maximum multiplexing gain in an 8x8 channel. Motivated by this we conjecture that if 8x8 chipsets become available in the future, some of the additional antennas will mostly be used for diversity than for multiplexing.

Like in the 4x4 case, we also consider multiplexing downgrading, and, in particular, 8x8, 8x7 and 8x6 MIMO transmissions according to a condition number threshold. As shown in Figure 7d, we observe that the CN-SVD algorithm has a sizable capacity gain over Omni, which, nevertheless, is smaller than when we enforce to serve the maximum possible number of users (8 in this case).

5.1.5 Channel pre-conditioning versus power gain. Last, to illustrate the fact that the capacity gains of CV-SVD are mainly caused by the pre-conditioning of the channel matrix and not by a higher Received Signal Strength (RSS), we conduct an 8x8 experiment with two different antenna configurations, one which achieves a low condition number and one which achieves a higher condition number. We perform 5 transmissions with both configurations and record (i) their total capacity and, (ii) their total power gain of the channel (computed by Tr[HH^T] = \sum_{i,j} |h_{ij}|^2). As shown in Figure 8b, although the second configuration has a slightly higher total power gain it achieves a much lower total throughput because of the higher condition number.

5.2 Experiments with commercial devices

To further validate our proposed approach, we conduct experiments using commercial 802.11ac wave 2 devices: a Netgear Nighthawk AP with a Qualcomm chipset equipped with 4 Adant Star 160 switched-beam antennas and 3 Xiaomi Mi4i smartphones acting as users. (This chipset is configured to transmit to up to 3 users.) The experiments are performed in a typical office floor shown in Figure 9a. We present results from four typical topologies where users are sometimes located in different and sometimes at the same room. A number of typical antenna configurations are chosen including configurations where antennas point to the same direction, and configurations where they point to different directions. The throughput at each user is recorded for a total of 12 hours.
6 PROTOCOL SUPPORT FOR 802.11AC

We propose two protocol extensions by which a commercial 802.11 system can benefit from our direction selecting algorithm. The main purpose of these protocol extensions is to update the G matrix at minimum overhead. Unless otherwise stated, we consider a 4x4 MU-MIMO system, where the AP is equipped with switched-beam antennas with 8 directional modes. In this case, each user has a total of 8 \times 4 = 32 long-term gain entries in G.

6.1 Active feedback protocol extension

The first protocol extension, which we refer to as Active Feedback, allows the system to actively update the G matrix with almost zero overhead but requires minor support from end clients. The key idea is to inject training symbols into beacon frames. Beacon frames are used to announce the presence of a wireless network, and are typically broadcasted every 100ms. We insert 4 training symbols into the beacon frame, one for each antenna. Then, beacons are sent while setting the antennas in different directions using a round robin fashion to cover all directions as fast as possible as illustrated in Table 1. Upon reception of the training symbols, users compute their instantaneous CSI per subcarrier, and compute the average channel gain values as discussed in Section 4.1. Thus, each beacon frame informs 4 values and after 8 beacons (about 800ms) all 32 entries of the user are known. Once the user has obtained all its channel gain information, it injects the information into an ACK frame and sends it to the AP. Upon reception of the channel gain entries, the AP updates the row of G corresponding to this user.

Table 1: Antenna directions at each beacon/transmission

<table>
<thead>
<tr>
<th>Direction</th>
<th>1st beacon/Tx</th>
<th>2nd beacon/Tx</th>
<th>3rd beacon/Tx</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One may worry that beacons may not be overhead by clients if they are sent with directional modes, and/or that new users or mobile users that just changed their location won’t be able to successfully receive packets during the warm up period of updating their row in the G matrix. Intuitively though, the main lobe of the inexpensive switched-beam antenna modes we consider is often more than 90 degrees, the main to side/back lobe gain ratio is often less than 6dB [1], and these two together with indoors multipathing imply we should not worry. To remove any doubt that this is not a real concern, we conduct the following experiment with the WARP boards. We measure the SNR received by users when using the 8 training configurations of Table 1 and when using the omni mode under 20 randomly generated topologies. We compute the average sum capacity (over the different topologies) for both approaches, where the sum capacity of the training configurations are also averaged over the 8 different configurations. Figure 10 shows that, somewhat surprisingly, the 8 training configurations yield on average 1.2x higher rates than the omni mode, varying from 0.6x to 1.9x depending on the configuration and the topology.
6.2 Passive feedback protocol extension

The Passive Feedback protocol extension requires no support from end clients and relies on the channel sounding stage of a standard MU-MIMO transmission to update the G matrix. Similar to the active feedback extension, the AP sets its antennas to different directions in a round robin fashion so that all antenna modes can be eventually trained. The difference is instead of changing directions when transmitting beacon frames, it changes directions during normal transmissions.

Clearly this protocol extension is fully compatible with the 802.11 standard and it introduces no airtime overhead whatsoever. However, every time a new user joins the AP or an already associated user moves by a sizable amount, the AP has to use 8 data transmissions towards a user group that includes this user to update the row of the G matrix corresponding to this user. To do so, the 8 antenna configurations shown in Table 1 have to be used. As already discussed, the average performance of these 8 configurations is still 1.2x that of the omni mode, but clearly they perform far from the 3.5x gains achieved by the best configurations. The performance hit from this depends on the portion of time that transmissions take place using these 8 configurations versus using a configuration found by the CN-SVD algorithm. This, in turn, depends on user dynamics, e.g., how often new users join, and, more important, how mobile the users are, forcing the system to update elements of the G matrix. We investigate the effect of mobility and estimate the long-run performance gain in the presence of period G matrix updates below.

6.3 User mobility and long-run performance

When a user changes its location, the G matrix may need to be updated either with the active or the passive feedback protocol, and, there is a temporary performance hit. To see this, we perform MU-MIMO transmissions in a dynamic office environment and report the performance of Omni versus CN-SVD with passive feedback. Specifically, we conduct 20 transmissions with static users, change the location of some users at transmission 21, and conduct further transmissions after that. Figure 11a shows the higher throughput achieved by the CN-SVD algorithm during the first 20 transmissions, the throughput drop at transmission 21 at the levels of Omni, and the quick rebound after the update of the G matrix during the 8 transmissions following transmission 21. Note that at transmission 21 the system automatically detects the drastic change in some users’ long-term CSI as shown in Figure 3a and triggers the use of the 8 antenna configurations shown in Table 1 to update G matrix.

How often does the system have to update the G matrix? Not too often, since wireless devices connected to a WiFi network change their location in minute time-scales [6, 8, 36], whereas the process of updating the row of a device/user in the G matrix takes much less. To make this precise and compute the long-run performance gain we resort to both back of the envelope calculations and to simulations. In 802.11ac, the maximum transmission length is about 5ms when packet aggregation is used. A feedback report, which contains the instantaneous CSI of the users, is typically 16 x 12 x 52 = 9984 bits long in a 4x4 scenario and takes up to 1.5ms to transmit [38]. Including the airtime for sounding and the ACK transmissions from the 4 users (each ACK frame takes 48μs to be transmitted [38]), it takes up to 7ms to complete an MU-MIMO transmission. An AP needs 8 transmissions to learn the long-term gain information of 4 users, or, equivalently, at most 56ms. (Clearly, it makes no sense to use packet aggregation when transmitting with the 8 training antenna configurations, but we choose to be conservative in our calculations.) Let’s assume that a user changes location every say 10 seconds. Assuming there are 40 active users associated with the
Figure 11: Experiments with mobile users.

AP and the AP serves them equally, the user under consideration will be part of 10% of the user groups. Thus, during the 10 seconds that the user stays put, it is receiving data for 1 second (saturation regime). For 56ms the gain is 1.2x and for the rest of time it is 3.5x, resulting in a 1.2 × 56/1000 + 3.5 × 944/1000 = 3.4x average performance gain.

Last, we use simulations to determine the effect of varying mobility to performance. An AP serves a total of 40 mobile users through 8x8 MU-MIMO transmissions. Users’ inter-move times are exponentially distributed with an average of less than 10 seconds (see x-axis in Figure 11b for used values). Whenever a user moves, its long-term CSI changes and has to be remeasured. We run the simulation for 100 seconds and compare the average capacity obtained by Omni versus CN-SVD with passive feedback. We also record the proportion of time that the passive feedback mechanism spends on remeasuring the long-term CSI. As shown in Figure 11b, even if the users move as frequently as every 3 seconds we still achieve a significant gain over Omni.

7 CONCLUSION/ACKNOWLEDGEMENTS

In this paper we use SDRs and commercial hardware to show that switched-beam antennas conjunction with MU-MIMO can achieve a 3.5x-5x performance gain over omni-mode MU-MIMO, with negligible overhead and while being fully compatible with the 802.11ac standard.

We would like to thank Adant Technologies, Inc. for their assistance in configuring the switched beam antennas used in this paper as well as with the experiments involving commercial devices.

REFERENCES