Locality domains in syntax: Evidence from sentence processing

Stefan Keine

University of Massachusetts Amherst

WCCFL 32
Previous evidence for intermediate gaps in Spec,vP

Experiment: CPs vs. vPs

Introduction

Background

Long-distance movement is formed successively cyclically (Chomsky 1973, 1977)

The traditional view:
Intermediate gap created in Spec,CP

(1) Who did Sue say \([_{CP} t \text{ that Sam thinks }]_{CP} t \text{ Bill likes } t\)?
Extensions to vP

- More recently (Chomsky 1986, 2000, 2001), vPs have standardly been taken to also require successive-cyclic movement through their specifier

Phases

- C and v are phase heads
- Phase Impenetrability Condition requires intermediate landing site in specifier
This talk

Main point
Evidence from sentence processing can be used to locate intermediate landing sites and thereby phases

Main claims
- Reading time evidence for intermediate gaps created by successive cyclicity
- This evidence suggests that only CPs host intermediate gaps; vPs do not
Roadmap

1. Successive cyclicity in parsing: Previous evidence
2. Experiment: CPs vs. vPs
3. Previous evidence for intermediate gaps in Spec,vP
Roadmap

1. Successive cyclicity in parsing: Previous evidence
2. Experiment: CPs vs. vPs
3. Previous evidence for intermediate gaps in Spec,vP
Why sentence processing?

Syntactic constraints and sentence processing

Phases are the result of constraints on computational resources

- This directly leads one to expect to observe effects of phases in online processing → successive cyclicity
Why sentence processing?

Syntactic constraints and sentence processing

Phases are the result of constraints on computational resources

- This directly leads one to expect to observe effects of phases in online processing ➔ successive cyclicity

- Gibson & Warren (2004):
Reading time evidence for intermediate gaps in Spec,CP
Gibson & Warren (2004): Background

The role of filler–gap distance

The greater the **distance** between the filler and the gap, the greater the **reading time** at the position of the gap (e.g., King & Just 1991, Gibson 1998, 2000, Gordon et al. 2001, Warren & Gibson 2002, Lewis & Vasishth 2005)

- **Rationale:**

 Filler has to be syntactically and semantically integrated at gap position → distance increases the difficulty of filler retrieval
Gibson & Warren (2004): The basic idea

- Movement out of CP compared to movement over complex subject DP

(2) **CP condition**
The consultant [who the manager claimed [CP that the new proposal had pleased ___]] will hire five workers tomorrow.

(3) **DP condition**
The consultant [who [DP the manager’s claim about the new proposal] had pleased ___] will hire five workers tomorrow.
Structure of relative clause

\[
\text{who} \quad \{ \begin{array}{l}
\text{the manager claimed \([CP _ _ _ \text{that the new proposal} \[DP \text{the manager’s claim about the new proposal}] \)}
\end{array}\} \text{had pleased t}
\]
Structure of relative clause

who

{ the manager claimed \[CP \text{ that the new proposal } \]
\[DP \text{ the manager’s claim about the new proposal}\] } had pleased t

Previous evidence
Experiment: CPs vs. vPs
Previous evidence for intermediate gaps in Spec,vP
Structure of relative clause

\[
\text{who} \quad \left\{ \text{the manager claimed} \ [_{\text{CP}} \quad \text{that the new proposal} \ [_{\text{DP}} \text{the manager’s claim about the new proposal}] \right\} \text{had pleased t}
\]
Structure of relative clause

- **Expectation**
 Distance to closest antecedent is \textit{smaller} in CP structure due to intermediate trace DP condition

- This should manifest itself in the reading times at gap-hosting verb ‘pleased’
Reading time: The crucial comparisons

(4) **CP condition**

a. The manager **who** the consultant claimed that the new proposals had **pleased** t will hire five workers tomorrow.

(5) **DP condition**

a. The manager **who** the consultant’s claim about the new proposal had **pleased** t will hire five workers tomorrow.
Reading time: The crucial comparisons

(4) **CP condition**

a. The manager **who** the consultant claimed that the new proposals had **pleased** t will hire five workers tomorrow.

b. The consultant claimed that the new proposals had **pleased** the manager who will hire five workers tomorrow.

(BASELINE)

(5) **DP condition**

a. The manager **who** the consultant’s claim about the new proposal had **pleased** t will hire five workers tomorrow.

b. The consultant’s claim about the new proposal had **pleased** the manager who will hire five workers tomorrow.

(BASELINE)
Reading time: The crucial comparisons

(4) **CP condition**

a. The manager who the consultant claimed that the new proposals had pleased will hire five workers tomorrow.

b. The consultant claimed that the new proposals had pleased the manager who will hire five workers tomorrow. (BASELINE)

(5) **DP condition**

a. The manager who the consultant’s claim about the new proposal had pleased will hire five workers tomorrow.

b. The consultant’s claim about the new proposal had pleased the manager who will hire five workers tomorrow. (BASELINE)
Reading time: The crucial comparisons

(4) **CP condition**

a. The manager **who** the consultant claimed that the new proposals had **pleased** *t* will hire five workers tomorrow.

b. The consultant claimed that the new proposals had **pleased** the manager who will hire five workers tomorrow.
 (BASELINE)

(5) **DP condition**

a. The manager **who** the consultant’s claim about the new proposal had **pleased** *t* will hire five workers tomorrow.

b. The consultant’s claim about the new proposal had **pleased** the manager who will hire five workers tomorrow.
 (BASELINE)
Reading time: The crucial comparisons

(4) **CP condition**

a. The manager who the consultant claimed that the new proposals had pleased t will hire five workers tomorrow.

b. The consultant claimed that the new proposals had pleased the manager who will hire five workers tomorrow. (BASELINE)

(5) **DP condition**

a. The manager who the consultant’s claim about the new proposal had pleased t will hire five workers tomorrow.

b. The consultant’s claim about the new proposal had pleased the manager who will hire five workers tomorrow. (BASELINE)
Gibson & Warren (2004): Results

Finding

Reading time increase between movement structure and baseline was **smaller** in CP condition than in DP condition.

- Intermediate gap in Spec,CP facilitates processing at gap site
- No such facilitation in DP condition due to lack of intermediate gap
CP and vP?

- **What we know:**
 Gibson & Warren (2004)’s results show successive-cyclic movement through Spec,CP

- **Question:**
 Is there successive-cyclic movement through Spec,vP as well?

- **‘CP only’ hypothesis**
 Intermediate trace only in Spec,CP

- **‘CP+vP’ hypothesis**
 Intermediate trace in both Spec,CP and Spec,vP
Intermediate gaps on the CP+\(vP\) hypothesis

The limits of Gibson & Warren (2004)’s results

Gibson & Warren (2004)’s results are compatible with both ‘CP only’ and ‘CP+\(vP\)’ hypothesis
Intermediate gaps on the CP+vP hypothesis

The limits of Gibson & Warren (2004)’s results

Gibson & Warren (2004)’s results are compatible with both ‘CP only’ and ‘CP+vP’ hypothesis

CP structure:

who the manager \[vP\] t claimed \[CP\] t that the new proposal had \[vP\] t pleased t

DP structure:

who \[DP\] the manager’s claim about the new proposal] had \[vP\] t pleased t

- 3 intermediate gaps CP structure; only 1 in DP structure
- Relative easiness of CP structure follows if no only distance to closest gap matters but also number of intermediate reactivations (e.g., Vasishth & Lewis 2006)
Roadmap

1. Successive cyclicity in parsing: Previous evidence
2. Experiment: CPs vs. vPs
3. Previous evidence for intermediate gaps in Spec,vP
Expectations

<table>
<thead>
<tr>
<th>‘CP only’ hypothesis</th>
<th>‘CP+νP’ hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPs have facilitatory effect on ultimate gap, νPs do not</td>
<td>Both CPs and νPs have facilitatory effect</td>
</tr>
</tbody>
</table>

Different predictions for structures that contain an additional νP layer but no CP layer
Design

- Extension of Gibson & Warren’s experiment with additional TP structure, all compared to no-movement control

(6) CP structure
The witness who the prosecutor proved [CP that the bloody footprint had conclusively incriminated t] admitted the truth.

(7) DP structure
The witness who [DP the prosecutor’s proof about the bloody footprint] had conclusively incriminated t admitted the truth.

(8) TP structure
The witness who the prosecutor proved [TP the bloody footprint to have conclusively incriminated t] admitted the truth.
Movement in the three structures

CP structure:

who the prosecutor \([vP _] \) proved \([CP _] \) that the bloody footprint had \([vP _] \) conclusively incriminated t

DP structure:

who \([DP _] \) the prosecutor’s proof about the bloody footprint \([vP _] \) had \([vP _] \) conclusively incriminated t

TP structure:

who the prosecutor \([vP _] \) proved \([TP _] \) the bloody footprint to have \([vP _] \) conclusively incriminated t
Movement in the three structures

CP structure:

\[\text{who } \text{the prosecutor } [_{vP} __ \text{proved } [_{CP} __ \text{that the bloody footprint had }] __ \text{conclusively incriminated } t \]

Intermediate Gaps:
\textbf{CP only: 1}

DP structure:

\[\text{who } [_{DP} __ \text{the prosecutor’s proof about the bloody footprint] had }] __ \text{conclusively incriminated } t \]

Intermediate Gaps:
\textbf{CP only: 0}

TP structure:

\[\text{who } \text{the prosecutor } [_{vP} __ \text{proved } [_{TP} __ \text{the bloody footprint to have }] __ \text{conclusively incriminated } t \]

Intermediate Gaps:
\textbf{CP only: 0}
Movement in the three structures

CP structure:

who the prosecutor [\(v_P\) ___ proved [\(CP\) ___ that the bloody footprint had \([v_P\) ___ conclusively incriminated \(t\)]

DP structure:

who [\(DP\) the prosecutor’s proof about the bloody footprint] had \([v_P\) ___ conclusively incriminated \(t\)]

TP structure:

who the prosecutor [\(v_P\) ___ proved [\(TP\) the bloody footprint to have \([v_P\) ___ conclusively incriminated \(t\)]

Stefan Keine Locality domains in syntax 18/35
Movement in the three structures

CP structure:

who the prosecutor [vP ___ proved [CP ___ that the bloody footprint had [vP ___ conclusively incriminated t

INTERMEDIATE GAPS: CP only: 1; CP+vP: 3

DP structure:

who [DP the prosecutor’s proof about the bloody footprint] had [vP ___ conclusively incriminated t

INTERMEDIATE GAPS: CP only: 0; CP+vP: 1

TP structure:

who the prosecutor [vP ___ proved [TP the bloody footprint to have [vP ___ conclusively incriminated t

CP only: 0; CP+vP: 2
Predictions

<table>
<thead>
<tr>
<th></th>
<th>CP only</th>
<th>CP+vP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP structure</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>DP structure</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TP structure</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Prediction:

Reading time increase: \{DP, TP\} > CP \> DP > TP > CP
Method

- 2 x 3 design (crossing MOVEMENT and STRUCTURE)
- 162 participants recruited on MTurk
- 30 plausibility-controlled items
- Latin Square
- 60 filler sentences
Results

Gap region
- increase in TP condition greater than in CP and DP condition ($\hat{\beta} = -0.05, t = -2.2$)
- no difference between CP and DP condition ($\hat{\beta} = -0.00, t = -0.04$)

Spillover region
- increase in DP and TP structures greater than in CP structure ($\hat{\beta} = 0.06, t = 2.1$)
- no difference between DP and TP condition ($\hat{\beta} = -0.02, t = -0.7$)
Results vs. predictions

Predictions: Reading time increase

- **CP only:** \(\{DP, TP\} > CP\)
- **CP+vP:** \(DP > TP > CP\)

Results:

- Gap region: \(\{CP, DP\} > TP\)
- Spillover region: \(CP > \{DP, TP\}\)

\[TP > DP > CP\]
Results vs. predictions

Predictions: Reading time increase
- **CP only:** \{DP, TP\} > CP
- **CP+vP:** DP > TP > CP

Results:
- Gap region: \{CP, DP\} > TP
- Spillover region: CP > \{DP, TP\} \quad \{ TP > DP > CP \}

Conclusion
- Filler easiest to retrieve in CP structure
 - successive cyclicity through Spec,CP
Results vs. predictions

Predictions: Reading time increase

- CP only: \{DP, TP\} > CP
- CP+vP: DP > TP > CP

Results:

- Gap region: \{CP, DP\} > TP
- Spillover region: CP > \{DP, TP\}

\begin{align*}
&\text{TP} > \text{DP} > \text{CP}
\end{align*}

Conclusion

- Filler easiest to retrieve in CP structure
 \(\rightarrow\) successive cyclicity through Spec,CP
- No facilitation in TP structure
 \(\rightarrow\) no successive cyclicity through Spec,vP
- Evidence for ‘CP only’ and against CP+vP hypothesis
The role of structural distance

A remaining question:
Why is retrieval of the filler hardest in the TP structure?

Answer:
This is plausibly due the **structural** distance between the filler and the trace.
The role of structural distance

- **TP structure:**
 Movement is **cross-clausal** → particularly hard

- **CP structure:**
 Movement is **intra-clausal**, thanks to successive cyclicity

- **DP structure:**
 Movement is **intra-clausal**
The role of structural distance

- **TP structure:**
 Movement is **cross-clausal** → particularly hard

- **CP structure:**
 Movement is **intra-clausal**, thanks to successive cyclicity

- **DP structure:**
 Movement is **intra-clausal**

Upshot

- Movement in TP structure is cross-clausal only if there is **no** intermediate gap in Spec,vP

 → Additional evidence for ‘CP only’ hypothesis
Summary

- Reading time increase: TP > DP > CP
- Accounted for under ‘CP only’ hypothesis plus structural distance
 - Intermediate gap in Spec,CP \Rightarrow facilitation in CP structure
 - No intermediate gap in Spec,vP \Rightarrow no facilitation in TP structure
- Pattern is not accounted for under CP+vP hypothesis

Conclusion
Successive cyclicity through Spec,CP but not through Spec,vP
Roadmap

1. Successive cyclicity in parsing: Previous evidence
2. Experiment: CPs vs. vPs
3. Previous evidence for intermediate gaps in Spec,vP
‘Wh’-expletives

- In, e.g., Hindi, wh-expletives occur before every verb between a wh-phrase and its scope position:

 (9) Sita-ne kyaa socaa ki Ravi-ne kis-ko dekhaa?
 Sita-ERG EXPL think that Ravi-ERG who-ACC saw
 ‘Who did Sita think that Ravi saw?’

- Manetta (2010): Connector between phase-internal wh-phrase and scope position
‘Wh’-expletives

- In, e.g., Hindi, wh-expletives occur before every verb between a wh-phrase and its scope position:

(9) Sita-ne **kyaa socaa ki** Ravi-ne **kis-ko** dekhaa?
Sita-**erg** **expl** think that Ravi-**erg** **who-acc** saw
‘Who did Sita think that Ravi saw?’

- Manetta (2010): Connector between phase-internal wh-phrase and scope position

- **Alternative account:** Indirect dependency approach (Dayal 2010)

(10) What does Sita think? Who did Ravi see?
Reconstruction

• Fox (1999): Wh-movement in (11) must proceed through via vP to bind the pronoun and obviate Principle C

(11) [Which of the books that he$_1$ asked Ms. Brown$_2$ for] did every student$_1$ [vP ✓ get from her$_2$ *?]
Reconstruction

- Fox (1999): Wh-movement in (11) must proceed through via vP to bind the pronoun and obviate Principle C

 (11) [Which of the books that he\textsubscript{1} asked Ms. Brown\textsubscript{2} for] did every student\textsubscript{1} [vP ✓ get from her\textsubscript{2} *?]

- Den Dikken (2006): only pair list reading

- If every student raises above the wh-moved element (Kiss 1993), no reconstruction whatsoever is necessary

 (12) [every student]\textsubscript{1} [which of the books that he\textsubscript{1} asked Ms. Brown\textsubscript{2} for]\textsubscript{3} did t\textsubscript{1} get from her\textsubscript{2} t\textsubscript{3}
Copy spellout

- A wh-element is realized in several spots: Spellout of lower copy

\[(13) \textbf{Wen} \text{ hat er gesagt } \textbf{wen} \text{ Maria mag?} \]
\[\text{who has he said who Maria likes} \]
\[\text{‘Who did he say that Maria likes?’} \quad \text{(GERMAN)}\]
Copy spellout

- A wh-element is realized in several spots: Spellout of lower copy

(13) **Wen** hat er gesagt **wen** Maria mag?
 who has he said who Maria likes
 ‘Who did he say that Maria likes?’

- A curious gap:
 A standard CP+vP account predicts a much more striking version of this phenomenon: Copy spellout in CPs and vPs

(14) **Who** do you **who** think **who** that Mary **who** likes?

→ unattested
Conclusion

- Sentence processing constructs movement dependencies successively-cyclically
 - Evidence for successive cyclicity through Spec,CP
 - Evidence against successive cyclicity through Spec,vP

- Consistent with working memory motivation for phases

- Phases are larger than commonly thought
 - C is a phase, v is not

- At least several of the previous arguments for vP phases do not in fact entail vP phases
References I

den Dikken, Marcel (2006). A reappraisal of vP being phasal: A reply to Legate, Ms., CUNY.

Appendix 1: Stimuli

(15) **CP structure**
The witness who the prosecutor proved [CP that the bloody footprint had conclusively incriminated t] admitted the truth.
control: The prosecutor proved that the bloody footprint had conclusively incriminated the witness who admitted the truth.

(16) **DP structure**
The witness who [DP the prosecutor’s proof about the bloody footprint] had conclusively incriminated t admitted the truth.
control: The prosecutor’s proof about the bloody footprint had conclusively incriminated the witness who admitted the truth.

(17) **TP structure**
The witness who the prosecutor proved [TP the bloody footprint to have conclusively incriminated t] admitted the truth.
control: The prosecutor proved the bloody footprint to have conclusively incriminated the witness who admitted the truth.
Appendix 2: Complete reading times

The witness who the prosecutor proved/the prosecutor’s proof (that/about) the bloody footprint had/to have conclusively incriminated admitted the truth

Residual reading times (ms)

Clause type [−move] [+move]
Appendix 3: Linear and structural distance

CP structure:

who the prosecutor [\textsubscript{VP} proved [\textsubscript{CP} \textbf{that} the bloody footprint had [\textsubscript{VP} conclusively incriminated t

\textbf{LINEAR DISTANCE: small; STRUCTURAL DISTANCE: small \rightarrow fastest}

DP structure:

who [\textsubscript{DP} the prosecutor’s proof about the bloody footprint] had [\textsubscript{VP} conclusively incriminated t

\textbf{LINEAR DISTANCE: large; STRUCTURAL DISTANCE: small \rightarrow slower}

TP structure:

who the prosecutor [\textsubscript{VP} proved [\textsubscript{TP} the bloody footprint to have [\textsubscript{VP} conclusively incriminated t

\textbf{LINEAR DISTANCE: large; STRUCTURAL DISTANCE: large \rightarrow slowest}