Real-time Blackhole Analysis with *Hubble*

Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy, Thomas Anderson

University of Washington

NANOG 40, June 2007
Global Reachability

- When an address is reachable from every other address
- Most basic goal of Internet, especially BGP
 - “There is only one failure, and it is complete partition” Clarke, Design Philosophy of the DARPA Internet Protocols
- Physical path \Rightarrow BGP path \Rightarrow traffic reaches
- Recurring NANOG and Outages postings:
 - “Can you reach me?”
 - “I’m seeing problems, what is going on?”
How often is global reachability violated?

- "Reachability problems": >10% vantages don’t reach
- On 85% of days, 10K-15k prefixes have problems
- 79,000/110,000 distinct prefixes had problems
Hubble System

Goal: in *real-time* on a *global scale*, **automatically** monitor long-lasting reachability problems and classify causes.

Approach

- Synthesis of multiple information sources
 - BGP to select targets and learn origin ASes
 - Traceroutes from distributed vantages
 - Interface alias information
 - Pings to check liveness and monitor reachability

- Historical BGP and traceroute data
 - Enables troubleshooting
Assessing a failed traceroute

1. Where is the last hop?
 - Prefix
 - Origin AS for prefix
 - Provider for origin
 - Other AS

2. Can other vantages reach destination?

3. Is the origin single or multi-homed?

4. Can we predict next hop?
 - From historical
 - From other vantages

5. If so:
 - Is it live?
 - Is it in the origin AS?

6. Does path contain loops?
 - Intra-AS
 - Inter-AS
Real-Time Automated Classification

Probed 1500 prefixes every 15 minutes for 2 weeks
Automatically classified 59136/107171 of problems as they occurred

Current simple classification approach:

- Find common cause that explains substantial number of failed traceroutes to a prefix
- Does not have to explain all failed traceroutes
- May classify a given prefix multiple ways
- Not necessarily pinpointing exact problem, may be on handoff or return path

6 classes currently
Single-homed Origin AS Down

- No probes reach single-homed Origin AS
- Some reach its provider

31% of classified problems (6-48% at any point in time)
Multi-homed Origin AS Down

• No probes reach multi-homed Origin AS
• Some reach its provider(s)

13% of classified problems (2-32% at any point in time)
Provider AS Problem for Multi-Homed

- Probes through Provider B fail to reach P
- Some reach through Provider A

16% of classified problems (3-50% at any point in time)
Non-Provider AS Problem

- Probes through Non-Provider C fail
- Some reach through other Ases

21% of classified problems (3-84% at any point in time)
Router Problem on Known Path

- Last hop router R was seen on recent paths reaching P
- No probes reach P through R
- Some reach through R’s AS

6% of classified problems (1-25% at any point in time)
Router Problem on New Path

- Last hop router R not seen on recent paths reaching P
- No probes reach P through R
- Some reach through R’s AS

26% of classified problems (3-50% at any point in time)
Preliminary classification results

Of ones we classify: Overall (range over time)

1. Single-homed origin AS down: 31% (6-48%)
2. Multi-homed origin AS down: 13% (2-32%)
3. Provider AS problem
 for multi-homed origin AS: 16% (3-50%)
4. Non-provider AS problem: 21% (3-84%)
5. Router problem on old path: 6% (1-25%)
6. Router problem on new path: 26% (3-50%)
Target Selection to Reach Internet-Scale

- Maintain current and historical BGP snapshots
- Ping responsive prefixes to check reachability
- Use updates and pings to select prefixes likely to be experiencing reachability problems
 - New origins
 - BGP route changes at many vantages
 - Advertisements for newly allocated prefixes
 - Failed pings

Ongoing work. Plan to evaluate this summer.
Conclusions and Future Work

- Lots of reachability problems, some long lasting
- Historical and fine-grained data enable problem analysis
- Problems with multi-homed failover

Future:
- Hybrid probing to reach Internet-scale
- Predict availability of paths/prefixes
- Query language/ interface
NANOG and Hubble

How can we help you?

- Access to queriable real-time and historical traceroutes and reachability analysis
- Other problems or causes to look for?
- Please email ethan@cs.washington.edu

How you can help us?

- Validation of specific problems to help refine our techniques