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Abstract

We analyze the decision of an agent with time inconsistent preferences to consume a good
that exerts an externality on future welfare. The extent of the externality is initially unknown,
but may be learned via a costless sampling procedure. We show that when the agent can-
not commit to future consumption and learning decisions, incomplete learning may occur on
a Markov perfect equilibrium path of the resulting intra-personal game. In such case, each
agent’s incarnation stops learning for some values of the posterior distribution of beliefs and
acts under self-restricted information. This conduct is interpreted as strategic ignorance. All
equilibria featuring this property strictly Pareto dominate the complete learning equilibrium for
any posterior distribution of beliefs.
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1 Introduction

In a world of uncertainty, individual decisions are driven by perceptions of risks as well as prefer-

ences. While objective risk estimates seem the most relevant measure for decision making, there is

considerable evidence that subjective and objective estimates are often far from each other. More

importantly, aggregate biases in the perception of risks turn out to be pervasive. For example, Viscusi

(1990) shows on the basis of a sample of 3119 individuals (including 779 smokers) that the average

perceived probability of getting lung cancer because of smoking is 0.426 for the full sample and 0.368

for smokers. By contrast, the U.S. Surgeon General’s estimate for this risk lies in a range from 0.05

to 0.10. In our view, this divergence between subjective and objective risk assessments can hardly be

explained by the sole inability or cost of acquiring information, since studies on the health effects of

tobacco are widely publicized and often freely available.1 An alternative explanation may be helpful

to understand why individuals do not use or collect all available evidence.

In this paper, we argue that people may prefer to stay away from available information, fearing

the impact that a change of belief could have on their behavior. Non-smokers may for instance

anticipate that optimistic estimates of tobacco’s impact on health might induce them to smoke, with

the risk of being trapped in overconsumption. This suggests that voluntary ignorance could be used

as a self-control device preventing the individual from embarking in a hazardous activity which he

may later regret. However, for ignorance to have such a commitment value, it is necessary to depart

from the usual paradigm of a rational, time-consistent individual decision-maker. We shall rather

consider the individual as a collection of incarnations with conflicting goals. Specifically, our theory

is based on the following two building blocks.

First, time inconsistency. We focus on an individual with dynamically inconsistent preferences

(Strotz, 1956). In each period, the instantaneous payoffs are overweighed relative to future rewards,

so that the individual discounts short-term events at a higher rate than long-term events. At each

date, a consumption decision can be made which raises instantaneous payoffs but exerts a negative

externality on future welfare, just as smoking in the above discussion.2 A crucial assumption is that

the individual cannot commit to his future decisions, and therefore plays a non-cooperative game

with his future incarnations.

Second, costless learning and perfect recall. There is incomplete information about a parameter

that affects the magnitude (or frequency) of the externality. At every period, and before taking his

consumption decision, the individual has the opportunity to collect information about this parameter

at no cost, and to update his beliefs in a Bayesian way. If at some period the information acquisition

process is exhaustive, complete knowledge of the parameter is achieved. Given perfect recall, all

information gathered at some date can and will be used by the individual in the subsequent periods.

We focus on the intra-personal game played by the temporal incarnations (or “selves”) of the

individual, in which each incarnation decides first whether to collect or not information about the

1In any case, information costs would not explain the systematic bias implied by the observation that as many as
94.8% of individuals in the full sample and 90.3% of the smokers overestimate the risk.

2Alternatively, the current decision could be a costly effort which exerts a positive externality on future welfare.
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externality, and then whether to consume or not in the current period. We find that, even if learning

is free and creates no delays for consumption, the individual may decide in equilibrium not to acquire

all available information, a conduct that can be identified as strategic ignorance.

This result rests on the combination of informational and consumption externalities present in

our model. Because of the dynamic inconsistency of preferences, optimal contingent plans from the

perspective of a given self are no longer optimal for future selves. This, together with the inability to

commit to a consumption path, may lock the individual into a state of systematic overconsumption.

In that situation, ignorance may help to avoid such a time inconsistent behavior. Indeed, there is

a trade-off in the decision to acquire information. On the one hand, under full information each

incarnation can take the optimal consumption decision in the current period. On the other hand,

this information is shared with all future incarnations. The latter take the optimal action from their

perspective, which is suboptimal from the current viewpoint. Overall, each incarnation may prefer

not to acquire information that could be used by future incarnations, at the cost of not being able

to take the optimal current decision. If all incarnations follow the same reasoning, this behavior is

consistent with subgame-perfection.

The result is first illustrated in a simple three-period example with limited learning opportunities.

Then, we consider a stationary infinite horizon model with unrestricted learning possibilities. In this

general framework, we study the Markov perfect equilibria (MPE) of the intra-personal game, for

which the distribution of posterior beliefs about the externality is the payoff relevant state variable.

We show that our game always has (i) a complete learning MPE where the agent collects all available

information before taking his first period consumption decision, independently of his initial beliefs;

and (ii) a family of strategic ignorance MPEs, each of them characterized by a set of distributions

of posterior beliefs on which incarnations stop collecting information, and then choose whether to

consume or not. Moreover, we prove that the welfare of all incarnations is strictly higher in any

strategic ignorance MPE than in the complete learning MPE.

At this point, it may be helpful to precise in which sense beliefs are manipulated in our model.

Obviously, if the experimentation is not exhaustive, beliefs will not converge to the true value. Yet,

since incarnations update their beliefs in a Bayesian way, each of them will not hold a biased belief,

on average. This suggests that, in our model, only the higher order moments of the belief distribution

may and will be manipulated. However, conditionally on the truth, there will be a systematic bias on

the expected value of the posterior beliefs about the externality. Indeed, in our binary consumption

model, there is a risk threshold such that an individual consumes if and only if his estimate is below

this threshold. We show that if the true risk happens to be below this threshold, then the ex post

aggregate distribution will have (i) a mass of individuals who have learned the truth and consume

accordingly, and (ii) a mass of individuals above this threshold who self-restrict their information

gathering and refrain from consuming. Naturally, more comprehensive implications can be obtained

when the set of alternatives is extended beyond the binary case. Overall, our model provides a robust

and testable prediction: when consumption has current benefits and delayed costs then, conditionally

on the true risk being ‘small’, the ex post average perceived risk will be higher than the objective
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risk and the average consumption smaller than under full learning. This is precisely the empirical

findings in Viscusi’s (1990) study on the risks of tobacco.

Before proceeding with the formal analysis, several remarks are in order. First, we want to

emphasize that the manipulation of information is endogenous, and of course depends on the real-

izations of the individuals’ sampling. Second, the same logic about the value of strategic ignorance

as a self-commitment device may be applied to procrastination problems. For example, a researcher

with meager but encouraging information may undertake a project, while better information may

cast some doubts about its quality and lead to beliefs involving “inefficient procrastination”. Hence,

our model has also a general prediction in activities subject to current costs and delayed benefits:

conditionally on the truth, the ex post average perceived risk will be smaller than the objective risk

and the average level of activity higher than under full learning. Last, note that our work can be

seen as dual to the literature on learning by experimentation,3 in the sense that learning increases

current rewards but reduces future payoffs, as a consequence of future actions being suboptimal from

the current perspective. In particular, there is no trade-off in our setting between high current re-

wards and accumulation of information leading to possible increases in future returns. Rather, what

possibly restrains players from exhausting their learning opportunities is precisely the informational

externality generated by the learning process.

2 Consumption with time inconsistent preferences

2.1 The basic model

The main elements of our model are the following:

• Actor(s). Time is discrete and indexed by t = 0, 1, 2, . . . We view the consumer as a count-

able collection of risk-neutral incarnations, with one incarnation per period. We call “self-t” the

consumer’s incarnation at date t.4

• Actions. In every period, one unit of a free indivisible good is available for consumption. Let

xt ∈ {0, 1} denote the amount consumed in period t.5

• Externalities. Consumption increases the instantaneous utility of the individual but exerts a

negative externality on the welfare of his future incarnations. More specifically, we assume that a

positive consumption level at any date t lowers the per-period payoffs of all subsequent selves t + τ

(τ ≥ 1) by an amount λτ−1C > 0 with probability θ. Here, λ ∈ [0, 1) is a depreciation factor which

3See, for example, Rothschild (1974), McLennan (1984), Easley and Kiefer (1988), Aghion, Bolton, Harris and
Jullien (1991) or Keller and Rady (1996).

4An alternative formulation provided in the literature to model conflict between selves considers a principal/multi-
agent structure where the “planner” (principal) maximizes the individual’s intertemporal welfare, whereas each “doer”
(agent) is solely concerned about current welfare (see Thaler and Shefrin, 1981).

5In an earlier version of this paper (Carrillo and Mariotti, 1998), we show that the restriction to binary decisions is
taken without loss of generality. See also Carrillo (1998) for a model of time inconsistent preferences and a continuous
consumption decision.
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captures the fact that consumption at date t has a higher expected negative effect on nearer than on

distant future incarnations. On the whole, the expected negative externality It imposed on self-t by

his predecessors is given by:

It =
t−1∑
τ=0

λt−τ−1xτθC. (2.1)

Note that since It is additively separable with respect to past consumption levels {xτ}t−1
τ=0, the

marginal externality induced on future incarnations’ welfare by one unit of consumption at the

present date is independent of the past levels of consumption.

• Information. The probability of exerting the negative externality θ is unknown to the players.

It is distributed according to some prior probability distribution π0 with continuous density f0(θ)

over the full support [0, 1]. However, each self can costlessly acquire information about θ and update

his beliefs accordingly. We also assume that It is not observable at any date t. (The description of

the information acquisition process is postponed until Section 3.2.)

• Instantaneous payoffs. The net instantaneous payoffs at each date t are linear:

ut = xt − It. (2.2)

As for the externality cost, the instantaneous marginal utility of consumption is independent

of past consumption levels. Note that since It is not observable, the individual does not know his

current payoff in any stage. Still, what matters for his decision-making is only the difference in utility

between consuming and abstaining.

• Intertemporal payoffs. A key element of our theory is the existence of an intra-personal conflict

among selves. This conflict is captured by assuming that the consumer’s preferences are dynamically

inconsistent in the sense of Strotz (1956). We adopt the discount function introduced by Phelps and

Pollak (1968). Specifically, from the perspective of self-t, the t + τ -period (τ ≥ 1) discount factor is

set equal to βδτ , where 0 < β < 1. The intertemporal utility index of self-t is then given by:

Ut = Et

(
ut + β

∞∑
τ=1

δτ ut+τ

)
. (2.3)

The parameter β in (2.3) represents the “salience”6 of current payoffs relative to the future stream

of returns (which are, period to period, discounted at a rate δ). Equations (2.2) and (2.3) imply

that the marginal rate of substitution between one unit of consumption at date t and one unit of

consumption at date t+1 is equal to 1/βδ from the perspective of self-t, while it is equal to 1/δ from

the perspective of all previous selves. Hence, optimal contingent plans from the perspective of self-t

are no longer optimal for subsequent incarnations, and are not enforceable should the consumer not

be able to commit to a course of actions. Naturally, the closer β is to 1, the better self-t endogenizes

the externality he exerts on future selves through his current consumption.

6This terminology is borrowed from Akerlof (1991). Psychologists would rather refer to β as an “impatience” or
“impulsiveness” parameter, see Ainslie (1992).
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The above specification of intertemporal payoffs captures most of the properties of a generalized

hyperbolic discount function Dt,t′ = 1
1+b(t′−t)

, where t is the current period, t′ > t is the consumption

period, and b is a constant. Equation (2.3) implies in particular that short-term events are discounted

at a higher rate than long-term events. Since the pioneering work of Ainslie (1975), some scholars

(e.g. Thaler, 1981, Mazur, 1987) have emphasized the empirical relevance of hyperbolic discount

functions for modeling both human and animal dynamic behavior. We refer the reader to Ainslie

(1992, Chapter 3), or Loewenstein and Prelec (1992) for a review of these contributions, and to

Akerlof (1991), Laibson (1996, 1997) and Caillaud, Cohen and Jullien (1996) for applications to

procrastination, consumption/savings decisions and addiction problems, respectively.

• Foresight. Last, we assume that the consumer perfectly anticipates his dynamically inconsistent

behavior and rationally behaves accordingly.7

As pointed out in the introduction, our model can be adapted to deal with any situation where

decisions affect the welfare of current and future incarnations in opposite directions. Here we focus

on the simplest case, in which the marginal cost and return of current decisions are independent of

past behavior. Introducing habit formation (i.e. a complementarity between the marginal utility of

current consumption and the level of past consumption, as in Becker and Murphy (1988) for example)

or risk-aversion in our model would only add a complementary dimension to the problem.

2.2 A three-period example with limited learning opportunities

Our first goal is to illustrate with a simple example the main result of the paper, namely the value of

ignorance under time inconsistency. There are three periods, t ∈ {0, 1, 2}. The individual may either

consume or abstain in periods 0 and 1, and learn the true value of θ only in period 0, before his

consumption decision. Let x0, x1 ∈ {0, 1} be the corresponding consumption levels. For simplicity,

we assume that (i) δ = 1, (ii) the externality C is exerted only in the period after consumption (i.e.

λ = 0), and (iii) 1/βC < 1. In this setup, the intertemporal utility from the perspective of each self

is given by:
U0(x0, x1) = x0(1− βθC) + x1 β(1− θC)

U1(x0, x1) = −x0 θC + x1(1− βθC)

U2(x0, x1) = −x1 θC.

(2.4)

According to U0(·), self-0 would like to consume in both periods if θ ∈ [0, 1/C], to consume only

in period 0 if θ ∈ (1/C, 1/βC) and to abstain in both periods if θ ∈ [1/βC, 1]. However, he cannot

commit on future decisions. Therefore, given U1(·), one can see that if self-0 learns θ, the individual

will end up consuming in both periods if θ < 1/βC and abstaining in both periods if θ ≥ 1/βC.

Similarly, and given risk-neutrality, if self-0 does not learn θ the agent will consume in periods 0 and

7The same assumption is made by Laibson (1996, 1997). By contrast, Akerlof (1991) considers an agent who fails
to foresee his dynamic inconsistency. O’Donoghue and Rabin (1996, 1998) compare the welfare losses when agents
have perfect foresight (in their terminology, “sophisticated”) and imperfect foresight (“naive”).
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1 if Eπ0(θ) < 1/βC and abstain in both if Eπ0(θ) ≥ 1/βC. Overall, self-0’s expected payoff if he

learns θ is given by:

VL = π0(θ < 1/βC) [1 + β − 2βEπ0(θ | θ < 1/βC)C]. (2.5)

By contrast, his expected payoff if he remains uninformed about θ is:

VNL =

 1 + β − 2βEπ0(θ)C if Eπ0(θ) < 1/βC,

0 if Eπ0(θ) ≥ 1/βC.
(2.6)

From (2.5) and (2.6) it is immediate that:

(i) If Eπ0(θ) < 1/βC, then VNL < VL.

(ii) If Eπ0(θ) ≥ 1/βC, then VNL > VL if and only if Eπ0(θ | θ < 1/βC) >
1 + β

2βC
.

The intuition is simple. From U0(·) and U1(·) we note that the source of the intra-personal conflict

is the existence of a set of values θ ∈ (1/C, 1/βC) such that self-0 would like to consume only in

period 0 but ends up consuming in both periods. Therefore, a necessary condition for ignorance being

valuable is that it induces abstention in period 1, which is the case when Eπ0(θ) ≥ 1/βC. However,

this is not sufficient because ignorance also entails several costs. Indeed, from self-0’s viewpoint,

ignorance and abstention is suboptimal at date 0 if θ ∈ [0, 1/βC) and at date 1 if θ ∈ [0, 1/C]. Note

also that when θ ∈ [1/βC, 1], ignorance has neither costs nor benefits: the consumer (optimally)

abstains both at dates 0 and 1. Overall, condition (ii) states that the benefits of ignorance offset the

costs if, conditional on θ < 1/βC, it is more likely that θ is close to 1/βC rather than close to 0.8

3 Infinite horizon and costless learning

While the previous three-period case suggests that ignorance may have a positive value for a time

inconsistent decision maker, it is subject to several shortcomings. Its first limitation lies in the fact

that, due to the assumption of a finite horizon, information has always a positive value for the last

active incarnation of the consumer. In the above example, if self-1 had the opportunity to learn

the true value of θ at no cost, he would always exert this option. Anticipating this impossibility to

constrain the future choices, self-0 would therefore prefer to collect the information himself. More

generally, in any finite horizon version of our model, if information is freely available at each date,

perfect learning always occur at equilibrium. Second, in the example presented, remaining unin-

formed is optimal for self-0 only as long as condition (ii) is satisfied by the prior distribution of

beliefs π0. However, this limitation is due to our crude representation of the learning process, in

which the opportunities faced by the consumer at date 0 are either full learning or no learning. It

8For instance, when θ is close to 1/βC, ignorance has almost no cost (1−βθC ' 0) but some benefits (β(1−θC) < 0).
Note that when β = 1 the condition stated in (ii) never holds: the intra-personal conflict is necessary for our result.
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seems however that the logic of the argument should remain intact if we included the possibility of

imperfect learning, by allowing the individual to sequentially collect pieces of information about θ.

In this section, we study an infinite horizon model with costless experimentation about θ in

each period. Moreover, we consider a general learning technology in which the consumer can run

sequential sampling experiments. This allows us to generalize the results of Section 2.1, and to

provide new insights. Our first conclusion is that the learning strategy depends crucially on the time

horizon. Indeed, we show that strategic ignorance is always an equilibrium of the infinite horizon

game where information is freely available in each period. This conclusion holds independently

of the consumer’s initial belief, thus strengthening the case for strategic ignorance. In addition, an

important new insight is that each self is now strategically constrained by the experimentation strategy

of his successors. This additional conflict among selves can only be captured in a very crude way

within a finite horizon model, since it precludes the very existence of a strategic ignorance equilibrium.

A related point is that focusing on the Markov perfect equilibria of a stationary model allows an

unobstructed analysis of the interactions between consumption and informational externalities that

form the basis of our model. We show in particular that different levels of learning can be achieved

depending on the degree of coordination among selves. An important consequence is that strategic

ignorance leads to unambiguous Pareto improvements compared to complete learning.

3.1 Benchmark case: no learning

Consider first the benchmark situation where the consumer has no opportunity to acquire information

at any date, so that his beliefs about θ remain at his prior π0.
9 In the absence of learning, the agent’s

behavior depends on his ability to commit to future consumption decisions. From the definition of

intertemporal payoffs in (2.3), the impact on self-t’s welfare of consumption xt at date t is:

xt

(
1− βδ

∞∑
s=1

(λδ)s−1Eπ0(θ)C

)
= xt

(
1− Eπ0(θ)

βδ

1− λδ
C

)
. (3.1)

Similarly, for each τ ≥ 1, the impact on self-t’s welfare of consumption xt+τ at date t + τ is:

βδτxt+τ

(
1− δ

∞∑
s=1

(λδ)s−1Eπ0(θ)C

)
= βδτxt+τ

(
1− Eπ0(θ)

δ

1− λδ
C

)
. (3.2)

Define θ∗ = (1− λδ)/βδC. The following assumption will be maintained throughout the paper:

Assumption 1 θ∗ < 1.

Were this assumption violated, each incarnation would consume in any period as soon as he had

discretion over current actions, whatever the behavior of the other selves and the value of Eπ0(θ).

We are in position to characterize the equilibrium of the game when the individual can commit at

date 0 to all his future consumption decisions.

9Clearly, the results of this section extend to the case where the agent has complete information about θ.
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Lemma 1 Under full commitment at date 0 and no learning opportunities, the unique equilibrium

is such that:

• If 0 ≤ Eπ0(θ) ≤ βθ∗, the agent consumes one unit per period;

• If βθ∗ < Eπ0(θ) < θ∗, the agent consumes one unit in period 0 and abstains thereafter;

• If θ∗ ≤ Eπ0(θ) ≤ 1, the agent abstains from consuming in each period.

Proof: Immediate given (3.1) and (3.2). 2

The behavior of the individual is modified if he cannot commit at any date to a continuation con-

sumption path, so that self-t has discretion over decisions at stage t only. The following assumption

will be maintained in the remainder of the paper.

Assumption 2 No self can commit to the consumption decisions of his successors.

The reader might argue that some kinds of self-commitment are often feasible. Still, our objective

is to highlight the role of information processing in impulse control. This is why we deliberately rule

out the various kinds of commitment devices that have been proposed in the literature.10

Note that, due to the additive separability of intertemporal payoffs, the consumption path up to

period t− 1 is payoff irrelevant from self-t’s perspective. In order to discard unnecessary dependence

of equilibrium behavior on past variables, we shall leave all the “bootstrap” equilibria out of the scope

of the analysis and focus instead on Markov perfect equilibria (MPE) of the consumption game.

Lemma 2 Under no commitment and no learning opportunities, the unique MPE is such that:

• If 0 ≤ Eπ0(θ) < θ∗, each self consumes one unit whatever the amount consumed by other selves;

• If θ∗ ≤ Eπ0(θ) ≤ 1, each self abstains whatever the amount consumed by other selves.

Proof: As for Lemma 1, the proof is immediate given (3.1) and (3.2). 2

It follows from Lemmas 1 and 2 that the no commitment solution differs from the full commitment

solution only for the intermediary range of beliefs (βθ∗, θ∗). By definition, for beliefs in this region,

self-0 would be strictly better off constraining his future choices. More interestingly, for a subset

of beliefs in that interval, self-0 is strictly worse off consuming at every period than if he could

commit to abstain in each stage of the game, including the current one. Stated formally, denote

Eπ0(U0(x; θ)) self-0’s expected intertemporal utility if all selves consume x ∈ {0, 1}. From (2.1)

and (2.3), it is easily shown that Eπ0(U0(1; θ)) < Eπ0(U0(0; θ)) as soon as Eπ0(θ) ∈ (θ̃, θ∗), where

θ̃ = [1 − δ(1 − β)]θ∗. This interval will be referred to as the inefficient consumption region (IC).

Moreover, the same reasoning is also true for all subsequent selves. In other words, for beliefs in IC,

the consumer at each date is willing not only to constrain his future choices but even to constrain his

current choices provided that future selves act in the same way. As we shall see, this feature of the

10This includes for instance private side bets (described by Ainslie (1992) and formalized in Caillaud et al. (1996))
or mental accounting (Thaler, 1990).
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MPE solution is crucial for our analysis when learning opportunities become available before each

consumption decision.11 This result is illustrated in Figure 1.
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Figure 1: Self-0’s expected intertemporal utility in

the full commitment and the no commitment cases

3.2 Learning and strategies

The learning technology can be described as follows:

• Information acquisition. Learning is modeled as a Bernoulli sampling process. Before taking

his consumption decision, each self has the opportunity to gather an arbitrary (and possibly) infinite

number of pieces of information about θ. Each sample z is a signal either of the innocuousness of

consumption (with probability 1 − θ, z = 0), or of the danger of consumption (with probability

θ, z = 1). All samples realized in a play of the game are stochastically independent. Sampling

is sequential and we suppose that each self may, at any moment, stop the learning process and

rationally behave according to his current information. Note that by performing an infinite number

of experiments, he could alternatively learn the true value of θ. For simplicity, we shall also assume

that sampling is the only source of information about θ, so that in particular consumption decisions

are uninformative. As already observed, this is the case if the externality from past consumption is

unobservable at each date.

• Cost of experimentation. We will assume that all observations are costless for the consumer.

Since experimentation does not create any delay for the consumption decision, this implies that there

is no cost of information acquisition for any self.

11Under more general hyperbolic discounting, it may be optimal for self-0 to consume during more than one period
before stopping. However, our results are robust in the following sense: (i) under commitment, once the agent gives
up consuming at the optimum, his decision is irrevocable and (ii) under no commitment, there always exists a region
such that no consumption even in the current period dominates consumption at every date.
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• Information updating and perfect recall. After each experimentation, posterior beliefs about θ

are updated according to Bayes rule. Since the consumer is viewed as the collection of all selves, it is

natural to assume that each self observes the outcome of all his predecessors’ sampling and therefore

inherits the posterior belief of his immediate predecessor as an input for his own experimentation

decision. This perfect recall feature of individual learning leads to an informational externality, which

adds to the strategic conflict arising from consumption externalities.

A strategy for self-t in the experimentation/consumption game consists of two parts: first, a

sampling strategy and second, a consumption strategy. Since from the perspective of any self, the

only payoff relevant variable is his current belief about θ, we shall be only concerned with equilibria

in Markov strategies contingent on the posterior distribution of beliefs.

• Markov strategies. Basically, a Markov sampling strategy for self-t is described by a subset St of

the space Π(π0) of posterior distributions that can be reached after a finite number of samples, given

the prior distribution π0. St will be interpreted as self-t’s stopping region for the stochastic process

of beliefs. Moreover, since all selves face essentially the same decision problem, it is natural to focus

on stationary Markov perfect equilibria (MPE) in which the sampling and consumption strategies

are symmetric across all selves. It follows that all sampling is performed by self-0 on an MPE path,

since there is no other information flow about θ that sampling itself and all selves stop sampling on

the same region of posterior beliefs.

Admittedly, in an intra-personal game, non-Markov strategies may be used very naturally to

mitigate the time inconsistency problem. However, our objective is to show that self-restriction in

information gathering may per se be used as a self-commitment device. This point is therefore better

illustrated by Markov strategies, rather than by more complex strategies.

3.3 Complete learning versus strategic ignorance

Our main concern is to determine whether, in this general framework, incomplete learning may occur

on an MPE path. The following proposition provides a full description of the equilibria.

Proposition 1 The experimentation/consumption game has two classes of equilibria.

(i) A complete learning MPE in which each self learns the true θ unless it is already known.

(ii) An infinite family of pure-strategy strategic ignorance MPEs in which:

• Incomplete learning about θ takes place with positive probability on the equilibrium path.

• If sampling stops after a finite number of samples, each self abstains from consuming.

• For any belief, there is a strictly positive probability of stopping the experimentation process.

Proof: See Appendix. 2

Part (i) is straightforward. Suppose that self-t anticipates that self-t + 1 will learn the true

value of θ through infinite sampling, independently of his inherited beliefs. Then, self-t exerts no
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informational externality on his successors, whatever his sampling strategy. As a result, he will be

better off being fully informed, in order to take the current optimal consumption decision. Since the

same argument can be repeated for each self, complete learning from the outset is always an MPE.

However, part (ii) states that each self may decide to stop sampling when some posterior distribu-

tion of beliefs is reached. The incentives to do so depend crucially on the sampling strategy followed

by subsequent selves. For instance, no self wants to perform less sampling than his successors: if

some information is going to be obtained by self-t + 1, then it is in self-t’s interest to acquire this

information himself.12 Now, suppose that self-t anticipates that all subsequent selves will stop the

sampling process and refrain from consuming on a region S ⊂ {π ∈ Π(π0) |Eπ(θ) ≥ θ∗}. From the

above reasoning, self-t is never going to stop sampling before hitting S. If he reaches a distribution

of beliefs π ∈ S, he faces two options. On the one hand, he may follow the prescribed strategy, i.e.

to stop learning (and abstain, since Eπ(θ) ≥ θ∗). On the other hand, he may deviate and continue

sampling. This deviation is profitable if it leads the agent to learn that the true θ lies below the IC

region, i.e. in [0, θ̃], because in that case consuming at every period is optimal (see Figure 1). The

deviation is not desirable if the agent learns that θ belongs to IC, since it implies that every future

incarnation will inefficiently consume. Last, if the true θ ∈ [θ∗, 1], it is immaterial whether the agent

learns it or not (in both cases every incarnation will optimally abstain). If the precision of beliefs at

π is high, the likelihood of a large shift in posteriors is low. Then, by continuing the experimentation

process, self-t is much less likely to learn that θ lies below IC than to find that θ is above θ∗ or,

much worse, to get inefficiently stuck in the IC region.

Overall, we have the analogue of the three-period example: if, conditional on θ < θ∗ and for

beliefs π, the true θ is more likely to be in the interval IC than below IC, then self-t optimally stops

sampling at π, provided that no future self reinitiates the experimentation process. As the same

reasoning holds for all selves, stopping when the distribution of beliefs is in the region S is an MPE.13

Hence, despite the strategic constraint imposed on each self by his successors’ experimentation, self-

restriction in information gathering may still be used as a self-commitment device, thus providing

a rationale for voluntary “strategic ignorance”, even if no commitment to information acquisition is

feasible in any period.

At this stage, we can precise in which sense beliefs are manipulated in our model. Naturally,

there cannot be an ex ante bias in the first-order sense, since Bayesian updating implies that the

stochastic process of beliefs is a martingale. Hence, only the higher order moments of beliefs can

be manipulated. Still, in a more subtle way, our work provides strong, testable predictions for

some biased beliefs phenomena. In the study by Viscusi (1990) mentioned in the Introduction, the

bias between subjective and objective risks assessments is systematic: the probability of a negative

delayed outcome is overestimated. In other words, the existence of a bias is not established ex ante,

but conditionally on the truth. Interestingly, this observed bias is in line with the predictions of

12Note that this is precisely the reason why complete learning is always an equilibrium.
13To provide the intuition, we have implicitly assumed that a deviation from the prescribed strategy leads to learning

the true θ. However, the same reasoning holds for “one-shot deviations”, i.e. deviations such that the corresponding
self stops sampling if he hits S a second time.
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our model. According to our result, if the true value of θ lies below θ∗ there is a “pessimistic bias”

conditionally on the truth. To see this, consider a population of time-inconsistent individuals, each of

them playing some strategic ignorance MPE. At the aggregate level, a fraction of the population learn

the truth and consume accordingly, while the rest of the population will remain partially uninformed,

overestimate the risk, and abstain.14

The existence of an equilibrium where all the information is collected from the outset raises some

doubts about the significance of the more appealing equilibria with incomplete learning. However,

we have the following strong result.

Proposition 2 The expected welfare of all selves is strictly higher in any strategic ignorance MPE

than in the complete learning MPE.

Proof: See Appendix. 2

The intuition of this result is straightforward. Suppose indeed that self-t is strictly better off

learning θ than stopping the experimentation in some region S. Then, self-t’s best response to his

successors stopping according to S is to become perfectly informed. However, this implies that S

is not a self-sustaining MPE. In other words, the very existence of MPEs where the agent avoids

collecting costless information implies that they necessary yield for any posterior beliefs and for all

selves a higher expected welfare than the one obtained under full information. We can therefore

justify our claim that individuals are better off acting under self-restricted information rather than

under perfect knowledge.

Before concluding, several comments are in order:

• Multiple equilibria. The fact that no self wants to perform less sampling than his successors

leads to a coordination problem in learning which results in a multiplicity of MPEs. Indeed, the

complete learning equilibrium is just the limiting case in which each self anticipates that the region

where his immediate successor stops sampling converges to the empty set.

• Necessary and sufficient conditions for strategic ignorance. When β = 1, the intra-personal

conflict of interests vanishes, so information is always valuable. More importantly, with infinite

sampling opportunities and β < 1, there always exists a region where incarnations can efficiently

stop the learning process and abstain. Overall, time inconsistency is a necessary and sufficient

condition for strategic ignorance to be consistent with rationality.

• Incomplete learning and consumption. Eπ(θ) ≥ θ∗ is a necessary condition for stopping the

experimentation process. Stated differently, incomplete learning is incompatible with a positive

consumption in equilibrium because any self could be better off by reinitiating the sampling process

14Note that, in our model, no interesting predictions can be drawn if the true θ lies above θ∗: overestimation or
underestimation of risk is immaterial since, in equilibrium, everybody will follow the optimal behavior, i.e. abstention.
However, this result depends crucially on the assumption of binary consumption decisions.
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and efficiently abstaining if the true θ is above θ∗. We do not emphasize this result because it heavily

relies on the assumption of binary consumption decisions.

• The variance effect. Eπ(θ) ≥ θ∗ is not a sufficient condition for sampling to stop. Indeed, as

long as the variance of beliefs remains relatively large, the risk of learning that the true value of θ

falls in IC, and therefore of “being trapped” in overconsumption, is relatively low. In this case, it is

optimal to pursue the experimentation even if the expected posterior is above θ∗.

• Other sources of learning. The results easily extend to more realistic cases in which there is

exogenous learning and/or informative consumption (say, because the externality is observable). As

shown in an earlier version (Carrillo and Mariotti, 1998), the trade-off implied by experimentation

(optimal current consumption vs. learning inefficiently shared with future selves) still holds when

we include other sources of information. The basic idea is the following. Each incarnations knows

that, if some external information flows in, consumption may be reinitiated. However, all selves have

incentives to delay this inefficient consumption as much as possible, and this is achieved through

current ignorance and abstention.

4 Concluding remarks

This paper does not pretend to be the first to highlight the strategic value of ignorance. Since

Hirshleifer (1971), the idea that information may hurt has become a recurrent theme in the game

theory literature. However, all the games studied so far share some common features. First, as

in Hirshleifer’s example, public information may destroy mutually beneficial insurance possibilities.

Second, individual incentives to gather private information may be limited by the signaling value of

the actions taken by privately informed players, as in Grossman and Stiglitz (1980). By contrast,

our model would be analogous to a multi person situation where the information obtained by any

individual becomes automatically public. While this assumption is in general hard to motivate, it

seems particularly natural in our intra-personal game with perfect recall. Another point of departure

from related results lies in the commitment assumptions. It has been argued (e.g. by Crémer, 1995)

that in principal-agent problems, a credible commitment of a principal not to acquire information

about the agent may strengthen incentives and overwhelm the gains from better information. By

contrast, a crucial feature of our strategic ignorance equilibria is that at any point in time, the agent

voluntarily restricts his access to information, so that commitment to information gathering is not

necessary.

We have emphasized that information may have a negative value. However, this distortion is not

unidirectional: for agents with prior beliefs in IC, information is extremely valuable, since it may

allow the agent to build some self-commitment power. Therefore, if information is costly, a time

inconsistent individual may end up acquiring more information than his time consistent peer.

Last, our theory may be helpful to explain some puzzles in decision-making largely documented

by psychologists. Indeed, our model provides a rationale for one form of cognitive dissonance, in the
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sense of Festinger (1957). Specifically, in the case where an irreversible investment has been already

sunk, our theory predicts that a time inconsistent agent may wish to remain optimistic about the

prospects attached to this investment as time comes to build on it. However, the interpretation of

other forms of cognitive dissonance or self-justification (in the sense of Aronson, 1972) in terms of

“rational” decision-making remains a largely open question.
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Appendix

It is obvious from Lemma 2 that in any MPE, the consumption decision of all selves conditional

on their belief π about θ is to consume if Eπ(θ) < θ∗ and to abstain if Eπ(θ) > θ∗. If Eπ(θ) = θ∗,

then all selves are indifferent between consuming and abstaining, and there is no loss of generality

in assuming that they abstain in this case. This yields a continuation value function:

V (Eπ(θ)) =


1 +

1

1− δ
[βδ − Eπ(θ)/θ∗] if Eπ(θ) < θ∗

0 if Eπ(θ) ≥ θ∗

. (A.1)

Thus, an MPE is characterized by a stopping region S ⊂ Π(π0) for the sampling process.

A. The Stochastic Environment: Let Z∞ = {0, 1}∞ be the observations space, and H∞ the

natural σ-field on Z∞. For any π ∈ Π(π0), let µπ be the probability measure on [0, 1]×Z∞ induced by

π and the likelihood function. For any π ∈ Π(π0), there is a limit distribution π∞ such that, if infinite

sampling is performed from π on, then with µπ-probability one the posterior beliefs converge to π∞

and π∞ = δθ. Hence, if some self performs infinite sampling from π on, his expected continuation

payoff is
∫
[0,1]×Z∞ V (E(θ |H∞)(θ, z∞)) µπ(dθ, dz∞) = Eπ(V (θ)). Last, identifying S ⊂ Π(π0) with

the set of observation paths leading to it, let Prπ(S) = µπ([0, 1]× S) be the probability of hitting S

starting from belief π.

B. Proof of Proposition 1(i): We prove that ∅ is an MPE. Suppose that self-0 deviates from ∅
by stopping and consuming at π with Eπ(θ) < θ∗. Since self-1 resumes sampling at π and learns the

true value of θ with probability one, self-0’s expected payoff from deviating is:

U = 1− Eπ(θ)/θ∗ + π(θ < θ∗)
δ

1− δ
[β − Eπ(θ | θ < θ∗)/θ∗]. (A.2)

Hence Eπ(V (θ)) − U = π(θ ≥ θ∗) [Eπ(θ | θ ≥ θ∗)/θ∗ − 1] > 0, by the law of total expectations

and the full support assumption, so that ∅ is a strict better response for self-0 at π. Suppose now

that self-0 deviates from this strategy by stopping and abstaining at π with Eπ(θ) ≥ θ∗. Since self-1

resumes sampling at π and learns the true value of θ with probability one, self-0’s expected payoff

from deviating is:

U ′ = π(θ < θ∗)
δ

1− δ
[β − Eπ(θ | θ < θ∗)/θ∗]. (A.3)

By the law of total expectations, Eπ(V (θ))− U ′ = π(θ < θ∗) [1− Eπ(θ | θ < θ∗)/θ∗] > 0, so that

∅ is a strict better response for self-0 at π. Due to the additive separability of payoffs, the same

argument holds for all selves, so that ∅ is an MPE. 2

C. Proof of Proposition 1(ii): We first prove that if an MPE exhibits strategic ignorance, all

selves abstain from consuming if they stop learning. Formally:

Lemma 3 If S 6= ∅ is an MPE, Eπ(θ) ≥ θ∗ for each π ∈ S.
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Proof: Suppose the contrary, and let π ∈ S such that Eπ(θ) < θ∗. Since all selves consume at π,

the expected continuation payoff at π is V (Eπ(θ)) for any self. Since β < 1, it follows that:

Eπ(V (θ))− V (Eπ(θ)) = π(θ ≥ θ∗)
1

1− δ
[Eπ(θ | θ ≥ θ∗)/θ∗ − 1 + δ(1− β)] < 0, (A.4)

so that a strict better response for any self would be to sample infinitely from π, a contradiction. 2

For any π ∈ Π(π0) and S ⊂ Π(π0), let πS be equal to the posterior distribution of beliefs

at the first time S is hit by the sampling process when this happens, and to π∞ otherwise. Let

S? = arg maxS⊂Π(π0) Eπ(V (EπS
(θ))) be the optimal sampling strategy from the perspective of self-0.

Standard optimal stopping theory imply that S? exists and is essentially unique. To characterize S?,

the following lemma will be helpful:

Lemma 4 If π0 has a continuous, full support density with respect to Lebesgue measure, and (πn)n∈IN

is a sequence in Π(π0) such that Eπn(θ) ↓ θ∗, then lim
n→∞

Eπn(θ | θ < θ∗) = θ∗.

Proof: If π0 has a continuous density f0 with respect to Lebesgue measure, then each πn can be

identified with its density fn ∝ θn(1− θ)p(n)f0(θ), where n is the number of samples z = 1 and p(n)

is the number of samples z = 1. For each small ε > 0 and n ∈ IN, it is easy to see that:

Eπn(θ | θ < θ∗) > (θ∗ − ε)

(
1 +

∫ θ∗−ε
0 θn(1− θ)p(n)f0(θ) dθ∫ θ∗

θ∗−ε θn(1− θ)p(n)f0(θ) dθ

)−1

≡ I(n, ε). (A.5)

We show that lim
n→∞

I(n, ε) = θ∗ − ε. Since f0 is continuous and has full support,

∫ θ∗−ε
0 θn(1− θ)p(n)f0(θ) dθ∫ θ∗

θ∗−ε θn(1− θ)p(n)f0(θ) dθ
≤

maxθ∈[0,θ∗−ε] f0(θ)

minθ∈[θ∗−ε,θ∗] f0(θ)

∫ θ∗−ε
0 θn(1− θ)p(n) dθ∫ θ∗

θ∗−ε θn(1− θ)p(n) dθ
. (A.6)

Assume that lim
n→∞

n
n+p(n)

= θ∗. Since the mapping θ 7→ θn(1− θ)p(n) is increasing over [0, n
n+p(n)

],

it follows that for n large enough,
∫ θ∗−ε
0 θn(1− θ)p(n) dθ < (θ∗ − ε)n+1(1− θ∗ + ε)p(n). From this and

Jensen’s inequality:

∫ θ∗−ε
0 θn(1− θ)p(n) dθ∫ θ∗

θ∗−ε θn(1− θ)p(n) dθ
<

θ∗ − ε

ε2

∫ θ∗

θ∗−ε

(
θ∗ − ε

θ

)n (
1− θ∗ + ε

1− θ

)p(n)

dθ. (A.7)

We now show that the r.h.s. in (A.7) goes to zero as n goes to infinity. For each θ ∈ (θ∗−ε, θ∗], we

have lim
n→∞

ln(θ∗−ε)+ p(n)
n

ln(1−θ∗+ε)− ln(θ)− p(n)
n

ln(1−θ) = ln(θ∗−ε)+ 1−θ∗

θ∗
ln(1−θ∗+ε)− ln(θ)−

1−θ∗

θ∗
ln(1 − θ) ≡ `(θ, ε). Moreover, the mapping θ 7→ ln(θ) + 1−θ∗

θ∗
ln(1 − θ) is increasing on (0, θ∗].

Hence `(θ, ε) < 0 for each θ ∈ (θ∗−ε, θ∗]. Let θ ∈ (θ∗−ε, θ∗], and η > 0 such that `(θ, ε)+η < 0. There

exists n(θ, η) such that for all n ≥ n(θ, η),
(

θ∗−ε
θ

)n (
1−θ∗+ε

1−θ

)p(n)
< en(l(θ,ε)+η) and the result follows.

For each n ≥ 0, the mapping θ 7→ θn(1−θ)p(n) is increasing on [0, n
n+p(n)

], and decreasing on [ n
n+p(n)

, 1].

Hence two cases may arise. Either n
n+p(n)

∈ [θ∗, 1], in which case the integrand is bounded by one.

Or n
n+p(n)

∈ (θ∗ − ε, θ∗); however, if n is large enough, (θ∗ − ε)n(1− θ∗ + ε)p(n) < θ∗n(1− θ∗)p(n), and
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the integrand is again bounded by one. If follows from Lebesgue’s dominated convergence theorem

that the integral on the r.h.s. of (A.7) converges to zero as n goes to infinity. From (A.6), we have

lim
n→∞

I(n, ε) = θ∗ − ε. From (A.5), it follows that for each ε > 0, there exists n(ε) such that for each

n ≥ n(ε), θ∗ ≥ Eπn(θ | θ < θ∗) > I(n, ε
2
) > θ∗ − ε

2
− ε

2
. Hence, to complete the proof, we must only

show that if lim
n→∞

Eπn(θ) = θ∗, then lim
n→∞

n
n+p(n)

= θ∗. Using exactly the same techniques as above,

one can show that if lim
n→∞

n
n+p(n)

= θ 6= θ∗, then lim
n→∞

Eπn(θ) = θ, a contradiction. 2

As an immediate consequence of Lemma 4, we obtain:

Lemma 5 If π0 has a continuous, full support density with respect to Lebesgue measure, then S? 6= ∅
and Prπ(S?) > 0 for each π ∈ Π(π0).

Proof: As π0 has a continuous, full support density on [0, 1], there exists a sequence (πn)n∈IN such

that Eπn(θ) ↓ θ∗. Since β < 1, it follows from Lemma 4 that there exists n0 ∈ IN such that

Eπn(θ) > θ∗ and [1 + δ(β − 1)] θ∗ < Eπn(θ | θ < θ∗) < θ∗ for each n ≥ n0. Now, suppose that S? = ∅.
Then, for any π ∈ Π(π0) such that Eπ(θ) ≥ θ∗, one must have Eπ(V (π∅(θ))) = Eπ(V (θ)) ≥ 0.

However, since for n ≥ n0, [1 + δ(β − 1)] θ∗ < Eπn(θ | θ < θ∗), one has Eπn(V (θ)) < V (Eπn(θ)) = 0,

a contradiction. It follows in particular that for all n ≥ n0, there is a belief π?
n ∈ S? that can be

reached in a finite number of sample from πn. Hence Prπ(S?) > 0 for each π ∈ Π(π0), as claimed. 2

By Lemma 3, it is easy to see that for each π ∈ S?, Eπ(θ) ≥ θ∗. The existence of a strategic

ignorance MPE follows then from the next lemma.

Lemma 6 S? is an MPE.

Proof: Suppose that all selves-t, t ≥ 1 follow the sampling strategy S?. Then, since by construction

S? is optimal from the perspective of self-0, a best response for self-0 is to play S? as well. Since S?

maximizes the continuation payoff of any self, it follows that S? is an MPE. 2

To complete the proof, we must show that there exists an infinite family of strategic ignorance

MPE. Note first that for any π ∈ S?, {π} is a strategic ignorance MPE, since each self prefers to stop

sampling at π and consistently abstain rather than to learn the true value of θ by infinite sampling.

Note however that the stopping region {π} cannot be reached with positive probability from all

posterior beliefs in Π(π0). However, using the same techniques as above, it is easily checked that by

removing from S? all the posterior distributions of beliefs that can be reached in less than a finite

and given number of samples, one obtains again a strategic ignorance MPE. 2

D. Proof of Proposition 2: Let S 6= ∅ be an MPE. It is obvious that for any π ∈ S, the expected

payoff for any self at π, i.e. 0, must be at least as large as the complete learning continuation payoff

Eπ(V (θ)), otherwise some self would have an incentive to deviate and learn the true value of θ. By

the law of total expectations, it follows that at any π ∈ Π(π0), the expected payoff to any self from

playing S is at least at large as his expected payoff from playing ∅. Next, for any MPE S 6= ∅, one

can show in exactly the same way as in the proof of Lemma 5 that there exists a π ∈ S such that

Eπ(θ | θ < θ∗) > [1 + δ(β − 1)] θ∗, so that Eπ(V (θ)) < V (Eπ(θ)) = 0 and the result follows. 2
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