
ar
X

iv
:1

60
5.

08
93

3v
1 

 [
st

at
.M

E
] 

 2
8 

M
ay

 2
01

6

Interaction Pursuit with Feature Screening and Selection

Yingying Fan, Yinfei Kong, Daoji Li and Jinchi Lv∗

May 31, 2016

Abstract

Understanding how features interact with each other is of paramount importance in

many scientific discoveries and contemporary applications. Yet interaction identification

becomes challenging even for a moderate number of covariates. In this paper, we suggest

an efficient and flexible procedure, called the interaction pursuit (IP), for interaction

identification in ultra-high dimensions. The suggested method first reduces the number

of interactions and main effects to a moderate scale by a new feature screening approach,

and then selects important interactions and main effects in the reduced feature space

using regularization methods. Compared to existing approaches, our method screens

interactions separately from main effects and thus can be more effective in interaction

screening. Under a fairly general framework, we establish that for both interactions

and main effects, the method enjoys the sure screening property in screening and oracle

inequalities in selection. Our method and theoretical results are supported by several

simulation and real data examples.
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1 Introduction

In many scientific discoveries, a fundamental question is how to identify important features

within or across sources that may interact with each other in order to achieve better un-

derstanding of the risk factors. For instance, there is growing evidence in genome-wide

association studies supporting the presence of interactions between different genes or sin-

gle nucleotide polymorphisms (SNPs) towards the risks of complex diseases (Cordell, 2009;

Musani et al., 2007; Schwender and Ickstadt, 2008; Xu et al., 2004). It has also been increas-

ingly recognized that the aetiology of most common diseases relates to not only genetic and

environmental factors, but also interactions between the genes and environment (Hunter,

2005). In these problems, ignoring interactions by considering main effects alone can lead

to an inaccurate estimate of the population attributable risk associated with these factors.

Identifying important interactions can also help improve model interpretability and predic-

tion.

Interaction identification with large-scale data sets poses great challenges since the num-

ber of pairwise interactions increases quadratically with the number of covariates p and that

of higher-order interactions grows even faster. In the low-dimensional setting, one may in-

clude all possible interactions in a model and find significant ones by multiple testing or

variable selection methods. This simple strategy, however, becomes impractical or even in-

feasible when p is moderate or large, owing to rapid increase in dimensionality incurred by

interactions. There is a growing literature developing regularization methods to identify

important interactions and main effects, with a focus on the low- or moderate-dimensional

setting. Most of existing methods are rooted on a natural structural condition in certain

applications, namely the strong or weak heredity assumption, and impose various constraints

on coefficients to enforce the heredity assumption. Specifically, the strong heredity assump-

tion requires that an interaction between two variables be included in the model only if both

main effects are important, while the weak one relaxes such a constraint to the presence

of at least one main effect being important. To name a few, Yuan et al. (2009) employed
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the non-negative garrote (Breiman, 1995) for structured variable selection and estimation by

imposing multiple inequality constraints on coefficients. Choi et al. (2010) reparameterized

the coefficients of interactions to enforce the strong heredity constraint and showed that the

resulting method enjoys the oracle property when p = o(n1/10), where n is the sample size.

Bien et al. (2013) extended the Lasso (Tibshirani, 1996) by adding a set of convex constraints

to enforce the strong or weak heredity constraint.

The aforementioned methods with delicate design on the interaction structure are effec-

tive in identifying important interactions when the number of covariates p is not large. In the

regime of ultra-high dimensionality, that is, p growing nonpolynomially with sample size n,

those methods may, however, become inefficient or even fail, because they need to deal with

complex penalty structures or multiple inequality constraints and thus the computational

cost can be excessively expensive. In addition, it is unclear whether the theoretical results

on variable selection for those methods can still hold when p is ultra high. To reduce the com-

putational cost, Hall and Xue (2014) proposed a two-step recursive approach rooted on the

strong heredity assumption to screen interactions based on the sure independence screening

(Fan and Lv, 2008). Hao and Zhang (2014) introduced a forward selection based procedure

to identify interactions in a greedy fashion under the heredity assumption and developed two

algorithms iFORT and iFORM. Hao et al. (2015) studied regularization methods based on

the Lasso for quadratic regression models under the heredity assumption and proposed a new

algorithm RAMP for interaction identification. Although the heredity assumption is desired

and natural in many applications, it can also be easily violated in some situations as doc-

umented in the literature. For example, Culverhouse et al. (2002) discussed the interaction

models displaying no main effects and examined the extent to which pure epistatic inter-

actions whose loci do not display any single-locus effects could account for the variation of

the phenotype. In the Nature review paper Cordell (2009), concerns were raised that many

existing methods may miss pure interactions in the absence of main effects. Efforts have

already been made on detecting pure epistatic interactions in Ritchie et al. (2001), where a

real data example was presented to demonstrate the existence of such pure interactions. In

these applications, methods that are released from the heredity constraint can enjoy better

flexibility and be more suitable for models with pure epistatic interactions.

To address the challenges of interaction identification in ultra-high dimensions and broader
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settings, we present our ideas by focusing on the linear interaction model

Y = β0 +

p∑

j=1

βjXj +

p−1∑

k=1

p∑

ℓ=k+1

γkℓXkXℓ + ε, (1)

where Y is the response variable, x = (X1, · · · ,Xp)T is a p-vector of covariates Xj ’s, β0

is the intercept, βj ’s and γkℓ’s are regression coefficients for main effects and interactions,

respectively, and ε is the mean zero random error independent of Xj’s. Denote by β0 =

(β0,j)1≤j≤p and γ0 = (γ0,kℓ)1≤k<ℓ≤p the true regression coefficient vectors for main effects

and interactions, respectively. To ease the presentation, throughout the paper XkXℓ is

referred to as an important interaction if its regression coefficient γ0,kℓ is nonzero, and Xk

is called an active interaction variable if there exists some 1 ≤ ℓ 6= k ≤ p such that XkXℓ

is an important interaction. Under the above model setting, we suggest a new approach,

called the interaction pursuit (IP), for interaction identification using the ideas of feature

screening and selection. The IP is a two-step procedure that first reduces the number of

interactions and main effects to a moderate scale by a new feature screening approach, and

then identifies important interactions and main effects in the reduced feature space, with

interactions reconstructed based on the retained interaction variables, using regularization

methods. A key innovation of IP is to screen interaction variables instead of interactions

directly and thus the computational cost can be reduced substantially from a factor of O(p2)

to O(p). Our interaction screening step shares a similar spirit to the SIRI proposed in

Jiang and Liu (2014) in the sense of detecting interactions by screening interaction variables.

An important difference, however, lies in that SIRI was proposed under the sliced inverse

index model and its theory relies heavily on the normality assumption.

The main contributions of this paper are threefold. First, the proposed procedure is

computationally efficient thanks to the idea of interaction variable screening. Second, we

provide theoretical justifications of the proposed procedure under mild interpretable condi-

tions. Third, our procedure can deal with more general model settings without requiring the

heredity or normality assumption, which provides more flexibility in applications. In partic-

ular, two key messages that we try to deliver in this paper are that a separate screening step

for interactions can significantly improve the screening performance if one aims at finding

important interactions, and screening interaction variables can be more effective and efficient
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than screening interactions directly due to the noise accumulation. We also would like to

emphasize that although we advocate a separate screening step for interactions, we have no

intension to downgrade the importance of main effect screening or even a joint screening of

main effects and interactions. In fact, our interaction screening idea can be coupled with

any main effect or joint screening procedure to boost the performance of feature screening

in interaction models.

The rest of the paper is organized as follows. Section 2 introduces a new feature screening

procedure for interaction models and investigates the theoretical properties of the proposed

screening procedure. We exploit the regularization methods to further select important inter-

actions and main effects and study the theoretical properties on variable selection in Section

3. Section 4 demonstrates the advantage of our proposed approach through simulation stud-

ies and a real data example. We discuss some implications and extensions of our method

in Section 5. The proofs of all the results and technical details as well as some additional

simulation studies are provided in the Supplementary Material.

2 Interaction screening

We begin with considering the problem of feature screening in interaction models with ultra-

high dimensions. Define three sets of indices

I = {(k, ℓ) : 1 ≤ k < ℓ ≤ p with γ0,kℓ 6= 0} ,

A = {1 ≤ k ≤ p : (k, ℓ) or (ℓ, k) ∈ I for some ℓ} , (2)

B = {1 ≤ j ≤ p : β0,j 6= 0} .

The set I contains all important interactions and the set A consists of all active interaction

variables, while the set B is comprised of all important main effects. We combine sets A and

B, and define the set of important features as M = A ∪ B. As demonstrated in Section B

of Supplementary Material, the sets A, I, and M are invariant under affine transformations

Xnew
j = bj(Xj − aj) with aj ∈ R and bj ∈ R \ {0} for 1 ≤ j ≤ p. We aim at recovering

interactions in I and variables in M and thus there is no issue of identifiability. ∗

∗We would like to thank a referee for helpful comments on the issue of invariance.
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2.1 A new interaction screening procedure

Without loss of generality, assume that EXj = 0 and EX2
j = 1 for each random covariate Xj.

To ensure model identifiability and interpretability, we impose the sparsity assumption that

only a small portion of the interaction and main effects are important with nonzero regression

coefficients γkℓ and βj in interaction model (1). Our goal is to effectively identify all important

interactions I and important features M, and efficiently estimate the regression coefficients

in (1) and predict the future response. Clearly, I is a subset of all pairwise interactions

constructed from variables in A. Thus, as mentioned before, to recover the set of important

interactions I we first aim at screening the interaction variables while retaining active ones

in set A.

Let us develop some insights into the problem of interaction screening by considering the

following specific case of interaction model (1):

Y = X1X2 + ε, (3)

where x is further assumed to be N(0,Σ) with covariance matrix Σ having diagonal entries

1 and off-diagonal entries −1 < ρ < 1. Simple calculations show that corr(Xj , Y ) = 0 for

each j. This entails that screening the main effects based on their marginal correlations with

the response can easily miss the active interaction variable X1. An interesting observation

is, however, that taking the squares of all variables leads to cov(X2
1 , Y

2) = 2 + 10ρ2 and

cov(X2
j , Y

2) = 4ρ2(1 + 2ρ) for each j ≥ 3, where the former is always larger than the

latter in absolute value regardless of the value of −1 < ρ < 1. Thus, the active interaction

variable X1 can be safely retained by ranking the marginal correlations between the squared

covariates and the squared response, that is, X2
j and Y 2. By symmetry, the same is true for

the other active interaction variable X2.

Model (3) is a specific model with only one interaction. The following proposition provides

justification for more general interaction models.

Proposition 1. In interaction model (1) with x ∼ N(0, Ip), it holds that for each j,

cov(X2
j , Y

2) = 2
(
β2
0,j +

j−1∑

k=1

γ20,kj +

p∑

ℓ=j+1

γ20,jℓ

)
. (4)
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Proposition 1 shows that for the specific case of Σ = Ip, the correlation between X2
j and

Y 2 is always nonzero as long as Xj is an active interaction variable, regardless of whether

or not Xj is an important main effect. In contrast, such a correlation becomes zero if Xj is

neither an important main effect nor an active interaction variable. In fact, it is seen from

(4) that cov(X2
j , Y

2) measures the cumulative effect of Xj as an important main effect or an

active interaction variable.

Motivated by the simple interaction model (3) and Proposition 1, we propose to iden-

tify the set of active interaction variables A by first ranking the marginal correlations

corr(X2
k , Y

2) in magnitude, and then retaining the top ones with absolute correlations

bounded from below by some positive threshold. This gives a new interaction screening pro-

cedure which is the first step of IP. More specifically, suppose we are given a sample (xi, yi)
n
i=1

of n independent and identically distributed (i.i.d.) observations from (x, Y ) in interaction

model (1). Observe that corr(X2
k , Y

2) = ωk/{var(Y 2)}1/2 with ωk = cov(X2
k , Y

2)/
{

var(X2
k)
}1/2

.

Denote by ω̂k the empirical version of the population quantity ωk by plugging in the corre-

sponding sample statistics, based on the sample (xi, yi)
n
i=1. Then the screening step of IP is

equivalent to thresholding the absolute values of ω̂k’s; that is, we estimate the set of active

interaction variables A as

Â = {1 ≤ k ≤ p : |ω̂k| ≥ τ} (5)

for some threshold τ > 0. The choice of threshold τ will be discussed later. Based on the

retained interaction variables in Â, we can construct all pairwise interactions as

Î =
{

(k, ℓ) : k, ℓ ∈ Â and k < ℓ
}
. (6)

It is worth mentioning that Î generally provides an overestimate of the set of important

interactions I, in the sense that some interactions in the constructed set Î may be unimpor-

tant ones. This is, however, not an issue for the purpose of interaction screening and will be

addressed later in the selection step of IP.

For completeness, we also briefly describe our procedure for main effect screening. We

adopt the SIS approach in Fan and Lv (2008) to screen unimportant main effects outside the
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set B; that is, we first calculate the marginal correlations corr(Xj , Y ) and then keep the ones

with magnitude at or above some positive threshold τ̃ . Since we have assumed EXj = 0 and

EX2
j = 1 for each covariate Xj, thresholding the marginal correlation between Xj and Y is

equivalent to thresholding ω∗
j = E(XjY ). Thus, we estimate the set B by

B̂ =
{

1 ≤ j ≤ p : |ω̂∗
j | ≥ τ̃

}
, (7)

where ω̂∗
j is the sample version of the population quantity ω∗

j and τ̃ > 0 is some threshold.

Finally the set of important features M can then be estimated as M̂ = Â ∪ B̂. Although

our approach for estimating the set B is the same as SIS, the theoretical developments on

the screening property for main effects are distinct from those in Fan and Lv (2008) due to

the presence of interactions in our model.

2.2 Sure screening property

We now turn our attention to the theoretical properties of the proposed screening procedure

in IP. It is desirable for a feature screening procedure to possess the sure screening property

(Fan and Lv, 2008), which means that all important variables are retained after screening

with probability tending to one. We aim at establishing such a property for IP in terms of

screening of both interactions and main effects. To this end, we need the following conditions.

Condition 1. There exist constants 0 ≤ ξ1, ξ2 < 1 such that s1 = |I| = O(nξ1) and

s2 = |B| = O(nξ2), and |β0|, ‖β0‖∞, ‖γ0‖∞ = O(1) with ‖·‖∞ denoting the vector L∞-norm.

Condition 2. There exist constants α1, α2, c1 > 0 such that for any t > 0, P (|Xj | > t) ≤
c1 exp(−c−1

1 tα1) for each 1 ≤ j ≤ p and P (|ε| > t) ≤ c1 exp(−c−1
1 tα2), and var(X2

j ) are

uniformly bounded away from zero.

Condition 3. There exist some constants 0 ≤ κ1, κ2 < 1/2 and c2 > 0 such that mink∈A |ωk|
≥ 2c2n

−κ1 and minj∈B |ω∗
j | ≥ 2c2n

−κ2
.

Condition 1 allows the numbers of important interactions and important main effects to

grow with the sample size n, and imposes an upper bound on the magnitude of true regression

coefficients. See, for example, Cho and Fryzlewicz (2012) and Hao and Zhang (2014) for
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similar assumptions. Clearly, Condition 1 entails that the number of active interaction

variables is at most 2s1, that is, |A| ≤ 2s1.

The first part of Condition 2 is a usual assumption to control the tail behavior of the

covariates and error, which is important for ensuring the sure screening property of our

procedure. Similar assumptions have been made in such work as Fan and Song (2010),

Chang et al. (2013), and Barut et al. (2016). The scenario of α1 = α2 = 2 corresponds to

the case of sub-Gaussian covariates and error, including distributions with bounded support

and light tails.

Condition 3 puts constraints on the minimum marginal correlations, through different

forms, for active interaction variables and important main effects, respectively. It is analo-

gous to Condition 3 in Fan and Lv (2008), and can be understood as an assumption on the

minimum signal strength in the feature screening setting. Smaller constants κ1 and κ2 corre-

spond to stronger marginal signals. This condition is crucial for ensuring that the marginal

utilities carry enough information about the active interaction variables and important main

effects. To gain more insights into Condition 3, consider the specific case of x ∼ N(0, Ip).

Note that var(X2
k) are uniformly bounded by Condition 2. Then it follows from Proposition

1 that the constraint of mink∈A |ωk| ≥ 2c2n
−κ1 in Condition 3 is equivalent to that of

min
k∈A

(
β2
0,k +

k−1∑

j=1

γ20,jk +

p∑

ℓ=k+1

γ20,kℓ

)
≥ cn−κ1 ,

where c is some positive constant which may be different from c2. Thus Condition 3 can be

understood as constraints imposed indirectly on the true nonzero regression coefficients.

Under these conditions, the following theorem shows that the sample estimates of the

marginal utilities are sufficiently close to the population ones with significant probability,

and establishes the sure screening property for both interaction and main effect screening.

Theorem 1. (a) Under Conditions 1–2, if 0 ≤ max{2κ1 + 4ξ1, 2κ1 + 4ξ2} < 1 and E(Y 4) =

O(1), then for any C > 0, there exists some constant C1 > 0 depending on C such that for

log p = o(nα1η) with η = min{(1 − 2κ1 − 4ξ2)/(8 + α1), (1 − 2κ1 − 4ξ1)/(12 + α1)},

P ( max
1≤k≤p

|ω̂k − ωk| ≥ Cn−κ1) = o(n−C1). (8)
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(b) Under Conditions 1–2, if 0 ≤ max{2κ2 +2ξ1, 2κ2 +2ξ2} < 1 and E(Y 2) = O(1), then

for any C > 0, there exists some constant C2 > 0 depending on C such that

P ( max
1≤j≤p

|ω̂∗
j − ω∗

j | ≥ Cn−κ2) = o(n−C2) (9)

for log p = o(nα1η′) with η′ = min{(1 − 2κ2 − 2ξ2)/(4 + α1), (1 − 2κ2 − 2ξ1)/(6 + α1)}.
(c) Under Conditions 1–3 and the choices of τ = c2n

−κ1 and τ̃ = c2n
−κ2, if 0 ≤ ξ1, ξ2 <

min{1/4 − κ1/2, 1/2 − κ2} and E(Y 4) = O(1), then we have

P
(
I ⊂ Î and M ⊂ M̂

)
= 1 − o

(
n−min{C1,C2}

)
(10)

for log p = o(nα1 min{η,η′}) with constants C1 and C2 given in (8) and (9), respectively. In

addition, it holds that

P
(
|Î| ≤ O{n4κ1λ2

max(Σ∗)} and |M̂| ≤ O{n2κ1λmax(Σ∗) + n2κ2λmax(Σ)}
)

= 1 − o
(
n−min{C1,C2}

)
, (11)

where λmax(·) denotes the largest eigenvalue, Σ = cov(x), and Σ∗ = cov(x∗) for x∗ =

(X∗
1 , · · · ,X∗

p )T with X∗
k = (X2

k − EX2
k)/{var(X2

k)}1/2.

Comparing the results from the first two parts of Theorem 1 on interactions and main

effects, respectively, we see that interaction screening generally requires more restrictive

assumption on dimensionality p. This reflects that the task of interaction screening is intrin-

sically more challenging than that of main effect screening. In particular, when α1 = 2, IP

can handle ultra-high dimensionality up to

log p = o
(
nmin{(1−2κ1−4ξ2)/5, (1−2κ1−4ξ1)/7, (1−2κ2−2ξ2)/3, (1−2κ2−2ξ1)/4}

)
. (12)

It is worth mentioning that both constants C1 and C2 in the probability bounds (8)–(9) can

be chosen arbitrarily large without affecting the order of p and ranges of constants κ1 and

κ2. We also observe that stronger marginal signal strength for interaction variables and main

effects, in terms of smaller values of κ1 and κ2, can enable us to tackle higher dimensionality.

The third part of Theorem 1 shows that IP enjoys the sure screening property for both
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interaction and main effect screening, and admits an explicit bound on the size of the

reduced model after screening. More specifically, an upper bound of the reduced model

size is controlled by the choices of both thresholds τ and τ̃ , and the largest eigenvalues of

the two population covariance matrices Σ∗ and Σ. If we assume λmax(Σ∗) = O(nξ3) and

λmax(Σ) = O(nξ4) for some constants ξ3, ξ4 ≥ 0, then with overwhelming probability the

total number of interactions and main effects in the reduced model is at most of a polynomial

order of sample size n.

The thresholds τ = c2n
−κ1 and τ̃ = c2n

−κ2 given in Theorem 1 depend on unknown

constants c2, κ1, and κ2, and thus are unavailable in practice. In real applications, to estimate

the set of active interaction variables A, we sort |ω̂k|, 1 ≤ k ≤ p, in decreasing order and then

retain the top d variables. This strategy is also widely used in the existing literature; see, for

example, Fan and Lv (2008), Li et al. (2012), He et al. (2013), Shao and Zhang (2014), and

Cui et al. (2015). The set of main effects B is estimated similarly except that the marginal

utility |ω̂∗
k| is used. Following the suggestion in Fan and Lv (2008), one may choose the

number of retained variables for each of sets A and B in a screening procedure as n − 1 or

[cn/(log n)] with c some positive constant, depending on the available sample size n. The

parameter c can be tuned using some data-driven method such as the cross-validation.

It is worth pointing out that our result is weaker than that in Fan and Lv (2008) in

terms of growth of dimensionality, where one can allow log p = o(n1−2κ2). This is mainly

because they considered linear models without interactions, indicating the intrinsic chal-

lenges of feature screening in the presence of interactions. Moreover, our assumptions on the

distributions for the covariates and errors are more flexible.

The results in Theorem 1 can be improved in the case when the covariates Xj ’s and the

response Y are uniformly bounded. An application of the proofs for (8)–(9) in Section D of

Supplementary Material yields

P
(

max
1≤k≤p

|ω̂k − ωk| ≥ c2n
−κ1

)
≤ pC3 exp(−C−1

3 n1−2κ1),

P
(

max
1≤j≤p

|ω̂∗
j − ω∗

j | ≥ c2n
−κ2

)
≤ pC3 exp(−C−1

3 n1−2κ2),

where C3 is some positive constant. In this case, IP can handle ultra-high dimensionality

log p = o(nξ) with ξ = min{1 − 2κ1, 1 − 2κ2}.
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3 Interaction selection

3.1 Interaction models in reduced feature space

We now focus on the problem of interaction and main effect selection in the reduced feature

space identified by the screening step of IP. To ease the presentation, we rewrite interaction

model (1) in the matrix form

y = β01 + X̃θ + ε, (13)

where y = (y1, · · · , yn)T is the response vector, θ = (θ1, · · · , θp̃)T is a parameter vector

consisting of p̃ = p(p + 1)/2 regression coefficients βj and γkℓ, X̃ is the corresponding n× p̃

augmented design matrix incorporating the covariate vectors for Xj ’s and their interactions in

columns, and ε is the error vector. Hereafter, for the simplicity of presentation and theoretical

derivations, we slightly abuse the notation and still use y and X̃ to denote the de-meaned

response and column de-meaned design matrix, respectively, which leads to β0 = 0. Denote

by Â = {k1, · · · , kp1} and B̂ = {j1, · · · , jp2} the sets of retained interaction variables and

main effects, respectively, and H a subset of {1, · · · , p̃} given by the features in M̂ = Â ∪ B̂
and constructed interactions in Î based on Â as defined in (6). To estimate the true value

θ0 = (θ0,1, · · · , θ0,p̃)T of the parameter vector θ, we can consider the reduced feature space

spanned by the q = 2−1p1(p1−1) +p3 columns of the augmented design matrix X̃ in H with

p3 the cardinality of M̂, thanks to the sure screening property of IP shown in Theorem 1.

When the model dimensionality is reduced to a moderate scale q, one can apply any fa-

vorite variable selection procedure for effective selection of important interactions and main

effects and efficient estimation of their effects. There is a large literature on the developments

of various variable selection methods. Among all approaches, two classes of regularization

methods, the convex ones (e.g., Candes and Tao (2007); Tibshirani (1996); Zou (2006)) and

the concave ones (e.g., Fan and Li (2001); Lv and Fan (2009); Zhang (2010)), have been

extensively investigated. To combine the strengths of both classes, Fan and Lv (2014) in-

troduced the combined L1 and concave regularization method. Such an approach can be

understood as a coordinated intrinsic two-scale learning, in the sense that the Lasso com-

ponent plays the screening role, in terms of reducing the complexity of intrinsic parameter

12



space, whereas the concave component plays the selection role, in terms of refined estimation.

Following Fan and Lv (2014), we consider the following combined L1 and concave regu-

larization problem

min
θ∈Rp̃,θHc=0

{
(2n)−1‖y− X̃θ‖22 + λ0‖θ∗‖1 + ‖pλ(θ∗)‖1

}
, (14)

where θHc denotes a subvector of θ given by components in the complement Hc of the re-

duced set H, λ0 ≥ 0 is the regularization parameter for the L1-penalty, pλ(θ∗) = pλ(|θ∗|) =

(pλ(|θ∗1 |), . . . , pλ(|θ∗p̃|))T with θ∗ = (θ∗1, . . . , θ
∗
p̃)T , and pλ(t) is an increasing concave penalty

function on [0,∞) indexed by regularization parameter λ ≥ 0. Here, θ∗ = Dθ = n−1/2(‖x̃1‖2θ1,
· · · , ‖x̃p̃‖2θp̃)T is the coefficient vector corresponding to the design matrix with each column

rescaled to have L2-norm n1/2, where X̃ = (x̃1, · · · , x̃p̃) and D = diag{D11, · · · ,Dp̃p̃} with

Dmm = n−1/2‖x̃m‖2, m = 1, · · · , p̃, is the scale matrix. The computational cost of solv-

ing the regularization problem (14) in q dimensions after screening from ultra-high scale to

moderate scale is substantially reduced compared to that of solving the same problem in p̃

dimensions without screening. Moreover, important theoretical challenges arise in investigat-

ing the asymptotic properties of the resulting regularized estimator for IP. Fan and Lv (2014)

considered linear models with deterministic design matrix and no interactions, whereas we

now need to study the interaction model with random design matrix. The presence of both

interactions and additional randomness requires more delicate analyses.

We remark that although the combined L1 and concave penalty is used in (14), one can

in fact use any favorite variable selection method in the selection step of IP. In particular,

note that (14) does not automatically enforce the heredity constraint. If one believes in such

constraint, other penalties, such as the ones in Yuan et al. (2009), Choi et al. (2010), and

Bien et al. (2013), can be used in the selection step of IP to achieve this goal. As specified

in the Introduction, one major goal of our paper is to provide a methodological framework

such that effective and efficient interaction screening can be conducted. So the penalty in

(14) is just for demonstration purpose.
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3.2 Asymptotic properties of interaction and main effect selection

Before presenting the theoretical results, we state some mild regularity conditions that

are needed in our analysis. Without loss of generality, assume that the first s = ‖θ0‖0
components of the true regression coefficient vector θ0 in (13) are nonzero. Through-

out the paper, the regularization parameter for the L1 component is fixed to be λ0 =

c̃0{(log p)/nα1α2/(α1+2α2)}1/2 with c̃0 some positive constant. Some insights into this choice

of λ0 will be provided later. Denote by pH,λ(t) = 2−1{λ2 − (λ − t)2+}, t ≥ 0, the hard-

thresholding penalty, where (·)+ denotes the positive part of a number.

Condition 4. There exist some constants κ0, κ, L1, L2 > 0 such that with probability 1− an

satisfying an = o(1), it holds that min‖δ‖2=1, ‖δ‖0<2s n
−1/2‖X̃δ‖2 ≥ κ0,

min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

{
n−1/2‖X̃δ‖2/(‖δ1‖2 ∨ ‖δ̃2‖2)

}
≥ κ

for δ = (δT1 , δ
T
2 )T ∈ R

p̃ with δ1 ∈ R
s and δ̃2 a subvector of δ2 consisting of the s largest

components in magnitude, and Dmm’s are bounded between L1 ≤ L2.

Condition 5. The concave penalty satisfies that pλ(t) ≥ pH,λ(t) on [0, λ], p′λ{(1 − c3)λ} ≤
min{λ0/4, c3λ} for some constant c3 ∈ [0, 1), and −p′′λ(t) is decreasing on [0, (1 − c3)λ].

Moreover, min1≤j≤s |θ0,j| > L−1
1 max{(1 − c3)λ, 2L2κ

−1
0 p

1/2
λ (∞)} with pλ(∞) = lim

t→∞
pλ(t).

Condition 4 is similar to Condition 1 in Fan and Lv (2014) for the case of deterministic

design matrix, except that the design matrix is now random in our setting and also aug-

mented with interactions. We provide in Section 3.3 some sufficient conditions ensuring that

Condition 4 holds. Condition 5 puts some basic constraints on the concave penalty pλ(t)

as in Fan and Lv (2014). Under these regularity conditions, the following theorem presents

the selection properties of the IP estimator θ̂ = (θ̂1, · · · , θ̂p̃)T including an explicit bound on

the number of falsely discovered signs FS(θ̂) = |{1 ≤ m ≤ p̃ : sgn(θ̂m) 6= sgn(θ0,m)}|, which

provides a stronger measure on variable selection than the total number of false positives

and false negatives.

Theorem 2. Assume that the conditions of part c) of Theorem 1 and Conditions 4–5 hold,

log p = o{nα1α2/(α1+2α2)} with α1α2/(α1 + 2α2) ≤ 1, and pλ(t) is continuously differentiable.
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Then the global minimizer θ̂ of (14) has the hard-thresholding property that each component

is either zero or of magnitude larger than (1 − c3)λ, and with probability at least 1 − an −
o(n−min{C1,C2} + p−c4), it satisfies simultaneously that

n−1/2
∥∥∥X̃(θ̂ − θ0)

∥∥∥
2

= O(κ−1λ0s
1/2),

∥∥∥θ̂ − θ0

∥∥∥
d

= O(κ−2λ0s
1/d), d ∈ [1, 2],

FS(θ̂) = O
{
κ−4(λ0/λ)2s

}
,

and furthermore sgn(θ̂) = sgn(θ0) if λ ≥ 56(1 − c3)−1κ−2λ0s
1/2, where c4 is some positive

constant. Moreover, the same results hold with probability at least 1 − an − o(p−c4) for the

regularized estimator θ̂ without prescreening, that is, without the constraint θHc = 0 in (14).

The results in Theorem 2 also apply to the regularized estimator with p1 = p2 = p and

q = p̃ = p(p + 1)/2, that is, without any screening of variables. Theorem 2 shows that

if the tuning parameter λ satisfies λ0/λ → 0, then the number of falsely discovered signs

FS(θ̂) is of order o(s) and thus the false sign rate FS(θ̂)/s is asymptotically vanishing with

probability tending to one. We also observe that the bounds for prediction and estimation

losses are independent of the tuning parameter λ for the concave penalty.

As shown in Theorem 2, the regularization parameter for the L1 component λ0 =

c̃0{(log p)/nα1α2/(α1+2α2)}1/2 plays a crucial role in characterizing the rates of convergence

for the regularized estimator θ̂. Such a parameter basically measures the maximum noise

level in interaction models. In particular, the exponent α1α2/(α1 + 2α2) is a key parameter

that reflects the level of difficulty in the problem of interaction selection. This quantity is

determined by three sources of heavy-tailedness: covariates themselves, their interactions,

and the error. To simplify the technical presentation, in this paper we have focused on

the more challenging case of α1α2/(α1 + 2α2) ≤ 1. Such a scenario includes two specific

cases: 1) sub-Gaussian covariates and sub-Gaussian error, that is, α1 = α2 = 2 and 2) sub-

Gaussian covariates and sub-exponential error, that is, α1 = 2, α2 = 1. We remark that in

the lighter-tailed case of α1α2/(α1 + 2α2) > 1, one can simply set λ0 = c̃0{(log p)/n}1/2 and

the results in Theorem 2 can still hold for this choice of λ0 by resorting to Lemma 6 and

similar arguments in the proof of Theorem 2.
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3.3 Verification of Condition 4

Since Condition 4 is a key assumption for proving Theorem 2, we provide some suffi-

cient conditions that ensures this assumption on the augmented random design matrix

X̃ = (x̃1, · · · , x̃p̃). Denote by Σ̃ the population covariance matrix of the augmented co-

variate vector consisting of p main effects Xj’s and p(p− 1)/2 interactions XkXℓ’s.

Condition 6. There exists some constant K > 0 such that for δ = (δT1 , δ
T
2 )T ∈ R

p̃,

min
‖δ‖2=1, ‖δ‖0<2s

δT Σ̃δ ≥ K and min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

δT Σ̃δ/
(
‖δ1‖2 ∨ ‖δ̃2‖2

)
≥ K,

where δ1 ∈ R
s and δ̃2 is a subvector of δ2 consisting of the s largest components in magnitude.

Condition 6 is satisfied if the smallest eigenvalue of Σ̃ is assumed to be bounded away

from zero. Such a condition is in fact much weaker than the minimum eigenvalue assumption,

since it is the population version of a mild sparse eigenvalue assumption and the restricted

eigenvalue assumption. The following theorem shows that under some mild assumptions,

Condition 4 holds for the full augmented design matrix X̃ and thus holds naturally for any

n× q sub-design matrix with q ≤ p̃ and the sure screening property.

Theorem 3. Assume that Condition 6 holds, there exist some constants α1, c1 > 0 such

that for any t > 0, P (|Xj | > t) ≤ c1 exp(−c−1
1 tα1) for each j, s = O(nξ0), and log p =

o(nmin{α1/4, 1}−2ξ0) with constant 0 ≤ ξ0 < min{α1/8, 1/2}. Then Condition 4 holds with

nmin{α1/4, 1}−2ξ0 = O(− log an).

4 Numerical studies

In this section, we design two simulation examples to verify the theoretical results and

examine the finite-sample performance of the suggested approach IP. We also present an

analysis of a prostate cancer data set.

4.1 Feature screening performance

We start with comparing IP with several recent feature screening procedures: the SIS, DC-

SIS (Li et al., 2012), and SIRI (Jiang and Liu, 2014). The SIRI is an iterative procedure
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that alternates between a large-scale variable screening step and a moderate-scale variable

selection step when the dimensionality p is large. Since all other screening methods are non-

iterative, in this section, we compare the initial screening step of SIRI with other methods

and name the screening only procedure as SIRI*. The full iterative SIRI will be included in

Section 4.2 later for comparison of variable selection. SIRI*, SIS, and DC-SIS each return a

set of variables without distinguishing between important main effects and active interaction

variables. Thus, for each method, we construct interactions using all possible pairwise inter-

actions of the recruited variables. By doing so, the strong heredity assumption is enforced.

We name the resulting procedures as SIRI*2, SIS2, and DC-SIS2 to distinguish them from

their original versions.

For IP, as mentioned in Section 2.2, we retain the top [n/(log n)] variables in each of sets

Â and B̂ defined in (5) and (7), respectively. The features in the union set M̂ = Â ∪ B̂ are

used as main effects while variables in set Â are used to build interactions in the selection

step of IP. To ensure a fair comparison, the numbers of variables kept in SIRI*2, SIS2, and

DC-SIS2 are all equal to the cardinality of M̂, which is up to 2[n/(log n)].

Example 1 (Gaussian distribution). We consider the following four interaction models

linking the covariates Xj ’s to the response Y :

• M1 (strong heredity): Y = 2X1 + 2X5 + 3X1X5 + ε1,

• M2 (weak heredity): Y = 2X1 + 2X10 + 3X1X5 + ε2,

• M3 (anti-heredity): Y = 2X10 + 2X15 + 3X1X5 + ε3,

• M4 (interactions only): Y = 3X1X5 + 3X10X15 + ε4,

where the covariate vector x = (X1, · · · ,Xp)T ∼ N(0,Σ) with Σ = (ρ|j−k|)1≤j,k≤p and the

errors ε1 ∼ N(0, 2.52), ε2 ∼ N(0, 22), ε3 ∼ N(0, 22), and ε4 ∼ N(0, 1.52) are independent of

x. The first two models M1 and M2 satisfy the heredity assumption (either strong or weak),

while the last two M3 and M4 do not obey such an assumption. Different levels of error

variance are considered since the difficulty of feature screening varies across the four models.

A sample of n i.i.d. observations was generated from each of the four models. We further

considered four different settings of (n, p, ρ) = (200, 2000, 0), (200, 2000, 0.5), (300, 5000, 0),

and (300, 5000, 0.5), and repeated each experiment 100 times.
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[Table 1 about here.]

Table 1 lists the comparison results for all screening methods in recovering each impor-

tant interaction or main effect, and retaining all important ones. For model M1 satisfying

the strong heredity assumption, all procedures performed rather similarly and all retaining

percentages were either equal or close to 100%. Both DC-SIS2 and IP performed similarly

and improved over SIS2 and SIRI*2 in model M2 in which the weak heredity assumption

holds. In models M3 and M4, IP significantly outperformed all other methods in detecting

interactions across all four settings, showing its advantage when the heredity assumption is

not satisfied. We also observe that SIS2 failed to detect interactions, whereas SIRI*2 im-

proved over DC-SIS2 in these two models. These results suggest that a separate screening

step should be designed specifically for interactions to improve the screening accuracy, which

is indeed one of the main innovations of IP.

Example 2 (Non-Gaussian distribution). The second example adopts the same four

models as in Example 1, but with different distributions for the covariates Xj ’s and error ε.

We added an independently generated random variable Uj to each covariate Xj as given in

Example 1 to obtain new covariates, where Uj’s are i.i.d. and follow the uniform distribution

on [−0.5, 0.5]. The errors ε1 ∼ t(3), ε2 ∼ t(4), ε3 ∼ t(4), and ε4 ∼ t(8) are independent of x.

[Table 2 about here.]

The screening results of all the methods are summarized in Table 2. Similarly as in

Example 1, IP outperformed SIS2 in interaction screening. When the heredity assumption is

satisfied, IP performed comparably to DC-SIS2. In particular, both approaches were better

than SIS2 and SIRI*2 when the weak heredity assumption is satisfied. The improvement

of IP over all other methods in detecting interactions became substantial when the heredity

assumption is violated.

We also calculated the overall signal-to-noise ratio (SNR) and the individual SNR for

each model, where the former is defined as var(x̃Tθ)/var(ε) with x̃ the augmented covariate

vector defined in Section 3.1, ε the error term and θ given in model (13), and the latter

is defined similarly by replacing var(x̃Tθ) with the variance of each individual term. The

overall and individual SNRs for the models considered in both Examples 1 and 2 are listed
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in Table 3. In particular, we see that although the overall SNRs are at decent levels, the

individual ones are weaker, reflecting the general difficulty of retaining all important features

for screening.

[Table 3 about here.]

4.2 Variable selection performance

We further assess the variable selection performance of IP. For all screening methods but

SIRI*2, with each data set generated in Examples 1 and 2, we can employ regularization

methods such as the Lasso and the combined L1 and concave method to select important

interactions and main effects after the screening step. As shown in Fan and Lv (2014), dif-

ferent choices of the concave penalty gave rise to similar performance. We thus implemented

the combined L1 and SICA (L1+SICA) for simplicity. The approach of SIS2 followed by

Lasso is referred to as SIS2-Lasso for short. All other combinations of screening and selection

methods are defined similarly. We also paired up the hierNet (Bien et al., 2013) with the IP

for interaction identification. For SIRI, we used the full iterative procedure as described in

Jiang and Liu (2014). Since SIRI only returns a set of important variables, we added an addi-

tional refitting step using the selected variables to calculate model performance measures. We

also included additional competitor methods iFORT and iFORM in Hao and Zhang (2014)

and RAMP in Hao et al. (2015) in our simulation studies. The oracle procedure based on

the true underlying interaction model was used as a reference point for comparisons. The

cross-validation (CV) was used to select tuning parameters for all the methods, except that

the BIC was applied to L1+SICA related procedures for computational efficiency since two

regularization parameters are involved.

To evaluate the variable selection performance of each method, we employed three per-

formance measures. The first one is the prediction error (PE), which was calculated using an

independent test sample of size 10,000. The second and third measures are the numbers of

false positives (FP) and false negatives (FN), which are defined as the numbers of included

noise variables and missed important variables in the final model, respectively.

[Tables 4 and 5 about here.]
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Table 4 presents the medians and robust standard deviations (RSD) of these measures

based on 100 simulations for different models in Example 1. The RSD is defined as the

interquartile range (IQR) divided by 1.34. We used the median and RSD instead of the

mean and standard deviation since these robust measures are better suited to summarize the

results due to the existence of outliers. When the strong heredity assumption holds (model

M1), both DC-SIS2-L1+SICA and IP-L1+SICA followed closely the oracle procedure, and

outperformed the other methods in terms of PE, FP, and FN across all four settings. In

model M2 with the weak heredity assumption, variable selection methods based on both

DC-SIS2 and IP performed fairly well. In the cases when the heredity assumption does

not hold (models M3 and M4), the IP-L1+SICA still mimicked the oracle procedure and

uniformly outperformed the other methods over all settings. The inflated RSDs, relative to

medians, in model M4 were due to the relatively low sure screening probabilities (see Tables

1 and 2). When the sure screening probability is low, a nonnegligible number of replications

can have nonzero false negatives, which inflated the corresponding prediction errors. The

comparison results of variable selection for Example 2 are summarized in Table 5. The

conclusions are similar to those for Example 1.

4.3 Real data analysis

In addition, we illustrate our procedure IP through an analysis of the prostate cancer

data studied originally in Singh et al. (2002) and analyzed also in Fan and Fan (2008) and

Hall and Xue (2014). This data set, which is available at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

contains 136 samples with 77 from the tumor group and 59 from the normal group, each of

which records the expression levels measured for 12, 600 genes. Hall and Xue (2014) applied

a four-step procedure to preprocess the data. Their procedure includes the truncation of

intensities to make them positive, the removal of genes having little variation in intensity,

the transformation of intensities to base 10 logarithms, and the standardization of each data

vector to have zero mean and unit variance. An application of the four-step procedure results

in a total of p = 3, 239 genes.

We treated the disease status as the response and the resulting 3, 239 genes as covariates.

The data set was randomly split into a training set and a test set. Each training set consists

of 69 samples from the tumor group and 53 samples from the normal group, and the test
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set is formed by the remaining samples. For each split, we applied the screening method IP

to the training data and retained the top d = [cn/(log n)] = [25.4c] genes in each of sets Â
and B̂ with c chosen from the grid {0.5, 1, 2}. For SIS2 and DC-SIS2, we retained the top

|M̂| = |Â∪ B̂| variables in the screening step. Because of the limited sample size, to increase

the stability we constructed interactions in a more conservative way by using variables in

set M̂ instead of only Â to build interactions in the selection step of IP. In addition, to

overcome the difficulty caused by potential high collinearity, in our real data analysis we

used the elastic net penalty introduced in Zou and Hastie (2005). We then tuned c in terms

of minimizing the classification error calculated using the test data. We also repeated the

random split 100 times.

[Table 6 about here.]

Three competing methods SIS2-Enet, DC-SIS2-Enet, and IP-Enet were considered, where

SIS2-Enet denotes the approach of SIS2 followed by the elastic net, and the latter two meth-

ods are defined similarly. Since the same penalty is used for the step of variable selection,

the difference in performance should come mainly from the screening step. Table 6 summa-

rizes the classification results and median model sizes for each method. We observe that the

approach of IP-Enet yielded lower classification errors. Paired t-tests of classification errors

on the 100 splits of IP-Enet against SIS2-Enet and DC-SIS2-Enet gave p-values 4.95× 10−10

and 1.62 × 10−8, respectively. These results show that our proposed method outperformed

significantly SIS2-Enet and DC-SIS2-Enet in classification error.

[Table 7 about here.]

We also present in Table 7 the top 10 interactions and top 10 main effects that were most

frequently selected over 100 splits. We see from Table 7 that a set of genes, such as SERINC5,

HPN, HSPD1, LMO3, and TARP, were selected by all methods as main effects, revealing

that those genes may play a significant role in the etiology of prostate cancer. For example,

Holt et al. (2010) claimed Hepsin (HPN) as one of the most consistently overexpressed genes

in prostate cancer. In addition, evidence of the association between TARP gene variants

and prostate cancer risk has been shown in Wolfgang et al. (2000), Oh et al. (2004), and
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Hillerdal et al. (2012). Note that the gene ERG was missed by both SIS2-Enet and DC-

SIS2-Enet in the top 10 main effects, but it was selected by IP-Enet as a main effect and

part of an interaction (SLC7A1×ERG). There are a wide range of studies investigating the

effect of ERG on prostate cancer (Furusato et al., 2010; Klezovitch et al., 2008).

The most frequently selected interaction DPT×S100A4 by SIS2-Enet and DC-SIS2-Enet

is also among the top 10 list by IP-Enet. Two more interactions, RARRES2×KLK3 and

MAF×NELL2, are also among the top 10 lists by both IP-Enet and SIS2-Enet. However,

some interactions involving PRKDC (PRKDC×CFD and PRKDC×KLK3) were very often

selected by IP-Enet but missed by the other two methods. There are studies showing that

PRKDC is associated with prostate cancer (McCarthy et al., 2013). Such a finding favors

the results of IP that the interactions PRKDC×CFD and PRKDC×KLK3 were identified

to be associated with the phenotype.

5 Discussion

We have considered in this paper the problem of interaction identification in ultra-high di-

mensions. The proposed method IP based on a new interaction screening procedure and

post-screening variable selection is computationally efficient, and capable of reducing dimen-

sionality from a large scale to a moderate one and recovering important interactions and

main effects. To simplify the technical presentation, our analysis has been focused on the

linear pairwise interaction models. Screening for main effects in more general model settings

has been explored by many researchers; see, for example, Fan and Song (2010), Fan et al.

(2011), Chang et al. (2013), and Cheng et al. (2014). It would be interesting to extend the

interaction screening idea of IP to these and other more general model frameworks such as

the generalized linear models, nonparametric models, and survival models with interactions.

The key idea of IP is to use different marginal utilities to screen interactions and main

effects separately. As such, it can suffer from the same potential issues as the SIS. First,

some noise interactions or main effects that are highly correlated with the important ones

can have higher marginal utilities and thus priority to be selected than other important ones

that are relatively weakly related to the response. Second, some important interactions or

main effects that are jointly correlated but marginally uncorrelated with the response can
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be missed after screening. To address these issues, we next briefly discuss two extensions of

IP that enable us to exploit more fully the joint information among the covariates.

Our first extension of IP, the iterative IP (IIP), is motivated by the idea of two-scale

learning with the iterative SIS (ISIS) in Fan and Lv (2008) and Fan et al. (2009). The IIP

works as follows by applying large-scale screening and moderate-scale selection in an iterative

fashion. First, apply IP to the original sample (xi, yi)
n
i=1 to obtain two sets Î1 of interactions

and B̂1 of main effects, and construct a set Â1 of interaction variables based on Î1 as in (2).

Second, update the sets of candidate interaction variables as {1, · · · , p} \ Â1 and candidate

main effects as {1, · · · , p} \ B̂1, treat the residual vector from the previous iteration as the

new response, and apply IP to the updated sample to obtain new sets Î2, B̂2, and Â2 defined

similarly as before. Third, iteratively update the feature space for candidate interaction

variables and main effects and the response, and apply IP to the updated sample to similarly

obtain sequences of sets (Îk), (B̂k), and (Âk), until the total number of selected interactions

and main effects in sets Îk’s and B̂k’s reaches a prespecified threshold. Fourth, finally select

important interactions and main effects using a regularization method in the reduced feature

space given by the union of Îk’s and B̂k’s.

The second extension of IP, the conditional IP (CIP), exploits the idea of the conditional

SIS (CSIS) in Barut et al. (2016), which replaces the simple marginal correlation with the

conditional marginal correlation to assess the importance of covariates when some variables

are known in advance to be important. Suppose we have some prior knowledge that two given

sets A0, B0 ⊂ {1, · · · , p} contain some active interaction variables and important main effects,

respectively. For interaction screening, the CIP regresses the squared response Y 2 on each

squared covariate X2
k with k outside A0 by conditioning on (X2

ℓ )ℓ∈A0
, and retains top ones in

the conditional marginal utilities as interaction variables. Similarly, in main effect screening

it employs marginal regression of the response Y on each covariate Xk with k outside B0

conditional on (Xℓ)ℓ∈B0
. After screening, CIP further selects important interactions and

main effects using a variable selection procedure in the reduced feature space. The approach

of CIP can also be incorporated into IIP by conditioning on selected variables in previous

steps when calculating the marginal utilities along the course of iteration.

The investigation of these extensions is beyond the scope of the current paper and will

be interesting topics for future research.
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Table 1: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods over different models and settings in
Example 1.

Method M1 M2 M3 M4

X1 X5 X1X5 All X1 X10 X1X5 All X10 X15 X1X5 All X1X5 X10X15 All

Setting 1: (n, p, ρ) = (200, 2000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.09 1.00 1.00 0.02 0.02 0.02 0.02 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.88 1.00 1.00 0.04 0.04 0.15 0.16 0.03
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 1.00 0.13 0.13 0.34 0.29 0.13
IP 1.00 1.00 0.97 0.97 1.00 1.00 0.88 0.88 1.00 1.00 0.93 0.93 0.80 0.79 0.59

Setting 2: (n, p, ρ) = (200, 2000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.15 0.15 1.00 1.00 0.01 0.01 0.01 0.04 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.85 1.00 1.00 0.03 0.03 0.14 0.11 0.03
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.62 1.00 1.00 0.09 0.09 0.36 0.31 0.11
IP 1.00 1.00 0.96 0.96 1.00 1.00 0.85 0.85 1.00 1.00 0.84 0.84 0.75 0.84 0.59

Setting 3: (n, p, ρ) = (300, 5000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.07 1.00 1.00 0.01 0.01 0.00 0.00 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 1.00 1.00 0.03 0.03 0.14 0.16 0.01
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.72 1.00 1.00 0.15 0.15 0.40 0.43 0.16
IP 1.00 1.00 0.97 0.97 1.00 1.00 0.90 0.90 1.00 1.00 0.96 0.96 0.83 0.82 0.65

Setting 4: (n, p, ρ) = (300, 5000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.17 0.17 1.00 1.00 0.04 0.04 0.02 0.00 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.07 0.07 0.13 0.18 0.02
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.83 1.00 1.00 0.18 0.18 0.46 0.47 0.18
IP 1.00 1.00 0.99 0.99 1.00 1.00 0.90 0.90 1.00 1.00 0.94 0.94 0.79 0.85 0.64

Table 2: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods over different models and settings in
Example 2.

Method M1 M2 M3 M4

X1 X5 X1X5 All X1 X10 X1X5 All X10 X15 X1X5 All X1X5 X10X15 All

Setting 1: (n, p, ρ) = (200, 2000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.13 0.13 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 1.00 1.00 0.06 0.06 0.17 0.20 0.01
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 0.18 0.18 0.36 0.40 0.11
IP 1.00 1.00 0.96 0.96 1.00 1.00 0.95 0.95 1.00 1.00 0.97 0.97 0.80 0.83 0.63

Setting 2: (n, p, ρ) = (200, 2000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.18 0.18 1.00 1.00 0.01 0.01 0.00 0.00 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.10 0.10 0.14 0.14 0.02
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.85 1.00 1.00 0.16 0.16 0.41 0.43 0.18
IP 1.00 1.00 0.95 0.95 1.00 1.00 0.97 0.97 1.00 1.00 0.96 0.96 0.80 0.81 0.61

Setting 3: (n, p, ρ) = (300, 5000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.14 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.10 0.18 0.20 0.01
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 1.00 1.00 0.32 0.32 0.63 0.65 0.43
IP 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.98 1.00 1.00 0.97 0.97 0.86 0.85 0.71

Setting 4: (n, p, ρ) = (300, 5000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.09 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.16 0.32 0.25 0.05
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.92 1.00 1.00 0.34 0.34 0.70 0.57 0.36
IP 1.00 1.00 0.99 0.99 1.00 1.00 0.94 0.94 1.00 1.00 0.97 0.97 0.81 0.89 0.70

29



Table 3: The overall and individual signal-to-noise ratios (SNRs) of each model in Examples
1 and 2.

Example 1 Example 2

Settings 1, 3 Settings 2, 4 Settings 1, 3 Settings 2, 4

M1 X1 0.64 0.64 1.44 1.44
X5 0.64 0.64 1.44 1.44

X1X5 1.44 1.45 3.52 3.53
Overall 2.72 2.81 6.41 6.59

M2 X1 1.00 1.00 2.17 2.17
X10 1.00 1.00 2.17 2.17
X1X5 2.25 2.26 5.28 5.30

Overall 4.25 4.26 9.61 9.64

M3 X10 1.00 1.00 2.17 2.17
X15 1.00 1.00 2.17 2.17
X1X5 2.25 2.26 5.28 5.30

Overall 4.25 4.32 9.61 9.76

M4 X1X5 4.00 4.02 7.92 7.95
X10X15 4.00 4.00 7.92 7.93
Overall 8.00 8.02 15.84 15.88
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Table 4: Variable selection results for all the selection methods in terms of medians and robust standard deviations (in parentheses)
of various performance measures in Example 1.

Method M1 M2 M3 M4

PE FP FN PE FP FN PE FP FN PE FP FN

Setting 1: (n, p, ρ) = (200, 2000, 0)
SIS2-Lasso 8.002 (0.560) 81 (10.8) 0 (0) 15.928 (1.003) 88.5 (8.6) 1 (0) 15.877 (0.981) 90 (8.6) 1 (0) 22.673 (0.672) 96 (7.1) 2 (0)
SIS2-L1+SICA 9.705 (2.388) 12.5 (10.4) 0 (0) 21.013 (3.354) 15 (10.4) 1 (0) 21.320 (3.220) 20.5 (11.2) 1 (0) 32.605 (3.190) 16 (9.7) 2 (0)
DC-SIS2-Lasso 7.957 (0.475) 82 (9.7) 0 (0) 5.151 (0.328) 82 (10.1) 0 (0) 15.859 (0.969) 90 (7.1) 1 (0) 22.440 (6.808) 94 (8.2) 2 (0.7)
DC-SIS2-L1+SICA 9.043 (2.174) 10.5 (9.7) 0 (0) 6.332 (1.721) 11.5 (8.2) 0 (0) 20.693 (3.704) 15.5 (10.4) 1 (0) 31.637 (9.652) 17 (11.2) 2 (0.7)
SIRI 6.472 (0.193) 3 (9.0) 0 (0) 4.326 (0.319) 7 (6.7) 0 (0) 14.443 (0.874) 8 (6.7) 1 (0) 21.026 (6.344) 6 (2.1) 2 (0.7)
RAMP 6.370 (0.089) 0 (0) 0 (0) 13.692 (0.245) 0 (0) 1 (0) 13.653 (0.219) 0 (0) 1 (0) 22.856 (0.906) 2 (1.5) 2 (0)
iFORT 6.387 (2.020) 0 (0.2) 0 (0.3) 13.211 (0.408) 1 (0.2) 2 (0.1) 13.379 (0.561) 1 (0.5) 2 (0.1) 20.304 (0.422) 0 (0.1) 2 (0)
iFORM 6.374 (0.147) 0 (0.2) 0 (0.3) 13.199 (0.398) 1 (0.2) 2 (0.1) 13.266 (1.092) 1 (0.5) 2 (0.1) 20.304 (0.377) 0 (0.1) 2 (0)
IP-hierNet 8.525 (0.836) 55.5 (34.7) 0 (0) 6.557 (0.853) 82 (28.5) 0 (0) 7.181 (0.912) 95 (27.2) 0 (0) 6.149 (8.394) 115 (21.3) 0 (0.7)
IP-Lasso 8.429 (0.807) 79.5 (16.8) 0 (0) 5.302 (0.455) 75 (14.6) 0 (0) 5.386 (0.422) 74.5 (13.1) 0 (0) 3.135 (7.909) 79 (11.2) 0 (0.7)
IP-L1+SICA 7.391 (1.509) 3 (5.2) 0 (0) 4.358 (0.964) 1 (4.1) 0 (0) 4.640 (0.890) 2 (5.2) 0 (0) 3.108 (8.847) 3 (6.0) 0 (0.7)
Oracle 6.340 (0.111) 0 (0) 0 (0) 4.051 (0.080) 0 (0) 0 (0) 4.058 (0.081) 0 (0) 0 (0) 2.269 (0.037) 0 (0) 0 (0)

Setting 2: (n, p, ρ) = (200, 2000, 0.5)
SIS2-Lasso 7.993 (0.472) 83 (10.4) 0 (0) 15.625 (1.358) 89 (10.4) 1 (0) 15.997 (0.965) 89 (8.6) 1 (0) 22.973 (0.724) 94 (5.6) 2 (0)
SIS2-L1+SICA 9.355 (2.791) 12 (11.6) 0 (0) 20.120 (4.690) 17.5 (11.6) 1 (0) 21.274 (2.612) 18 (9.0) 1 (0) 33.225 (3.600) 17 (10.4) 2 (0)
DC-SIS2-Lasso 7.907 (0.518) 82 (9.3) 0 (0) 5.154 (0.417) 83 (12.7) 0 (0) 15.943 (1.115) 89 (9.0) 1 (0) 22.804 (1.492) 92 (6.7) 2 (0)
DC-SIS2-L1+SICA 8.661 (2.526) 9 (9.7) 0 (0) 6.046 (1.995) 10 (8.2) 0 (0) 20.477 (3.891) 15.5 (11.9) 1 (0) 31.691 (8.200) 16 (10.4) 2 (0)
SIRI 6.550 (0.353) 3 (5.2) 0 (0) 4.293 (0.258) 7 (3.7) 0 (0) 14.097 (0.690) 8 (6.2) 1 (0) 21.740 (1.209) 6 (3.7) 2 (0)
RAMP 6.360 (0.076) 0 (0) 0 (0) 13.397 (0.265) 0 (0) 1 (0) 13.423 (0.223) 0 (0) 1 (0) 22.862 (0.836) 1 (0.7) 2 (0)
iFORT 6.397 (1.699) 0 (0.2) 0 (0.3) 13.288 (0.471) 1 (0.2) 2 (0.1) 13.400 (0.594) 1 (0.5) 2 (0.1) 20.309 (0.306) 0 (0) 2 (0)
iFORM 6.375 (0.103) 0 (0.2) 0 (0.3) 13.288 (0.457) 1 (0.2) 2 (0.1) 13.266 (1.291) 1 (0.5) 2 (0.1) 20.309 (0.306) 0 (0) 2 (0)
IP-hierNet 8.310 (0.705) 37 (32.5) 0 (0) 6.441 (1.004) 71 (22.4) 0 (0) 6.891 (1.179) 85.5 (22.6) 0 (0) 5.467 (8.654) 109 (21.1) 0 (0.7)
IP-Lasso 8.487 (0.698) 73.5 (16.4) 0 (0) 5.423 (0.482) 76 (13.4) 0 (0) 5.375 (0.577) 71.5 (16.8) 0 (0) 3.053 (8.036) 77 (16.0) 0 (0.7)
IP-L1+SICA 7.343 (1.603) 3 (6.0) 0 (0) 4.373 (0.970) 1 (3.7) 0 (0) 4.561 (1.380) 2 (5.6) 0 (0) 2.826 (9.292) 3.5 (6.7) 0 (0.7)
Oracle 6.335 (0.115) 0 (0) 0 (0) 4.057 (0.073) 0 (0) 0 (0) 4.06 (0.082) 0 (0) 0 (0) 2.270 (0.041) 0 (0) 0 (0)

Setting 3: (n, p, ρ) = (300, 5000, 0)
SIS2-Lasso 7.686 (0.307) 123 (16.4) 0 (0) 15.365 (0.798) 138 (8.6) 1 (0) 15.491 (0.613) 139 (10.4) 1 (0) 22.582 (0.622) 145 (6.3) 2 (0)
SIS2-L1+SICA 10.047 (1.277) 19 (5.6) 0 (0) 21.666 (2.105) 29 (7.8) 1 (0) 21.748 (2.205) 29.5 (8.6) 1 (0) 32.559 (3.175) 32.5 (14.9) 2 (0)
DC-SIS2-Lasso 7.660 (0.293) 129 (16.8) 0 (0) 4.919 (0.221) 127 (14.9) 0 (0) 15.419 (0.608) 136 (9.7) 1 (0) 22.383 (7.327) 139.5 (10.4) 2 (0.7)
DC-SIS2-L1+SICA 10.248 (1.705) 20.5 (8.2) 0 (0) 6.098 (0.986) 14 (5.6) 0 (0) 21.694 (2.437) 30 (8.2) 1 (0) 31.714 (10.652) 30 (12.3) 2 (0.7)
SIRI 6.360 (0.192) 3 (5.2) 0 (0) 4.156 (0.158) 7 (6.7) 0 (0) 14.011 (0.607) 4 (3.0) 1 (0) 13.357 (7.306) 5 (4.5) 1 (0.7)
RAMP 6.306 (0.053) 0 (0) 0 (0) 13.603 (0.137) 0 (0) 1 (0) 13.576 (0.081) 0 (0) 1 (0) 22.461 (0.754) 1 (0.7) 2 (0)
iFORT 6.316 (0.074) 0 (0.7) 0 (0) 13.067 (0.224) 1 (0.1) 2 (0) 13.285 (0.306) 1 (0.4) 2 (0) 20.284 (0.374) 0 (0.1) 2 (0)
iFORM 6.316 (0.091) 0 (0.7) 0 (0) 13.067 (0.217) 1 (0.1) 2 (0) 13.123 (1.608) 1 (0.4) 2 (0) 20.284 (0.355) 0 (0.1) 2 (0)
IP-hierNet 8.435 (0.903) 103 (44.8) 0 (0) 5.879 (0.608) 105 (37.7) 0 (0) 6.241 (0.660) 122.5 (33.8) 0 (0) 4.735 (8.426) 156.5 (29.9) 0 (0.7)
IP-Lasso 8.105 (0.474) 115.5 (17.5) 0 (0) 5.140 (0.371) 109.5 (27.6) 0 (0) 5.118 (0.371) 105 (25.7) 0 (0) 2.903 (8.092) 118 (17.2) 0 (0.7)
IP-L1+SICA 6.986 (1.404) 3 (7.8) 0 (0) 4.624 (1.325) 4 (9.7) 0 (0) 4.653 (1.243) 4 (9.7) 0 (0) 2.859 (9.151) 7 (9.3) 0 (0.7)
Oracle 6.307 (0.093) 0 (0) 0 (0) 4.036 (0.054) 0 (0) 0 (0) 4.034 (0.056) 0 (0) 0 (0) 2.261 (0.033) 0 (0) 0 (0)

Setting 4: (n, p, ρ) = (300, 5000, 0.5)
SIS2-Lasso 7.733 (0.383) 123 (14.6) 0 (0) 15.250 (1.363) 133 (13.8) 1 (0) 15.519 (0.562) 137 (11.2) 1 (0) 22.717 (0.638) 143 (6.0) 2 (0)
SIS2-L1+SICA 9.999 (1.706) 19 (8.2) 0 (0) 20.051 (3.688) 23.5 (11.2) 1 (0) 21.494 (3.002) 29 (10.4) 1 (0) 33.411 (2.945) 34 (11.2) 2 (0)
DC-SIS2-Lasso 7.633 (0.376) 123 (18.7) 0 (0) 4.852 (0.238) 127.5 (13.8) 0 (0) 15.486 (0.601) 134 (12.7) 1 (0) 22.349 (7.051) 138.5 (10.8) 2 (0.7)
DC-SIS2-L1+SICA 10.013 (1.510) 19 (6.7) 0 (0) 6.082 (0.834) 15 (6.3) 0 (0) 21.585 (3.663) 27 (10.4) 1 (0) 31.448 (10.427) 32 (9.3) 2 (0.7)
SIRI 6.374 (0.206) 3 (5.2) 0 (0) 4.143 (0.133) 7 (6.7) 0 (0) 13.865 (0.730) 8 (6.7) 1 (0) 12.710 (7.244) 5 (4.5) 1 (0.7)
RAMP 6.305 (0.063) 0 (0) 0 (0) 13.374 (0.156) 0 (0) 1 (0) 13.355 (0.083) 0 (0) 1 (0) 22.616 (0.705) 1 (0.7) 2 (0)
iFORT 6.325 (1.375) 0 (0.1) 0 (0.2) 13.090 (0.225) 1 (0.1) 2 (0) 13.237 (0.281) 1 (0.4) 2 (0) 20.257 (0.376) 0 (0.1) 2 (0)
iFORM 6.325 (0.095) 0 (0.1) 0 (0.2) 13.071 (0.220) 1 (0.1) 2 (0) 13.110 (1.664) 1 (0.4) 2 (0) 20.257 (0.349) 0 (0.1) 2 (0)
IP-hierNet 8.097 (0.470) 76 (41.0) 0 (0) 5.776 (0.536) 96 (25.6) 0 (0) 5.978 (0.538) 105 (29.9) 0 (0) 4.647 (8.700) 151 (27.6) 0 (0.7)
IP-Lasso 7.975 (0.465) 112 (19.0) 0 (0) 5.115 (0.417) 109.5 (30.6) 0 (0) 5.095 (0.285) 106 (28.0) 0 (0) 2.860 (7.827) 113.5 (19.4) 0 (0.7)
IP-L1+SICA 6.753 (1.271) 1 (6.7) 0 (0) 4.470 (1.182) 2.5 (9.0) 0 (0) 4.450 (0.801) 3 (7.5) 0 (0) 3.121 (9.126) 7.5 (9.0) 0 (0.7)
Oracle 6.305 (0.091) 0 (0) 0 (0) 4.039 (0.060) 0 (0) 0 (0) 4.033 (0.067) 0 (0) 0 (0) 2.261 (0.033) 0 (0) 0 (0)
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Table 5: Variable selection results for all the selection methods in terms of medians and robust standard deviations (in parentheses)
of various performance measures in Example 2.

Method M1 M2 M3 M4

PE FP FN PE FP FN PE FP FN PE FP FN

Setting 1: (n, p, ρ) = (200, 2000, 0)
SIS2-Lasso 3.652 (0.422) 73.5 (15.3) 0 (0) 15.093 (1.077) 88 (12.7) 1 (0) 15.317 (0.779) 88.5 (9.0) 1 (0) 25.252 (0.812) 93 (6.3) 2 (0)
SIS2-L1+SICA 3.081 (0.584) 0 (3.0) 0 (0) 19.573 (3.202) 13.5 (11.9) 1 (0) 20.181 (3.209) 14 (10.4) 1 (0) 35.674 (3.862) 14 (10.1) 2 (0)
DC-SIS2-Lasso 3.678 (0.393) 75.5 (13.1) 0 (0) 2.470 (0.248) 73 (17.5) 0 (0) 15.395 (1.029) 87 (9.7) 1 (0) 24.959 (8.620) 93 (8.6) 2 (0.7)
DC-SIS2-L1+SICA 3.092 (0.800) 0 (4.5) 0 (0) 2.089 (0.532) 0 (4.9) 0 (0) 20.506 (3.690) 15.5 (11.9) 1 (0) 32.404 (12.479) 15.5 (9.0) 2 (0.7)
SIRI 2.973 (0.235) 0 (0) 0 (0) 2.1689 (0.084) 3 (3.0) 0 (0) 13.169 (0.763) 4 (3.0) 1 (0) 21.832 (8.210) 4.5 (2.8) 2 (0.7)
RAMP 2.980 (0.277) 0 (0) 0 (0) 12.709 (0.353) 0 (0) 1 (0) 12.604 (0.172) 0 (0) 1 (0) 23.535 (0.837) 1 (0.7) 2 (0)
iFORT 2.974 (1.725) 0 (0.2) 0 (0.2) 13.732 (0.415) 1 (0.2) 2 (0.1) 13.961 (0.543) 1 (0.5) 2 (0) 24.107 (0.551) 0 (0.1) 2 (0)
iFORM 2.968 (1.715) 0 (0.2) 0 (0.2) 13.728 (0.578) 1 (0.2) 2 (0.1) 13.775 (2.646) 1 (0.5) 2 (0) 24.107 (0.551) 0 (0.1) 2 (0)
IP-hierNet 4.487 (0.624) 46.5 (38.4) 0 (0) 3.108 (0.545) 57 (24.3) 0 (0) 3.399 (0.583) 72 (21.3) 0 (0) 3.557 (10.816) 110 (21.1) 0 (0.7)
IP-Lasso 3.777 (0.438) 76.5 (14.9) 0 (0) 2.595 (0.275) 71 (19.4) 0 (0) 2.609 (0.292) 72 (13.8) 0 (0) 1.719 (9.417) 64 (19.0) 0 (0.7)
IP-L1+SICA 3.061 (0.579) 0 (1.9) 0 (0) 2.076 (0.342) 0 (2.2) 0 (0) 2.058 (0.399) 0 (3.4) 0 (0) 1.543 (10.135) 1.5 (4.5) 0 (0.7)
Oracle 2.929 (0.237) 0 (0) 0 (0) 2.002 (0.069) 0 (0) 0 (0) 2.017 (0.065) 0 (0) 0 (0) 1.339 (0.035) 0 (0) 0 (0)

Setting 2: (n, p, ρ) = (200, 2000, 0.5)
SIS2-Lasso 3.643 (0.430) 76.5 (14.2) 0 (0) 15.314 (1.863) 87 (10.8) 1 (0) 15.285 (0.958) 88 (7.5) 1 (0) 25.151 (0.881) 95 (7.1) 2 (0)
SIS2-L1+SICA 3.152 (0.887) 0 (5.2) 0 (0) 19.485 (3.944) 13 (11.9) 1 (0) 20.731 (3.278) 19 (9.7) 1 (0) 36.600 (2.672) 16.5 (10.4) 2 (0)
DC-SIS2-Lasso 3.668 (0.422) 78.5 (15.7) 0 (0) 2.481 (0.192) 74.5 (21.6) 0 (0) 15.163 (1.150) 87 (12.7) 1 (0) 24.997 (7.947) 90.5 (10.8) 2 (0.7)
DC-SIS2-L1+SICA 3.183 (0.717) 0 (3.7) 0 (0) 2.226 (0.560) 1 (4.9) 0 (0) 18.800 (5.117) 12 (12.3) 1 (0) 34.958 (10.563) 19 (10.1) 2 (0.7)
SIRI 3.001 (0.236) 0 (0) 0 (0) 2.198 (0.064) 3 (3.0) 0 (0) 13.312 (0.577) 4 (3.0) 1 (0) 22.190 (8.575) 4 (3.9) 2 (0.7)
RAMP 2.992 (0.250) 0 (0) 0 (0) 12.938 (0.293) 0 (0) 1 (0) 12.853 (0.177) 0 (0) 1 (0) 24.072 (1.078) 2 (0.9) 2 (0)
iFORT 2.984 (2.020) 0 (0.2) 0 (0.3) 12.834 (0.379) 1 (0.3) 2 (0.1) 13.104 (1.493) 1 (0.5) 2 (0.1) 23.197 (0.401) 0 (0.1) 2 (0)
iFORM 2.984 (2.508) 0 (0.2) 0 (0.3) 12.815 (0.330) 1 (0.3) 2 (0.1) 12.876 (2.248) 1 (0.5) 2 (0.1) 23.197 (0.401) 0 (0.1) 2 (0)
IP-hierNet 4.306 (0.560) 28 (29.5) 0 (0) 2.881 (0.497) 52 (21.5) 0 (0) 3.286 (0.390) 64 (24.3) 0 (0) 3.442 (10.716) 107 (22.9) 0 (0.7)
IP-Lasso 3.829 (0.406) 71 (19.4) 0 (0) 2.516 (0.266) 68.5 (15.7) 0 (0) 2.543 (0.247) 71 (14.5) 0 (0) 1.727 (9.245) 60 (17.2) 0 (0.7)
IP-L1+SICA 3.028 (0.549) 0 (3.7) 0 (0) 2.079 (0.220) 0 (2.3) 0 (0) 2.056 (0.303) 0 (3.0) 0 (0) 1.492 (9.988) 1 (4.5) 0 (0.7)
Oracle 2.941 (0.238) 0 (0) 0 (0) 2.021 (0.072) 0 (0) 0 (0) 2.007 (0.061) 0 (0) 0 (0) 1.345 (0.033) 0 (0) 0 (0)

Setting 3: (n, p, ρ) = (300, 5000, 0)
SIS2-Lasso 3.481 (0.361) 115 (24.6) 0 (0) 14.708 (0.678) 133 (14.2) 1 (0) 14.861 (0.639) 132 (11.2) 1 (0) 24.988 (0.751) 143.5 (6.7) 2 (0)
SIS2-L1+SICA 3.146 (0.792) 0 (5.2) 0 (0) 19.613 (3.332) 24 (14.6) 1 (0) 20.765 (1.990) 28.5 (5.2) 1 (0) 36.296 (3.241) 33 (14.9) 2 (0)
DC-SIS2-Lasso 3.475 (0.345) 109.5 (26.5) 0 (0) 2.396 (0.135) 126 (26.5) 0 (0) 14.724 (0.703) 131 (15.3) 1 (0) 24.635 (8.786) 140 (12.7) 2 (0.7)
DC-SIS2-L1+SICA 3.092 (0.671) 0 (4.5) 0 (0) 2.136 (0.327) 1 (4.1) 0 (0) 19.987 (3.224) 26 (13.1) 1 (0) 34.206 (13.298) 27 (12.7) 2 (0.7)
SIRI 2.943 (0.251) 0 (0) 0 (0) 2.170 (0.040) 3 (3.0) 0 (0) 13.212 (0.507) 7 (6.0) 1 (0) 12.263 (2.749) 5 (5.4) 1 (0.2)
RAMP 2.934 (0.246) 0 (0) 0 (0) 12.848 (0.192) 0 (0) 1 (0) 12.790 (0.105) 0 (0) 1 (0) 23.749 (0.631) 1 (0.7) 2 (0)
iFORT 2.925 (0.644) 0 (0.2) 0 (0) 12.671 (0.287) 1 (0.3) 2 (0) 12.836 (0.889) 1 (0.4) 2 (0.7) 23.159 (0.411) 0 (0.1) 2 (0)
iFORM 2.934 (0.946) 0 (0.2) 0 (0) 12.651 (0.262) 1 (0.3) 2 (0) 12.648 (2.042) 1 (0.4) 2 (0.7) 23.152 (0.394) 0 (0.1) 2 (0)
IP-hierNet 3.753 (0.534) 42 (27.6) 0 (0) 2.725 (0.253) 61.5 (26.9) 0 (0) 2.955 (0.366) 79 (34.5) 0 (0) 2.587 (10.023) 138 (36.0) 0 (0.7)
IP-Lasso 3.620 (0.400) 112.5 (24.6) 0 (0) 2.441 (0.192) 96 (21.3) 0 (0) 2.445 (0.185) 98.5 (19.4) 0 (0) 1.574 (8.975) 78 (35.4) 0 (0.7)
IP-L1+SICA 3.117 (0.850) 0 (6.7) 0 (0) 2.071 (0.171) 0 (2.2) 0 (0) 2.074 (0.228) 0 (3.0) 0 (0) 1.377 (9.704) 0 (3.4) 0 (0.7)
Oracle 2.924 (0.251) 0 (0) 0 (0) 2.006 (0.055) 0 (0) 0 (0) 2.007 (0.064) 0 (0) 0 (0) 1.347 (0.031) 0 (0) 0 (0)

Setting 4: (n, p, ρ) = (300, 5000, 0.5)
SIS2-Lasso 3.457 (0.329) 109.5 (25.4) 0 (0) 14.505 (1.194) 133 (14.9) 1 (0) 14.947 (0.596) 136 (9.7) 1 (0) 25.174 (0.702) 144 (7.1) 2 (0)
SIS2-L1+SICA 3.095 (0.823) 0 (4.5) 0 (0) 19.140 (3.153) 26 (9.0) 1 (0) 20.824 (2.960) 28.5 (10.4) 1 (0) 36.423 (3.332) 31.5 (14.6) 2 (0)
DC-SIS2-Lasso 3.492 (0.358) 112 (26.1) 0 (0) 2.384 (0.134) 118.5 (35.1) 0 (0) 14.929 (0.784) 135 (10.4) 1 (0) 14.477 (8.994) 140 (14.9) 1 (0.7)
DC-SIS2-L1+SICA 3.204 (0.963) 0.5 (7.8) 0 (0) 2.074 (0.274) 0 (3.4) 0 (0) 19.962 (3.679) 26 (13.4) 1 (0) 21.558 (13.215) 27 (13.4) 1 (0.7)
SIRI 3.017 (0.034) 0 (2.2) 0 (0) 2.166 (0.0384) 3 (3.0) 0 (0) 13.238 (0.598) 7.5 (6.0) 1 (0) 12.350 (7.679) 5 (4.478) 1 (0.7)
RAMP 2.961 (0.254) 0 (0) 0 (0) 12.902 (0.182) 0 (0) 1 (0) 12.861 (0.133) 0 (0) 1 (0) 24.173 (0.694) 1 (0.7) 2 (0)
iFORT 2.937 (1.669) 0 (0.2) 0 (0.2) 12.066 (0.296) 1 (0.2) 2 (0) 12.179 (0.434) 1 (0.4) 2 (0) 22.540 (0.368) 0 (0) 2 (0)
iFORM 2.926 (1.113) 0 (0.2) 0 (0.2) 12.066 (0.275) 1 (0.2) 2 (0) 12.097 (1.764) 1 (0.4) 2 (0) 22.540 (0.368) 0 (0) 2 (0)
IP-hierNet 3.727 (0.484) 38 (30.6) 0 (0) 2.762 (0.284) 58 (23.1) 0 (0) 2.863 (0.357) 69.5 (31.0) 0 (0) 2.483 (10.133) 130.5 (28.0) 0 (0.7)
IP-Lasso 3.590 (0.319) 109 (20.5) 0 (0) 2.491 (0.220) 100 (20.5) 0 (0) 2.433 (0.203) 97 (18.3) 0 (0) 1.555 (9.057) 71 (39.2) 0 (0.7)
IP-L1+SICA 3.108 (0.769) 0 (4.5) 0 (0) 2.061 (0.255) 0 (3.0) 0 (0) 2.072 (0.173) 0 (2.2) 0 (0) 1.381 (9.257) 0 (4.5) 0 (0.7)
Oracle 2.921 (0.245) 0 (0) 0 (0) 2.009 (0.064) 0 (0) 0 (0) 2.009 (0.070) 0 (0) 0 (0) 1.343 (0.028) 0 (0) 0 (0)
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Table 6: The means and standard errors (in parentheses) of classification errors and median
model sizes in prostate cancer data analysis.

Method Classification error Median model size

SIS2-Enet 0.0754 (0.0030) 75
DC-SIS2-Enet 0.0745 (0.0031) 70
IP-Enet 0.0681 (0.0033) 106
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Table 7: List of top 10 genes in main effects and top 10 gene-gene interactions selected by
SIS2-Enet, DC-SIS2-Enet, and IP-Enet in prostate cancer data analysis.

SIS2-Enet DC-SIS2-Enet IP-Enet

Main effects
Gene name Frequency Gene name Frequency Gene name Frequency

SERINC5 100 SERINC5 100 HPN 100
HPN 100 HPN 100 HSPD1 100

HSPD1 100 HSPD1 100 LMO3 100
LMO3 100 LMO3 100 ERG 100
TARP 100 ANGPT1 100 TARP 98

ANGPT1 99 TARP 100 SERINC5 86
S100A4 95 PDLIM5 98 ANGPT1 86
CALM1 93 CALM1 97 RBP1 85
PDLIM5 89 RBP1 92 CALM1 82

RBP1 85 S100A4 89 S100A4 70

Interactions
Interaction Frequency Interaction Frequency Interaction Frequency

DPT×S100A4 70 DPT×S100A4 71 SLC7A1×ERG 75
GUCY1A3×MAF 64 DPT×CFD 57 PRKDC×CFD 67
RARRES2×KLK3 60 HSPD1×LMO3 56 PRKDC×KLK3 64
AGR2×EPCAM 60 PDLIM5×CFD 53 AFFX-CreX-3×CHPF 64
FOXA1×SIM2 51 LMOD1×RGS10 53 RASSF7×PRKDC 59
RBP1×TGFB3 49 PENK×GSTP1 50 DPT×S100A4 54
MAF×NELL2 49 RBP1×EPCAM 50 KANK1×ERG 51

HSPD1×LMO3 46 DPYSL2×EPCAM 49 RBP1×MAF 49
FOXA1×EPCAM 44 ALCAM×EPCAM 45 MAF×NELL2 49

DPT×CFD 44 SLC25A6×KLK3 44 RARRES2×KLK3 48
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Supplementary Material to “Interaction Pursuit with

Feature Screening and Selection”

Yingying Fan, Yinfei Kong, Daoji Li and Jinchi Lv

This Supplementary Material consists of five parts. Section A presents some additional sim-

ulation studies. We establish the invariance of the three sets A, I, and M under affine

transformations in Section B. Section C illustrates that in the presence of correlation among

covariates, using corr(X2
j , Y

2) as the marginal utility still has differentiation power between

interaction variables (that is, variables contributing to interactions) and noise variables (vari-

ables contributing to neither interactions nor main effects). We provide the proofs of Propo-

sition 1 and Theorems 1–3 in Section D. Section E contains some technical lemmas and their

proofs. Hereafter we use C̃i with i = 1, 2, · · · to denote some generic positive or nonneg-

ative constants whose values may vary from line to line. For any set D, denote by |D| its

cardinality.

Appendix A: Additional simulation studies

A.1. Lower signal-to-noise ratios in Example 1

In Section 4.1, we investigated the screening performance of each procedure at certain noise

levels. It is also interesting to test the robustness of those methods when the signal-to-noise

ratio (SNR) becomes smaller. Therefore, keeping all the settings in Example 1 the same as

before, we now consider three more sets of noise level:

Case 1: ε1 ∼ N(0, 32), ε2 ∼ N(0, 2.52), ε3 ∼ N(0, 2.52), ε4 ∼ N(0, 22);

Case 2: ε1 ∼ N(0, 3.52), ε2 ∼ N(0, 32), ε3 ∼ N(0, 32), ε4 ∼ N(0, 2.52);

Case 3: ε1 ∼ N(0, 42), ε2 ∼ N(0, 3.52), ε3 ∼ N(0, 3.52), ε4 ∼ N(0, 32).

Following the same definition of SNR as in Section 4.1, the SNRs in the settings above are

listed in Table 8 and far lower than before. For example, the SNRs in the third set of noise

levels for models M1–M4 are 0.39, 0.33, 0.33, and 0.25 times as large as before, respectively.
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[Table 8 about here.]

The corresponding screening results for those three sets of noise levels are summarized

in Table 9. It is seen that our approach IP performed better than all others across three

settings in models M2–M4, where the strong heredity assumption is not satisfied. In model

M1, the IP did not perform as well as other methods, since it kept only [n/(log n)] variables

for constructing interactions while the other methods kept up to 2[n/(log n)] interaction

variables in the screening step.

[Table 9 about here.]

A.2. Computation time

To demonstrate the effect of interaction screening on the computational cost, we consider

model M2 in Example 1 with n = 200, ρ = 0.5 and p = 200, 300, and 500, and calculate the

average computation time of hierNet and IP-hierNet. The only difference between these two

methods is that IP-hierNet has the screening step whereas hierNet does not. Table 10 reports

the average computation time of hierNet and IP-hierNet based on 100 replications. We see

from Table 10 that when the dimensionality gets higher, the ratio of average computation

time of hierNet over IP-hierNet becomes larger. In particular, the average computation time

for hierNet reaches 292.77 minutes for a single repetition when p = 500, while that for IP-

hierNet is only 6.05 minutes. As expected, our proposed procedure IP is computationally

much more efficient thanks to the additional screening step.

[Table 10 about here.]

A.3. Feature screening with main effect only model

As suggested by the AE and one referee, we now consider the following additional simu-

lation example to compare the feature screening performance when the model contains no

interactions

M5 : Y = X1 + X5 + X10 + X15 + ε,
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where the covariate vector x = (X1, · · · ,Xp)T ∼ N(0,Σ) with Σ = (ρ|j−k|)1≤j,k≤p, and

the random error ε is independent of x and generated from N(0, 22) or t(3). Four different

settings of (n, p, ρ) = (200, 2000, 0), (200, 2000, 0.5), (300, 5000, 0), and (300, 5000, 0.5) are

considered and we repeated each experiment 100 times.

Table 11 below presents the feature screening results. As expected, SIS2, DC-SIS2, and

IP performed very similarly and were able to retain almost all important main effects across

all the settings. Interestingly, these three methods also outperformed SIRI*2 when the error

follows Gaussian distribution N(0, 22) in settings 1 and 2.

[Table 11 about here.]

A.4. Feature screening with equal correlation model

Following the suggestion of the AE and one referee, we also consider the following additional

simulation example with equal correlation among covariates

• M3′: Y = 2X10 + 2X15 + 3X1X5 + ε3,

• M4′: Y = 3X1X5 + 3X10X15 + ε4,

where x = (X1, · · · ,Xp)T ∼ N(0,Σ) with Σ having diagonal entries 1 and off-diagonal

entries 0.2, and (n, p) = (200, 2000). Here, the equal correlation 0.2 was suggested by a

referee. Models M3′ and M4′ are the same as settings 1 and 2 of models M3 and M4 in the

main text, respectively, except for the covariance matrix Σ. Table 12 below summarizes the

feature screening performance of all methods. Comparing Table 12 with Table 1 (settings

1 and 2) in the main text, we see that the problem of interaction screening becomes more

difficult in this new setting. This is reasonable and expected because of higher collinearity in

models M3′ and M4′. Nevertheless, IP still improved over other methods in retaining active

interaction variables.

[Table 12 about here.]
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Appendix B: Invariance of sets A, I, and M

Consider the linear interaction model

Y = β0 +

p∑

j=1

βjXj +

p−1∑

k=1

p∑

ℓ=k+1

γkℓXkXℓ + ε

given in (1). For any k, ℓ ∈ {1, · · · , p}, define γ∗kℓ = γkℓ/2 for k < ℓ, γ∗kℓ = 0 for k = ℓ, and

γ∗kℓ = γℓk/2 for k > ℓ. Then γ∗kℓ = γ∗ℓk and our model can be rewritten as

Y = β0 +

p∑

j=1

βjXj +

p∑

k,ℓ=1

γ∗kℓXkXℓ + ε.

Under affine transformations Xnew
j = bj(Xj − aj) with aj ∈ R and bj ∈ R \ {0} for

j = 1, · · · , p, our model becomes

Y = β0 +

p∑

j=1

βj(b
−1
j Xnew

j + aj) +

p∑

k,ℓ=1

γ∗kℓ(b
−1
k Xnew

k + ak)(b−1
ℓ Xnew

ℓ + aℓ) + ε

= (β0 +

p∑

j=1

βjaj +

p∑

k,ℓ=1

γ∗kℓakaℓ) +

p∑

j=1

(βj +

p∑

ℓ=1

γ∗jℓaℓ +

p∑

k=1

γ∗kjak)b−1
j Xnew

j

+

p∑

k,ℓ=1

γ∗kℓb
−1
k b−1

ℓ Xnew
k Xnew

ℓ + ε

= β̃0 +

p∑

j=1

β̃jX
new
j +

p−1∑

k=1

p∑

ℓ=k+1

γ̃kℓX
new
k Xnew

ℓ + ε,

where

β̃0 = β0 +

p∑

j=1

βjaj +

p∑

k,ℓ=1

γ∗kℓakaℓ = β0 +

p∑

j=1

βjaj +
∑

1≤k<ℓ≤p

γkℓakaℓ, (B.1)

β̃j = (βj +

p∑

ℓ=1

γ∗jℓaℓ +

p∑

k=1

γ∗kjak)b−1
j = (βj +

∑

1≤k<j

γkjak +
∑

j<k≤p

γjkak)b−1
j , (B.2)

γ̃kℓ = γkℓb
−1
k b−1

ℓ . (B.3)
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Similar to the definitions of sets I, A, B, and M in (2), we define index sets

Ĩ = {(k, ℓ) : 1 ≤ k < ℓ ≤ p with γ̃kℓ 6= 0} ,

Ã = {1 ≤ k ≤ p : (k, ℓ) or (ℓ, k) ∈ I for some ℓ} ,

B̃ =
{

1 ≤ j ≤ p : β̃j 6= 0
}
.

Then from (B.3), we have Ĩ = I and thus Ã = A.

Next we show M̃ = M. It is equivalent to show that Ãc ∩ B̃c = Ac ∩ Bc. To this end,

we first prove Ac ∩ Bc ⊂ Ãc ∩ B̃c. For any j ∈ Ac ∩ Bc, we have βj = 0 and γjk = 0 for

all 1 ≤ k 6= j ≤ p. In view of (B.2) and (B.3), we have β̃j = 0 and γ̃jk = 0, which means

j ∈ Ãc∩B̃c. Thus Ac∩Bc ⊂ Ãc∩B̃c holds. Similarly, we can also show that Ãc∩B̃c ⊂ Ac∩Bc.

Combining these results yields Ãc ∩ B̃c = Ac ∩ Bc and thus M̃ = M.

Therefore, the three sets A, I, and M are invariant under affine transformations Xnew
j =

bj(Xj − aj) with aj ∈ R and bj ∈ R \ {0} for j = 1, · · · , p.

Appendix C: cov(X2
j , Y

2) under specific models

Without loss of generality, we assume that β0 = 0 and the s true main effects concentrate

at the first s coordinates, that is, B = {1, · · · , s}. Here we slightly abuse the notation s for

simplicity. Due to the existence of O(p2) interaction terms, it is generally too complicated

to calculate cov(X2
j , Y

2) explicitly. Since our purpose is to illustrate that in the presence

of correlation among covariates, using corr(X2
j , Y

2) as the marginal utility still has differen-

tiation power between interaction variables (i.e., variables contributing to interactions) and

noise variables (variables contributing to neither interactions nor main effects), we consider

the specific case when there is only one interaction and x = (X1, · · · ,Xp)T ∼ N(0,Σ) with

Σ = (σkℓ) being tridiagonal, that is, σkℓ = 1 for k = ℓ, σkℓ = ρ ∈ [−1, 1] for |k − ℓ| = 1, and

σkℓ = 0 for |k− ℓ| > 1. In addition, assume that all nonzero main effect coefficients take the

same value β, that is, β0,1 = · · · = β0,s = β 6= 0.

We consider the following three different settings according to whether or not the heredity

assumption holds:

Case 1: A = {1, 2} – strong heredity if s ≥ 2,

5



Case 2: A = {1, s + 1} – weak heredity,

Case 3: A = {s + 1, s + 2} – anti-heredity.

Here, in each case, the set of active interaction variables A is chosen without loss of generality.

For the ease of presentation, denote by J1 =
∑s

j=1 β0,jXj and J2 = γXkXℓ with k, ℓ ∈ A
and k 6= ℓ. Then, Y = J1 + J2 + ε and

cov(X2
j , Y

2) = cov(X2
j , J

2
1 ) + cov(X2

j , J
2
2 ).

Direct calculations yield

cov(X2
j , J

2
1 ) =





2β2, j = 1

2β2ρ2, j = 2

0, j ≥ 3

when s = 1,

cov(X2
j , J

2
1 ) =





2β2(1 + ρ)2, j = 1, 2

2β2ρ2, j = 3

0, j ≥ 4

when s = 2,

cov(X2
j , J

2
1 ) =





2β2(1 + ρ)2, j = 1 or s

2β2(1 + 2ρ)2, 2 ≤ j ≤ s− 1

2β2ρ2, j = s + 1

0, j ≥ s + 2

when s ≥ 3.
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Next, we deal with cov(X2
j , J

2
2 ). By Isserlis’ Theorem, we have

E(X2
jXkXℓXk′Xℓ′) =σjjσkℓσk′ℓ′ + σjjσkk′σℓℓ′ + σjjσkℓ′σℓk′

+ σjkσjℓσk′ℓ′ + σjkσjk′σℓℓ′ + σjkσjℓ′σℓk′

+ σjℓσjkσk′ℓ′ + σjℓσjk′σkℓ′ + σjℓσjℓ′σkk′

+ σjk′σjkσℓℓ′ + σjk′σjℓσkℓ′ + σjk′σjℓ′σkℓ

+ σjℓ′σjkσℓk′ + σjℓ′σjℓσkk′ + σjℓ′σjk′σkℓ

and E(XkXℓXk′Xℓ′) = σkℓσk′ℓ′ +σkk′σℓℓ′ +σkℓ′σℓk′ . Combining these two results above gives

cov(X2
j ,XkXℓXk′Xℓ′)

=E(X2
jXkXℓXk′Xℓ′) − E(X2

j )E(XkXℓXk′Xℓ′)

=2(σjkσjℓσk′ℓ′ + σjkσjk′σℓℓ′ + σjkσjℓ′σℓk′ + σjℓσjk′σkℓ′ + σjℓσjℓ′σkk′ + σjk′σjℓ′σkℓ).

Next, we calculate the value of cov(X2
j , J

2
2 ) according to the three different model settings

discussed above.

Case 1: A = {1, 2}. Then J2 = γX1X2 and cov(X2
j , J

2
2 ) = 2γ2(σ2

j1σ22 + 4σj1σj2σ12 +

σ2
j2σ11). Thus

cov(X2
j , J

2
2 ) =





2γ2(1 + 5ρ2), j = 1 or 2,

2γ2ρ2, j = 3,

0, j ≥ 4.

In summary, cov(X2
1 , Y

2) > 0 and cov(X2
2 , Y

2) > 0 for all −1 ≤ ρ ≤ 1, while cov(X2
j , Y

2) = 0

for j ≥ max{s + 2, 4}.

Case 2: A = {1, s + 1}. Then J2 = γX1Xs+1 and cov(X2
j , J

2
2 ) = 2γ2(σ2

j1σs+1,s+1 +

4σj1σj,s+1σ1,s+1 + σ2
j,s+1σ11). Thus

cov(X2
j , J

2
2 ) =2γ2(σ2

j1 + 4σj1σj2ρ + σ2
j2) =





2γ2(1 + 5ρ2), j = 1 or 2

2γ2ρ2, j = 3

0, j ≥ 4

when s = 1,
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cov(X2
j , J

2
2 ) =2γ2(σ2

j1 + σ2
j3) =





2γ2, j = 1 or 3

4γ2ρ2, j = 2

2γ2ρ2, j = 4

0, j ≥ 5

when s = 2,

cov(X2
j , J

2
2 ) = 2γ2(σ2

j1 + σ2
j,s+1) =





2γ2, j = 1 or s + 1

2γ2ρ2, j = 2 or s or s + 2

0, 3 ≤ j ≤ s− 1 or j ≥ s + 3

when s ≥ 3.

So it holds that cov(X2
j , Y

2) = 0 for all j ≥ s+3, and cov(X2
j , Y

2) > 0 for j ∈ A = {1, s+1}.

Case 3: A = {s + 1, s + 2}. Then J2 = γXsXs+1 and cov(X2
j , J

2
2 ) = 2γ2(σ2

jsσs+1,s+1 +

4σjsσj,s+1σs,s+1 + σ2
j,s+1σss). Thus

cov(X2
j , J

2
2 ) =





2γ2(1 + 5ρ2), j = s or s + 1,

2γ2ρ2, j = s− 1 or s + 2,

0, otherwise.

So we have that cov(X2
j , Y

2) = 0 for all j ≥ s + 3, and cov(X2
j , Y

2) > 0 for j ∈ A =

{s + 1, s + 2}.

Therefore, cov(X2
j , Y

2) > 0 for all j ∈ A, whereas cov(X2
j , Y

2) = 0 for all j ≥ max{s +

2, 4} for Case 1, and cov(X2
j , Y

2) = 0 for all j ≥ s + 3 for Cases 2 and 3. Note that

corr(X2
j , Y

2) = cov(X2
j , Y

2)/
√

var(X2
j )var(Y 2). This ensures that the correlations between

X2
j and Y 2 are nonzero for those active interaction variables. In other words, using corr(X2

j , Y
2)

as the marginal utility can still single out active interaction variables.

Appendix D: Proofs of Proposition 1 and Theorems 1–3

D.1. Proof of Proposition 1

Let J1 =
∑p

j=1 βjXj and J2 =
∑p−1

k=1

∑p
ℓ=k+1 γkℓXkXℓ. Then our interaction model (1) can

be written as Y = β0 + J1 + J2 + ε. For each j ∈ {1, · · · , p}, the covariance between X2
j and
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Y 2 can be expressed as

cov(X2
j , Y

2) = cov(X2
j , J

2
1 ) + cov(X2

j , J
2
2 ) + cov(X2

j , ε
2) + 2β0cov(X2

j , J1)

+ 2β0cov(X2
j , J2) + 2β0cov(X2

j , ε) + 2cov(X2
j , J1J2)

+ 2cov(X2
j , J1ε) + 2cov(X2

j , J2ε). (D.1)

Recall that ε is independent of Xj . Thus cov(X2
j , ε

2) = 0 and cov(X2
j , ε) = 0. With the

assumption of E(ε) = 0, we have

cov(X2
j , J1ε) = E(X2

j J1ε) − E(X2
j )E(J1ε) = E(X2

j J1)E(ε) − E(X2
j )E(J1)E(ε) = 0.

Similarly, cov(X2
j , J2ε) = 0. Note that cov(X2

j , J1J2) = E(X2
j J1J2) − E(X2

j )E(J1J2). Since

X1, · · · ,Xp are i.i.d. N(0, 1), direct calculation yields E(X2
j J1J2) = E(J1J2) = 0, which

leads to cov(X2
j , J1J2) = 0. Similarly, cov(X2

j , J1) = 0. Thus, (D.1) reduces to

cov(X2
j , Y

2) = cov(X2
j , J

2
1 ) + cov(X2

j , J
2
2 ) + 2β0cov(X2

j , J2). (D.2)

It remains to calculate the three terms on the right hand side of (D.2).

We first consider cov(X2
j , J

2
1 ). For each fixed j = 1, · · · , p, denote by J3 =

∑
k 6=j βkXk.

Then J1 = βjXj + J3 and cov(X2
j , J

2
1 ) = cov(X2

j , β
2
jX

2
j ) + cov(X2

j , 2βjXjJ3) + cov(X2
j , J

2
3 ).

Since Xj is independent of J3, it follows that cov(X2
j , J

2
3 ) = 0. Note that cov(X2

j , β
2
jX

2
j ) =

β2
j var(X2

j ) = 2β2
j and

cov(X2
j , 2βjXjJ3) = 2βj [E(X3

j J3) − E(X2
j )E(XjJ3)]

=2βj [E(X3
j )E(J3) − E(X2

j )E(Xj)E(J3)] = 0.

Therefore, we obtain

cov(X2
j , J

2
1 ) = 2β2

j . (D.3)

Next, we deal with cov(X2
j , J

2
2 ). For a fixed j = 1, · · · , p, let J4 =

∑j−1
k=1 γkjXk +

∑p
ℓ=j+1 γjℓXℓ and J5 =

∑p−1
k=1,k 6=j

∑p
ℓ=k+1,ℓ 6=j γkℓXkXℓ. Then J2 = J4Xj + J5. Since Xj is
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independent of J4 and J5, we have cov(X2
j , J

2
5 ) = 0 and

cov(X2
j , J

2
2 ) = cov(X2

j , J
2
4X

2
j ) + cov(X2

j , 2J4XjJ5). (D.4)

The first term on the right hand side of (D.4) can be further calculated as

cov(X2
j , J

2
4X

2
j ) = E(X4

j J
2
4 ) − E(X2

j )E(J2
4X

2
j ) = E(X4

j )E(J2
4 ) − E(X2

j )E(J2
4 )E(X2

j )

= 2E(J2
4 ) = 2var(J4) = 2(

j−1∑

k=1

γ2kj +

p∑

ℓ=k+1

γ2jℓ).

The second term on the right hand side of (D.4) is

cov(X2
j , 2J4XjJ5) = 2E(X3

j J4J5) − 2E(X2
j )E(J4XjJ5)

= 2E(X3
j )E(J4J5) − 2E(X2

j )E(J4J5)E(Xj) = 0,

since E(X3
j ) = E(Xj) = 0. Therefore, it holds that

cov(X2
j , J

2
2 ) = 2(

j−1∑

k=1

γ2kj +

p∑

ℓ=k+1

γ2jℓ). (D.5)

Finally, we handle cov(X2
j , J2). Recall that J2 = J4Xj + J5 and Xj is independent of J4

and J5, we have

cov(X2
j , J2) = cov(X2

j , J4Xj) + cov(X2
j , J5) = E(X3

j J4) − E(X2
j )E(J4Xj)

= E(X3
j )E(J4) − E(X2

j )E(J4)E(Xj) = 0,

which together with (D.2), (D.3), and (D.5) completes the proof of Proposition 1.
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D.2. Proof of part a) of Theorem 1

Let Sk1 = n−1
n∑

i=1
X2

ikY
2
i , Sk2 = n−1

n∑
i=1

X2
ik, Sk3 = n−1

n∑
i=1

X4
ik, and S4 = n−1

n∑
i=1

Y 2
i . Then

ωk and ω̂k can be written as

ωk =
E(Sk1) − E(Sk2)E(S4)√

E(Sk3) − E2(Sk2)
and ω̂k =

Sk1 − Sk2S4√
Sk3 − S2

k2

.

To prove (8), the key step is to show that for any positive constant C, there exist some

constants C̃1, · · · , C̃4 > 0 such that the following probability bounds

P ( max
1≤k≤p

|Sk1 − E(Sk1)| ≥ Cn−κ1) ≤ pC̃1 exp
(
−C̃2n

α1η1
)

+ C̃3 exp
(
−C̃4n

α2η1
)
, (D.6)

P ( max
1≤k≤p

|Sk2 − E(Sk2)| ≥ Cn−κ1) ≤ pC̃1 exp[−C̃2n
α1(1−2κ1)/(4+α1)], (D.7)

P ( max
1≤k≤p

|Sk3 − E(Sk3)| ≥ Cn−κ1) ≤ pC̃1 exp[−C̃2n
α1(1−2κ1)/(8+α1)], (D.8)

P (|S4 − E(S4)| ≥ Cn−κ1) ≤ C̃1 exp
(
−C̃2n

α1ζ1
)

+ C̃3 exp
(
−C̃4n

α2ζ′2

)
(D.9)

hold for all n sufficiently large when 0 ≤ 2κ1 + 4ξ1 < 1 and 0 ≤ 2κ1 + 4ξ2 < 1, where

η1 = min{(1−2κ1 −4ξ2)/(8+α1), (1−2κ1 −4ξ1)/(12+α1)}, ζ1 = min{(1−2κ1 −4ξ2)/(4+

α1), (1−2κ1−4ξ1)/(8+α1)}, ζ2 = min{(1−2κ1−2ξ2)/(4+α1), (1−2κ1−2ξ1)/(6+α1)}, and

ζ ′2 = min{ζ2, (1−2κ1)/(4+α2)}. Define η = min{η1, (1−2κ1)/(4+α1), (1−2κ1)/(8+α1), ζ1}
and ζ = min{η1, ζ ′2}. Then η = η1 and ζ = min{η1, (1 − 2κ1)/(4 + α2)}. Thus, by Lemmas

8–12, we have

P ( max
1≤k≤p

|ω̂k − ωk| ≥ Cn−κ1) ≤ pC̃1 exp(−C̃2n
α1η) + C̃3 exp(−C̃4n

α2ζ). (D.10)

Thus, if log p = o{nα1η}, the result of the part (a) in Theorem 1 follows immediately.

It thus remains to prove the probability bounds (D.6)–(D.9). Since the proofs of (D.6)–

(D.9) are similar, here we focus on (D.6) to save space. Throughout the proof, the same

notation C̃ is used to denote a generic positive constant without loss of generality, which

may take different values at each appearance.

Recall that Yi = β0 + xT
i β0 + zTi γ0 + εi = β0 + xT

i,Bβ0,B + zTi, Iγ0,I + εi, where xi =

(Xi1, · · · ,Xip)T , zi = (Xi1Xi2, · · · ,Xi,p−1Xi,p)T , xi,B = (Xij , j ∈ B)T , zi, I = (XikXiℓ, (k, ℓ) ∈
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I)T , β0,B = (β0,j ∈ B)T , and γ0,I = (γ0, kℓ, (k, ℓ) ∈ I)T . To simplify the presentation, we

assume that the intercept β0 is zero without loss of generality. Thus

Sk1 =n−1
n∑

i=1

X2
ikY

2
i = n−1

n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi,Iγ0,I + εi)
2

=n−1
n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi,Iγ0,I)2 + 2n−1
n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi,Iγ0,I)εi + n−1
n∑

i=1

X2
ikε

2
i

,Sk1,1 + 2Sk1,2 + Sk1,3.

Similarly, E(Sk1) can be written as E(Sk1) = E(Sk1,1)+2E(Sk1,2)+E(Sk1,3). So Sk1−E(Sk1)

can be expressed as Sk1−E(Sk1) = [Sk1,1−E(Sk1,1)]+2[Sk1,2−E(Sk1,2)]+[Sk1,3−E(Sk1,3)].

By the triangle inequality and the union bound we have

P ( max
1≤k≤p

|Sk1 −E(Sk1)| ≥ Cn−κ1) ≤P (
3⋃

j=1

{ max
1≤k≤p

|Sk1,j − E(Sk1,j)| ≥ Cn−κ1/4})

≤
3∑

j=1

P ( max
1≤k≤p

|Sk1,j − E(Sk1,j)| ≥ Cn−κ1/4). (D.11)

In what follows, we will provide details on deriving an exponential tail probability bound for

each term on the right hand side above. To enhance readability, we split the proof into three

steps.

Step 1. We start with the first term max1≤k≤p |Sk1,1 − E(Sk1,1)|. Define the event

Ωi = {|Xij | ≤ M1 for all j ∈ M ∪ {k}} with M = A ∪ B and M1 a large positive num-

ber that will be specified later. Let Tk1 = n−1
n∑

i=1
X2

ik(xT
i,Bβ0,B + zTi, Iγ0,I)2IΩi

and Tk2 =

n−1
n∑

i=1
X2

ik(xT
i,Bβ0,B + zTi, Iγ0,I)2IΩc

i
, where I(·) is the indicator function and Ωc

i is the com-

plement of the set Ωi. Then

Sk1,1 − E(Sk1,1) = [Tk1 − E(Tk1)] + Tk2 − E(Tk2). (D.12)

Note that E(Tk2) = E[X2
1k(xT

1,Bβ0,B + zT1, Iγ0,I)2IΩc
1
]. By the fact (a + b)2 ≤ 2(a2 + b2) for
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two real numbers a and b, the Cauchy-Schwarz inequality, and Condition 1, we have

(xT
1,Bβ0,B + zT1, Iγ0,I)2 ≤ 2[(xT

1,Bβ0,B)2 + (zT1, Iγ0,I)2]

≤ 2C2
0 (s2‖x1,B‖2 + s1‖z1, I‖2), (D.13)

where C0 is some positive constant and ‖ · ‖ denotes the Euclidean norm. This ensures that

E(Tk2) is bounded by 2C2
0 [s2E(X2

1k‖x1,B‖2IΩc
1
) + s1E(X2

1k‖z1, I‖2IΩc
1
)]. By the Cauchy-

Schwarz inequality, the union bound, and the inequality (a + b)2 ≤ 2(a2 + b2), we obtain

that

E(X2
1k‖x1,B‖2IΩc

1
) ≤

[
E(X4

1k‖x1,B‖4)P (Ωc
1)
]1/2 ≤






s2

∑

j∈B

E(X4
1kX

4
1j)


P (Ωc

1)





1/2

≤



2−1s2

∑

j∈B

[E(X8
1k) + E(X8

1j)]





1/2 
 ∑

j∈M∪{k}

P (|Xij | > M1)



1/2

≤C̃s2(1 + s2 + 2s1)1/2 exp[−Mα1

1 /(2c1)]

for some positive constant C̃, where the last inequality follows from Condition 2 and Lemma

2. Similarly, we have E(X2
1k‖z1, I‖2IΩc

1
) ≤ C̃s1(1 + s2 + 2s1)1/2 exp[−Mα1

1 /(2c1)]. This

together with the above inequalities entails that

0 ≤ E(Tk2) ≤ 2C2
0 C̃(s21 + s22)(1 + s2 + 2s1)

1/2 exp[−Mα1

1 /(2c1)].

If we choose M1 = nη1 with η1 > 0, then by Condition 1, for any positive constant C, when

n is sufficiently large,

|E(Tk2)| ≤ 2C2
0 C̃(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)] < Cn−κ1/12 (D.14)

holds uniformly for all 1 ≤ k ≤ p. The above inequality together with (D.12) ensures that

P ( max
1≤k≤p

|Sk1,1 −E(Sk1,1)| ≥ Cn−κ1/4)

≤P ( max
1≤k≤p

|Tk1 − E(Tk1)| ≥ Cn−κ1/12) + P ( max
1≤k≤p

|Tk2| ≥ Cn−κ1/12) (D.15)
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for all n sufficiently large. Thus we only need to establish the probability bound for each

term on the right hand side of (D.15).

First consider max1≤k≤p |Tk1 − E(Tk1)|. Using similar arguments for proving (D.13), we

have (xT
i,Bβ0,B + zTi, Iγ0,I)2 ≤ 2C2

0 (s2‖xi,B‖2 + s1‖zi,I‖2) and thus

0 ≤ X2
ik(xT

i,Bβ0,B + zTi, Iγ0,I)2IΩi
≤ 2C2

0X
2
ik(s2‖xi,B‖2 + s1‖zi,I‖2)IΩi

≤ 2C2
0M

4
1 (s22 + s21M

2
1 ).

For any δ > 0, by Hoeffding’s inequality (Hoeffding, 1963), we obtain

P (|Tk1 − E(Tk1)| ≥ δ) ≤2 exp

[
− nδ2

2C4
0M

8
1 (s22 + s21M

2
1 )2

]
≤ 2 exp

[
− nδ2

4C4
0M

8
1 (s42 + s41M

4
1 )

]

≤2 exp

(
− nδ2

8C4
0M

8
1 s

4
2

)
+ 2 exp

(
− nδ2

8C4
0M

12
1 s41

)
,

where we have used the fact that (a + b)2 ≤ 2(a2 + b2) for any real numbers a and b, and

exp[−c/(a + b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any a, b, c > 0. Recall that M1 = nη1 .

Under Condition 1, taking δ = Cn−κ1/12 gives that

P ( max
1≤k≤p

|Tk1 − E(Tk1)| ≥ Cn−κ1/12) ≤
p∑

k=1

P (|Tk1 −E(Tk1)| ≥ Cn−κ1/12)

≤2p exp
(
−C̃n1−2κ1−8η1−4ξ2

)
+ 2p exp

(
−C̃n1−2κ1−12η1−4ξ1

)
. (D.16)

Next, consider max1≤k≤p |Tk2|. Recall that Tk2 = n−1
n∑

i=1
X2

ik(xT
i,Bβ0,B + zTi, Iγ0,I)2IΩc

i
≥

0. By Markov’s inequality, for any δ > 0, we have P (|Tk2| ≥ δ) ≤ δ−1E(|Tk2|) = δ−1E(Tk2).

In view of the first inequality in (D.14), taking δ = Cn−κ1/12 leads to

P (|Tk2| ≥ Cn−κ1/12) ≤24C−1C2
0 C̃nκ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]

for all 1 ≤ k ≤ p. Therefore,

P ( max
1≤k≤p

|Tk2| ≥ Cn−κ1/12) ≤
p∑

k=1

P (|Tk2| ≥ Cn−κ1/12)

≤24pC−1C2
0 C̃nκ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]. (D.17)
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Combining (D.15), (D.16), and (D.17) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,1 − E(Sk1,1)| ≥ Cn−κ1/4)

≤2p exp
(
−C̃n1−2κ1−8η1−4ξ2

)
+ 2p exp

(
−C̃n1−2κ1−12η1−4ξ1

)

+ 24pC−1C2
0 C̃nκ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]. (D.18)

To balance the three terms on the right hand side of (D.18), we choose η1 = min{(1− 2κ1 −
4ξ2)/(8 + α1), (1 − 2κ1 − 4ξ1)/(12 + α1)} > 0 and the probability bound (D.18) becomes

P ( max
1≤k≤p

|Sk1,1 − E(Sk1,1)| ≥ Cn−κ1/4) ≤ pC̃5 exp
(
−C̃6n

α1η1
)

(D.19)

for all n sufficiently large, where C̃5 and C̃6 are two positive constants.

Step 2. We establish the probability bound for max1≤k≤p |Sk1,2 − E(Sk1,2)|. Define the

event Ψi = {|Xij | ≤ M2 for all j ∈ M∪ {k}} with M = A ∪ B and let

Tk3 = n−1
n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi, Iγ0,I)εiIΨi
I(|εi| ≤ M3),

Tk4 = n−1
n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi, Iγ0,I)εiIΨi
I(|εi| > M3),

Tk5 = n−1
n∑

i=1

X2
ik(xT

i,Bβ0,B + zTi, Iγ0,I)εiIΨc
i
,

where M2 and M3 are two large positive numbers which will be specified later. Then

Sk1,2 = Tk3 + Tk4 + Tk5. Similarly, E(Sk1,2) can be written as E(Sk1,2) = E(Tk3) +

E(Tk4) + E(Tk5). Since ε1 has mean zero and is independent of X1,1, · · · ,X1,p, we have

E(Tk5) = E[X2
1k(xT

1,Bβ0,B + zT1,Iγ0,I)ε1IΨc
1
] = E[X2

1k(xT
1,Bβ0,B + zT1, Iγ0,I)IΨc

1
]E(ε1) = 0.

Thus Sk1,2 − E(Sk1,2) can be expressed as

Sk1,2 − E(Sk1,2) = [Tk3 − E(Tk3)] + Tk4 + Tk5 − E(Tk4). (D.20)

Note that E(Tk4) = E[X2
1k(xT

1,Bβ0,B + zT1, Iγ0,I)ε1IΨ1
I(|ε1| > M3)]. Thus

|E(Tk4)| ≤ E[X2
1k|xT

1,Bβ0,B + zT1,Iγ0,I |IΨ1
|ε1|I(|ε1| > M3)].

15



It follows from the triangle inequality and Condition 1 that

X2
1k|xT

1,Bβ0,B + zT1,Iγ0,I |IΨ1
≤ X2

1k(|xT
1,Bβ0,B| + |zT1, Iγ0,I |)IΨ1

≤ C0M
3
2 (s2 + s1M2) (D.21)

for all 1 ≤ k ≤ p and some positive constant C0. By the Cauchy-Schwarz inequality,

Condition 2, and Lemma 2, we have

E[|ε1|I(|ε1| > M3)] ≤ [E(ε21)P (|ε1| > M3)]1/2 ≤ C̃ exp[−Mα2

3 /(2c1)]. (D.22)

This together with the above inequalities entails that

|E(Tk4)| ≤ C0M
3
2 (s2 + s1M2)E[|ε1|I(|ε1| > M3)] ≤ C0C̃M3

2 (s2 + s1M2) exp[−Mα2

3 /(2c1)].

If we choose M2 = nη2 and M3 = nη3 with η2 > 0 and η3 > 0, then under Condition 1, for

any positive constant C, when n is sufficiently large,

|E(Tk4)| ≤ C0C̃n3η2(nξ2 + nξ1+η2) exp[−nα2η3/(2c1)] ≤ Cn−κ1/16

holds uniformly for all 1 ≤ k ≤ p. This together with (D.20) ensures that

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4) ≤ P ( max
1≤k≤p

|Tk3 − E(Tk3)| ≥ Cn−κ1/16)

+ P ( max
1≤k≤p

|Tk4| ≥ Cn−κ1/16) + P ( max
1≤k≤p

|Tk5| ≥ Cn−κ1/16) (D.23)

for all n sufficiently large. In what follows, we will provide details on establishing the

probability bound for each term on the right hand side of (D.23).

First consider max1≤k≤p |Tk3 − E(Tk3)|. In view of (D.21), we have |X2
ik(xT

i,Bβ0,B +

zTi, Iγ0,I)εiIΨi
I(|εi| ≤ M3)| ≤ C0M

3
2M3(s2 + s1M2). For any δ > 0, by Hoeffding’s inequality

16



(Hoeffding, 1963), it holds that

P (|Tk3 − E(Tk3)| ≥ δ) ≤2 exp

[
− nδ2

2C2
0M

6
2M

2
3 (s2 + s1M2)2

]
≤ 2 exp

[
− nδ2

4C2
0M

6
2M

2
3 (s22 + s21M

2
2 )

]

≤2 exp

(
− nδ2

8C2
0M

6
2M

2
3 s

2
2

)
+ 2 exp

(
− nδ2

8C2
0M

8
2M

2
3 s

2
1

)
,

where we have used the fact that exp[−c/(a + b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any

a, b, c > 0. Recall that M2 = nη2 and M3 = nη3 . Thus, taking δ = Cn−κ1/16 gives

P ( max
1≤k≤p

|Tk3 − E(Tk3)| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk3 −E(Tk3)| ≥ Cn−κ1/16)

≤2p exp
(
−C̃n1−2κ1−6η2−2η3−2ξ2

)
+ 2p exp

(
−C̃n1−2κ1−8η2−2η3−2ξ1

)
. (D.24)

Next we handle max1≤k≤p |Tk4|. Using similar arguments as for proving (D.21), we have

X2
ik|xT

i,Bβ0,B + zTi,Iγ0,I |IΨi
≤ C0M

3
2 (s2 + s1M2) for all 1 ≤ i ≤ n and 1 ≤ k ≤ p and thus

max
1≤k≤p

|Tk4| ≤ C0M
3
2 (s2 + s1M2)n−1

n∑

i=1

|εi|I(|εi| > M3).

It follows from Markov’s inequality and (D.22) that

P ( max
1≤k≤p

|Tk4| ≥ δ) ≤P

{
C0M

3
2 (s2 + s1M2)n−1

n∑

i=1

|εi|I(|εi| > M3) ≥ δ

}

≤δ−1E

[
C0M

3
2 (s2 + s1M2)n−1

n∑

i=1

|εi|I(|εi| > M3)

]

=δ−1C0M
3
2 (s2 + s1M2)E[|ε1|I(|ε1| > M3)]

≤δ−1C0C̃M3
2 (s2 + s1M2) exp[−Mα2

3 /(2c1)].

Recall that M2 = nη2 and M3 = nη3 . Thus, taking δ = Cn−κ1/16 results in

P ( max
1≤k≤p

|Tk4| ≥ Cn−κ1/16)

≤16C−1C0C̃n3η2+κ1(nξ2 + nξ1+η2) exp[−nα2η3/(2c1)]. (D.25)

We next consider max1≤k≤p |Tk5|. Since |Tk5| ≤ n−1
n∑

i=1
X2

ik|(xT
i,Bβ0,B + zTi,Iγ0,I)εi|IΨc

i
,

17



by Markov’s inequality we have

P (|Tk5| ≥ δ) ≤P

{
n−1

n∑

i=1

X2
ik|(xT

i,Bβ0,B + zTi, Iγ0,I)εi|IΨc
i
≥ δ

}

≤δ−1E

[
n−1

n∑

i=1

X2
ik|(xT

i,Bβ0,B + zTi,Iγ0,I)εi|IΨc
i

]

=δ−1E[X2
1k|(xT

1,Bβ0,B + zT1, Iγ0,I)ε1|IΨc
1
].

It follows from the Cauchy-Schwarz inequality and (D.13) that

E[X2
1k|(xT

1,Bβ0,B + zT1, Iγ0,I)ε1|IΨc
i
] ≤ {E[X4

1k(xT
1,Bβ0,B + zT1,Iγ0,I)2ε21]P (Ψc

1)}1/2

≤{2C2
0

[
s2E(X4

1k‖x1,B‖2ε21) + s1E(X4
1k‖z1,I‖2ε21)

]
P (Ψc

1)}1/2.

Applying the Cauchy-Schwarz inequality again gives

E(X4
1k‖x1,B‖2ε21) ≤

[
E(X8

1k‖x1,B‖4)E(ε41)
]1/2 ≤


s2

∑

j∈B

E(X8
1kX

4
1j)



1/2

[
E(ε41)

]1/2

≤



2−1s2

∑

j∈B

[E(X16
1k ) + E(X8

1j)]





1/2

[
E(ε41)

]1/2 ≤ C̃s2,

where the last inequality follows from Condition 2 and Lemma 2. Similarly, we can show

that E(X4
1k‖z1, I‖2ε21) ≤ C̃s1. By Condition 2 and the union bound, we deduce P (Ψc

1) =

P (|Xij | > M2 for some j ∈ M ∪ {k}) ≤ (1 + 2s1 + s2)c1exp(−Mα1

2 /c1). This together with

the above inequalities entails that

P (|Tk5| ≥ δ) ≤ δ−1{2C2
0 C̃(s21 + s22)(1 + 2s1 + s2)c1 exp(−Mα1

2 /c1)}1/2.

Recall that M2 = nη2 . Under Condition 1, taking δ = Cn−κ1/16 yields

P ( max
1≤k≤p

|Tk5| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk5| ≥ Cn−κ1/16)

≤16pC−1nκ1{2C2
0 C̃c1(n

2ξ1 + n2ξ2)(1 + 2nξ1 + nξ2)}1/2 exp[−nα1η2/(2c1)]. (D.26)
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Combining (D.23), (D.24), (D.25), and (D.26) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4)

≤2p exp
(
−C̃n1−2κ1−6η2−2η3−2ξ2

)
+ 2p exp

(
−C̃n1−2κ1−8η2−2η3−2ξ1

)

+ 16pC−1nκ1{2C2
0 C̃c1(n2ξ1 + n2ξ2)(1 + 2nξ1 + nξ2)}1/2 exp[−nα1η2/(2c1)]

+ 16C−1C0C̃n3η2+κ1(nξ2 + nξ1+η2) exp[−nα2η3/(2c1)]. (D.27)

Let η2 = η3 = min{(1−2κ1−2ξ2)/(8+α1), (1−2κ1−2ξ1)/(10+α1)}. Then (D.27) becomes

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4)

≤ pC̃7 exp
(
−C̃8n

α1η2
)

+ C̃9 exp[−C̃10n
α2η2 ]. (D.28)

for all n sufficiently large, where C̃7, C̃8, C̃9, and C̃10 are some positive constants.

Step 3. We establish the probability bound for max1≤k≤p |Sk1,3 − E(Sk1,3)|. Define

Tk6 = n−1
n∑

i=1

X2
ikε

2
i I(|Xik| ≤ M4)I(|εi| ≤ M5),

Tk7 = n−1
n∑

i=1

X2
ikε

2
i I(|Xik| ≤ M4)I(|εi| > M5),

Tk8 = n−1
n∑

i=1

X2
ikε

2
i I(|Xik| > M4),

where M4 and M5 are two large positive numbers whose values will be specified later. Then

Sk1,3 = Tk6 + Tk7 + Tk8. Similarly, E(Sk1,3) can be written as E(Sk1,3) = E(Tk6) +E(Tk7) +

E(Tk8) with E(Tk6) = E[X2
1kε

2
1I(|X1k| ≤ M4)I(|ε1| ≤ M5)], E(Tk7) = E[X2

1kε
2
1I(|X1k| ≤

M4)I(|ε1| > M5)], and E(Tk8) = E[X2
1kε

2
1I(|X1k | > M4)]. Thus Sk1,3 − E(Sk1,3) can be

expressed as

Sk1,3 − E(Sk1,3) = [Tk6 − E(Tk6)] + Tk7 + Tk8 − [E(Tk7) + E(Tk8)]. (D.29)

First consider the last two terms E(Tk7) and E(Tk8). It follows from 0 ≤ X2
1kε

2
1I(|X1k| ≤
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M4)I(|ε1| > M5) ≤ M2
4 ε

2
1I(|ε1| > M5) that

0 ≤ E(Tk7) ≤ M2
4E[ε21I(|ε1| > M5)]. (D.30)

An application of the Cauchy-Schwarz inequality leads to E[ε21I(|ε1| > M5)] ≤ [E(ε41)P (|ε1| >
M5)]1/2. By Condition 2 and Lemma 2, we have

E[ε21I(|ε1| > M5)] ≤ {E(ε41)c1}1/2 exp(−c−1
1 Mα2

5 /2) ≤ C̃ exp[−Mα2

5 /(2c1)] (D.31)

Combining (D.30) with (D.31) yields

|E(Tk7)| ≤ C̃M2
4 exp[−Mα2

5 /(2c1)]. (D.32)

Similarly, by the Cauchy-Schwarz inequality and Lemma 2 we obtain

|E(Tk8)| = E[X2
1kε

2
1I(|X1k| > M4)] ≤ {E(X4

1kε
4
1)P (|X1k| > M4)]}1/2

≤
{c1

2
[E(X8

1k) + E(ε81)]
}1/2

exp[−Mα1

4 /(2c1)] ≤ C̃ exp[−Mα1

4 /(2c1)]. (D.33)

Combining (D.32) and (D.33) results in

|E(Tk7) + E(Tk8)| ≤ C̃M2
4 exp[−Mα2

5 /(2c1)] + C̃ exp[−Mα1

4 /(2c1)].

If we choose M4 = nη4 and M5 = nη5 with η4 > 0 and η5 > 0, then for any positive constant

C, when n is sufficiently large,

|E(Tk7) + E(Tk8)| ≤ C̃n2η4 exp[−nα2η5/(2c1)] + C̃ exp[−nα1η4/(2c1)] < Cn−κ1/16

holds uniformly for all 1 ≤ k ≤ p. The above inequality together with (D.29) ensures that

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4)

≤ P ( max
1≤k≤p

|Tk6 − E(Tk6)| ≥ Cn−κ1/16) + P ( max
1≤k≤p

|Tk7| ≥ Cn−κ1/16)

+ P ( max
1≤k≤p

|Tk8| ≥ Cn−κ1/16) (D.34)
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for all n sufficiently large.

In what follows, we will provide details on establishing the probability bound for each

term on the right hand side of (D.34). First consider max1≤k≤p |Tk6 − E(Tk6)|. Since 0 ≤
X2

ikε
2
i I(|Xik| ≤ M4)I(|εi| ≤ M5) ≤ M2

4M
2
5 , by Hoeffding’s inequality (Hoeffding, 1963) we

have for any δ > 0 that

P (|Tk6 − E(Tk6)| ≥ δ) ≤ 2 exp

(
− 2nδ2

M4
4M

4
5

)
= 2 exp

(
−2n1−4η4−4η5δ2

)
,

by noting that M4 = nη4 and M5 = nη5 . Thus, taking δ = Cn−κ1/16 gives

P ( max
1≤k≤p

|Tk6 − E(Tk6)| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk6 − E(Tk6)| ≥ Cn−κ1/16)

≤ 2p exp
(
−C̃n1−2κ1−4η4−4η5

)
. (D.35)

Next we handle max1≤k≤p |Tk7|. Since max1≤k≤p |Tk7| ≤ n−1M2
4

∑n
i=1 ε

2
i I(|εi| > M5), it

follows from Markov’s inequality and (D.31) that for any δ > 0,

P ( max
1≤k≤p

|Tk7| ≥ δ) ≤P{n−1M2
4

n∑

i=1

ε2i I(|εi| > M5) ≥ δ} ≤ δ−1E[n−1M2
4

n∑

i=1

ε2i I(|εi| > M5)]

=δ−1M2
4E[ε21I(|ε1| > M5)] ≤ C̃δ−1M2

4 exp[−Mα2

5 /(2c1)].

Recall that M4 = nη4 and M5 = nη5 . Setting δ = Cn−κ1/16 in the above inequality entails

P ( max
1≤j≤p

|Tk7| ≥ Cn−κ1/16) ≤ 16C−1C̃n2η4+κ1 exp[−nα2η5/(2c1)]. (D.36)

We then consider max1≤k≤p |Tk8|. By Markov’s inequality and (D.33), for any δ > 0,

P (|Tk8| ≥ δ) ≤ δ−1E[n−1
n∑

i=1

X2
ikε

2
i I(|Xik| > M4)] = δ−1E[X2

1kε
2
1I(|X1k| > M4)]

≤ δ−1C̃ exp[−Mα1

4 /(2c1)]. (D.37)
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Recall that M4 = nη1 . In view of (D.37), taking δ = Cn−κ1/16 leads to

P ( max
1≤k≤p

|Tk8| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk8| ≥ Cn−κ1/16)

≤16pC−1C̃nκ1 exp[−nα1η4/(2c1)]. (D.38)

Combining (D.34), (D.35), (D.36) with (D.38) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4) ≤ 2p exp
(
−C̃n1−2κ1−4η4−4η5

)

+ 16pC−1C̃nκ1 exp[−nα1η4/(2c1)] + 16C−1C̃n2η4+κ1 exp[−nα2η5/(2c1)]. (D.39)

Let η4 = η5 = (1 − 2κ1)/(8 + α1). Then (D.39) becomes

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4)

≤ pC̃11 exp[−C̃12n
α1η4 ] + C̃13 exp[−C̃14n

α2η4 ] (D.40)

for all n sufficiently large, where C̃11, C̃12, C̃13, and C̃14 are some positive constants.

Since 0 < η1 < η2 = η3 and η1 ≤ η4, it follows from (D.11), (D.19), (D.28), and (D.40)

that there exist some positive constants C̃1, · · · , C̃4 such that

P ( max
1≤k≤p

|Sk1 − E(Sk1)| ≥ Cn−κ1) ≤ pC̃1 exp
(
−C̃2n

α1η1
)

+ C̃3 exp
(
−C̃4n

α2η1
)

for all n sufficiently large. This concludes the proof of part a) of Theorem 1.

D.3. Proof of part b) of Theorem 1

We recall that ω∗
j = E(XjY ) and ω̂∗

j = n−1
n∑

i=1
XijYi. Note that Yi = β0+xT

i β0+zTi γ0+εi =

β0 + xT
i,Bβ0,B + zTi, Iγ0,I + εi, where xi = (Xi1, · · · ,Xip)T , zi = (Xi1Xi2, · · · ,Xi,p−1Xi,p)T ,

xi,B = (Xiℓ, ℓ ∈ B)T , zi,I = (XikXiℓ, (k, ℓ) ∈ I)T , β0,B = (β0
ℓ , ℓ ∈ B)T , and γ0,I =

(γkℓ, (k, ℓ) ∈ I)T . To simplify the proof, we assume that the intercept β0 is zero without loss
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of generality. Thus

ω̂∗
j = n−1

n∑

i=1

XijYi = n−1
n∑

i=1

Xij(x
T
i,Bβ0,B + zTi, Iγ0,I) + n−1

n∑

i=1

Xijεi , Sj1 + Sj2.

Similarly, ω∗
j can be written as ω∗

j = E(XjY ) = E(Sj1)+E(Sj2). So ω̂∗
j−ω∗

j can be expressed

as ω̂∗
j −ω∗

j = [Sj1−E(Sj1)]+ [Sj2−E(Sj2)]. By the triangle inequality and the union bound,

it holds that

P ( max
1≤j≤p

|ω̂∗
j − ω∗

j | ≥ Cn−κ2)

≤P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2) + P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2). (D.41)

In what follows, we will provide details on deriving an exponential tail probability bound for

each term on the right hand side above. To enhance readability, we split the proof into two

steps.

Step 1. We start with the first term max1≤k≤p |Sj1 − E(Sj1)|. Define the event Φi =

{|Xiℓ| ≤ M6 for all ℓ ∈ M∪{j}} with M = A∪B and M6 a large positive number that will be

specified later. Let Tj1 = n−1
n∑

i=1
Xij(x

T
i,Bβ0,B+zTi, Iγ0,I)IΦi

and Tj2 = n−1
n∑

i=1
Xij(x

T
i,Bβ0,B+

zTi, Iγ0,I)IΦc
i
, where I(·) is the indicator function and Φc

i is the complement of the set Φi. Then

an application of the triangle inequality yields

|Sj1 − E(Sj1)| =|[Tj1 − E(Tj1)] + Tj2 − E(Tj2)| ≤ |Tj1 − E(Tj1)| + |Tj2| + |E(Tj2)|

≤|Tj1 −E(Tj1)| + |Tj2| + E(|Tj2|). (D.42)

Note that |Tj2| ≤ n−1
n∑

i=1
|Xij(x

T
i,Bβ0,B+zTi,Iγ0,I)|IΦc

i
and thus E(|Tj2|) ≤ E[|X1j(x

T
1,Bβ0,B+

zT1, Iγ0,I)|IΦc
1
]. By the triangle inequality and Condition 1, we have

|X1j(x
T
1,Bβ0,B + zT1, Iγ0,I)| ≤ C0(|X1j |‖x1,B‖1 + |X1j |‖z1, I‖1), (D.43)

which ensures that E(|Tj2|) is bounded by C0[E(|X1j |‖x1,B‖1IΩc
1
) + E(|X1j |‖z1,I‖1IΩc

1
)].

Here ‖ · ‖1 is the L1 norm. By the Cauchy-Schwarz inequality and the triangular inequality,
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we deduce

E(|X1j |‖x1,B‖1IΦc
1
) ≤

[
E(X2

1j‖x1,B‖21)P (Φc
1)
]1/2 ≤

{[
s2
∑

ℓ∈B

E(X2
1jX

2
1ℓ)

]
P (Φc

1)

}1/2

≤
{

2−1s2
∑

ℓ∈B

[E(X4
1j) + E(X4

1ℓ)]

}1/2

 ∑

ℓ∈M∪{j}

P (|Xiℓ| > M6)



1/2

≤C̃s2(1 + s2 + 2s1)1/2 exp[−Mα1

6 /(2c1)]

for some positive constant C̃, where the last inequality follows from Condition 2 and Lemma

2. Similarly, we have E(|X1j |‖z1, I‖1IΦc
1
) ≤ C̃s1(1 + s2 + 2s1)1/2 exp[−Mα1

6 /(2c1)]. This

together with the above inequalities entails that

E(|Tj2|) ≤ C0C̃(s1 + s2)(1 + s2 + 2s1)
1/2 exp[−Mα1

6 /(2c1)].

If we choose M6 = nη6 with η6 > 0, then by Condition 1, for any positive constant C, when

n is sufficiently large,

E(|Tj2|) ≤ C0C̃(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)] < Cn−κ2/6 (D.44)

holds uniformly for all 1 ≤ j ≤ p. The above inequality together with (D.42) ensures that

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2)

≤P ( max
1≤j≤p

|Tj1 − E(Tj1)| ≥ Cn−κ2/6) + P ( max
1≤j≤p

|Tj2| ≥ Cn−κ2/6) (D.45)

for all n is sufficiently large. Thus we only need to establish the probability bound for each

term on the right hand side of (D.45).

First consider max1≤j≤p |Tj1 − E(Tj1)|. Using similar arguments as for proving (D.43),

we have

|Xij(x
T
i,Bβ0,B + zTi,Iγ0,I)IΦi

| ≤ C0(|Xij |‖xi,B‖1 + |Xij |‖zi,I‖1)IΦi
≤ C0(s2M

2
6 + s1M

3
6 ).
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For any δ > 0, an application of Hoeffding’s inequality (Hoeffding, 1963) gives

P (|Tj1 − E(Tj1)| ≥ δ) ≤2 exp

[
− nδ2

2C2
0M

4
6 (s2 + s1M6)2

]
≤ 2 exp

[
− nδ2

4C2
0M

4
6 (s22 + s21M

2
6 )

]

≤2 exp

(
− nδ2

8C2
0M

4
6 s

2
2

)
+ 2 exp

(
− nδ2

8C2
0M

6
6 s

2
1

)
,

where we have used the fact that (a + b)2 ≤ 2(a2 + b2) for any real numbers a and b, and

exp[−c/(a + b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any a, b, c > 0. Recall that M6 = nη6 .

Under Condition 1, taking δ = Cn−κ2/6 results in

P ( max
1≤j≤p

|Tj1 − E(Tj1)| ≥ Cn−κ2/6) ≤
p∑

j=1

P (|Tj1 − E(Tj1)| ≥ Cn−κ2/6)

≤2p exp
(
−C̃n1−2κ2−4η6−2ξ2

)
+ 2p exp

(
−C̃n1−2κ2−6η6−2ξ1

)
. (D.46)

Next, consider max1≤j≤p |Tj2|. By Markov’s inequality, for any δ > 0, we have P (|Tj2| ≥
δ) ≤ δ−1E(|Tj2|). In view of the first inequality in (D.44), taking δ = Cn−κ2/6 gives that

P (|Tj2| ≥ Cn−κ2/6) ≤6C−1C0C̃nκ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]

for all 1 ≤ j ≤ p. Therefore,

P ( max
1≤j≤p

|Tj2| ≥ Cn−κ2/6) ≤
p∑

j=1

P (|Tj2| ≥ Cn−κ2/6)

≤6pC−1C0C̃nκ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]. (D.47)

Combining (D.45), (D.46), and (D.47) yields that for sufficiently large n,

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2)

≤ 2p exp
(
−C̃n1−2κ2−4η6−2ξ2

)
+ 2p exp

(
−C̃n1−2κ2−6η6−2ξ1

)

+ 6pC−1C0C̃nκ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]. (D.48)

To balance the three terms on the right hand side of (D.48), we choose η6 = min{(1− 2κ2 −
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2ξ2)/(4 +α1), (1− 2κ2 − 2ξ1)/(6 +α1)} > 0 and the probability bound (D.48) then becomes

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2) ≤ pC̃1 exp
(
−C̃2n

α1η6
)

(D.49)

for all n sufficiently large, where C̃1 and C̃2 are two positive constants.

Step 2. We establish the probability bound for max1≤j≤p |Sj2 − E(Sj2)|. Define

Tj3 = n−1
n∑

i=1

XijεiI(|Xij | ≤ M7)I(|εi| ≤ M8),

Tj4 = n−1
n∑

i=1

XijεiI(|Xij | ≤ M7)I(|εi| > M8),

Tj5 = n−1
n∑

i=1

XijεiI(|Xij | > M7),

where M7 and M8 are two large positive numbers whose values will be specified later. Then

Sj2 = Tj3 + Tj4 + Tj5. Similarly, E(Sj2) can be written as E(Sj2) = E(Tj3) + E(Tj4) +

E(Tj5). Since ε1 has mean zero and is independent of X1,1, · · · ,X1,p, we have E(Tj5) =

E[X1jε1I(|X1j | > M7)] = E[X1jI(|X1j | > M7)]E(ε1) = 0. Thus Sj2 − E(Sj2) can be

expressed as Sj2 − E(Sj2) = [Tj3 − E(Tj3)] + Tj4 + Tj5 − E(Tj4). An application of the

triangle inequality yields

|Sj2 − E(Sj2)| ≤|Tj3 − E(Tj3)| + |Tj4| + |Tj5| + |E(Tj4)|

≤|Tj3 − E(Tj3)| + |Tj4| + |Tj5| + E(|Tj4|). (D.50)

First consider the last term E(|Tj4|). Note that |Tj4| ≤ n−1
∑n

i=1 |Xijεi|I(|Xij | ≤
M7)I(|εi| > M8) and thus

E(|Tj4|) ≤ E[|X1jε1|I(|X1j | ≤ M7)I(|ε1| > M8)] ≤ M7E[|ε1|I(|ε1| > M8)]. (D.51)

An application of the Cauchy-Schwarz inequality gives E[|ε1|I(|ε1| > M8)] ≤ [E(ε21)P (|ε1| >
M8)]1/2. By Condition 2 and Lemma 2, we have

E[|ε1|I(|ε1| > M8)] ≤ {E(ε21)c1}1/2 exp(−c−1
1 Mα2

8 /2) ≤ C̃ exp[−Mα2

8 /(2c1)] (D.52)
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Combining (D.51) with (D.52) yields

E(|Tj4|) ≤ C̃M7 exp[−Mα2

8 /(2c1)]. (D.53)

If we choose M7 = nη7 and M8 = nη8 with η7 > 0 and η8 > 0, then for any positive constant

C, when n is sufficiently large,

E(|Tj4|) ≤ C̃nη7 exp[−nα2η8/(2c1)] < Cn−κ2/8

holds uniformly for all 1 ≤ j ≤ p. The above inequality together with (D.50) ensures that

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2)

≤P ( max
1≤j≤p

|Tj3 − E(Tj3)| ≥ Cn−κ2/8) + P ( max
1≤j≤p

|Tj4| ≥ Cn−κ2/8)

+ P ( max
1≤j≤p

|Tj5| ≥ Cn−κ2/8) (D.54)

for all n sufficiently large.

In what follows, we will provide details on establishing the probability bound for each term

on the right hand side of (D.54). First consider max1≤j≤p |Tj3−E(Tj3)|. Since |XijεiI(|Xij | ≤
M7)I(|εi| ≤ M8)| ≤ M7M8, for any δ > 0, by Hoeffding’s inequality (Hoeffding, 1963) we

obtain

P (|Tj3 − E(Tj3)| ≥ δ) ≤ 2 exp

(
− nδ2

2M2
7M

2
8

)
= 2 exp

(
−2−1n1−2η7−2η8δ2

)
,

by noting that M7 = nη7 and M8 = nη8 . Thus, taking δ = Cn−κ2/8 gives

P ( max
1≤j≤p

|Tj3 − E(Tj3)| ≥ Cn−κ2/8) ≤
p∑

j=1

P (|Tj3 − E(Tj3)| ≥ Cn−κ2/8)

≤2p exp
(
−C̃n1−2κ2−2η7−2η8

)
. (D.55)

Next we handle max1≤j≤p |Tj4|. Since max1≤j≤p |Tj4| ≤ n−1M7
∑n

i=1 |εi|I(|εi| > M8), it
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follows from Markov’s inequality and (D.52) that for any δ > 0,

P ( max
1≤j≤p

|Tj4| ≥ δ) ≤P{n−1M7

n∑

i=1

|εi|I(|εi| > M8) ≥ δ} ≤ δ−1E[n−1M7

n∑

i=1

|εi|I(|εi| > M8)]

=δ−1M7E[|ε1|I(|ε1| > M8)] ≤ C̃δ−1M7 exp[−Mα2

8 /(2c1)].

Recall that M7 = nη7 and M8 = nη8 . Setting δ = Cn−κ2/8 in the above inequality entails

P ( max
1≤j≤p

|Tj4| ≥ Cn−κ2/8) ≤ 16C−1C̃nη7+κ2 exp[−nα2η8/(2c1)]. (D.56)

We now consider max1≤j≤p |Tj5|. By the Cauchy-Schwarz inequality and Lemma 2 we

deduce that

E|Tj5| = E|X1jε1I(|X1j | > M7)| ≤ {E(X2
1jε

2
1)P (|X1j | > M7)]}1/2

≤
{c1

2
[E(X4

1k) + E(ε41)]
}1/2

exp[−Mα1

7 /(2c1)] ≤ C̃ exp[−Mα1

7 /(2c1)].

An application of Markov’s inequality yields

P (|Tj5| ≥ δ) ≤ δ−1E|Tj5| ≤ δ−1C̃ exp[−Mα1

7 /(2c1)] (D.57)

for any δ > 0. Recall that M7 = nη7 . In view of (D.57), taking δ = Cn−κ2/8 gives that

P ( max
1≤j≤p

|Tj5| ≥ Cn−κ2/8) ≤
p∑

j=1

P (|Tj5| ≥ Cn−κ2/8)

≤8pC−1C̃nκ2 exp[−nα1η7/(2c1)]. (D.58)

Combining (D.54), (D.55), (D.56), and (D.58) yields that for sufficiently large n,

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2) ≤ 2p exp
(
−C̃n1−2κ2−2η7−2η8

)

+ 8pC−1C̃nκ2 exp[−nα1η7/(2c1)] + 16C−1C̃nη7+κ2 exp[−nα2η8/(2c1)]. (D.59)
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Let η7 = η8 = (1 − 2κ2)/(4 + α1). Then (D.59) becomes

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ1/2)

≤pC̃3 exp[−C̃4n
α1η7 ] + C̃5 exp[−C̃6n

α2η7 ] (D.60)

for all n sufficiently large, where C̃3, C̃4, C̃5, and C̃6 are some positive constants.

Since 0 < η6 < η7, it follows from (D.41), (D.49), and (D.60) that

P ( max
1≤j≤p

|ω̂∗
j − ω∗

j | ≥ Cn−κ2) ≤pC̃1 exp
(
−C̃2n

α1η6
)

+ pC̃3 exp[−C̃4n
α1η7 ] + C̃5 exp[−C̃6n

α2η7 ]

≤pC̃7 exp
(
−C̃8n

α1η6
)

+ C̃5 exp[−C̃6n
α2η6 ]

with C̃7 = C̃1 + C̃3 and C̃8 = min{C̃2, C̃4} for all n sufficiently large. If log p = o(nα1η′)

with η′ = min{(1 − 2κ2 − 2ξ2)/(4 + α1), (1 − 2κ2 − 2ξ1)/(6 + α1)} > 0, then for any positive

constant C, there exists some arbitrarily large positive constant C2 such that

P ( max
1≤j≤p

|ω̂∗
j − ω∗

j | ≥ Cn−κ2) ≤ o(n−C2)

for all n sufficiently large, which completes the proof of part b) of Theorem 1.

D.4. Proof of part c) of Theorem 1

The main idea of the proof is to find probability bounds for the two events {I ⊂ Î} and

{M ⊂ M̂}, respectively. First note that conditional on the event {A ⊂ Â}, we have {I ⊂ Î}.

Thus it holds that

P (I ⊂ Î) ≥ P (A ⊂ Â). (D.61)

Define the event E1 = {maxk∈A |ω̂k − ωk| < 2−1c2n
−κ1}. Then, with τ = c2n

−κ1 , the event

E1 ensures that A ⊂ Â. Thus,

P (A ⊂ Â) ≥ P (E1) = 1 − P (Ec
1) = 1 − P (max

k∈A
|ω̂k − ωk| ≥ 2−1c2n

−κ1).
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Following similar arguments as for proving (D.10), it can be shown that there exist some

constants C̃1 > 0 and C̃2 > 0 such that for all n sufficiently large,

P (max
k∈A

|ω̂k − ωk| ≥ 2−1c2n
−κ1) ≤ 2s1C̃1 exp[−C̃2n

min{α1,α2}r1 ]. (D.62)

Note that the right hand side of (D.62) can be bounded by o(n−C1) for some arbitrarily large

positive constant C1. This gives

P (A ⊂ Â) ≥ 1 − o(n−C1). (D.63)

Thus combining (D.61) and (D.63) yields

P (I ⊂ Î) ≥ 1 − o(n−C1). (D.64)

Using similar arguments as for proving part b) of Theorem 1 and (D.63), we can show

that there exist some positive constants C̃1, C̃2, and C2 such that for all n sufficiently large,

P (B ⊂ B̂) ≥ P (max
j∈B

|ω̂∗
j − ω∗

j | < 2−1c2n
−κ2) ≥ 1 − s2C̃1 exp(−C̃2n

α1r2)

≥ 1 − o(n−C2), (D.65)

Combining (D.63) and (D.65) leads to

P (M ⊂ M̂) ≥P (A ⊂ Â and B ⊂ B̂) ≥ P (A ⊂ Â) + P (B ⊂ B̂) − 1

≥1 − o(n−min{C1,C2}). (D.66)

In view of (D.64) and (D.66), we obtain

P (I ⊂ Î and M ⊂ M̂) ≥ P (I ⊂ Î) + P (M ⊂ M̂) − 1 ≥ 1 − o(n−min{C1,C2})

for all n sufficiently large. This completes the proof for the first part of Theorem 1 c).

We proceed to prove the second part of part c) of Theorem 1. The main idea is to establish

the probability bounds for two events {|Â| = O[n2κ1λmax(Σ∗)]} and {|B̂| = O[n2κ2λmax(Σ)]},
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respectively. If we can show that

P
{
|Â| = O[n2κ1λmax(Σ∗)]

}
≥1 − o(n−C1), (D.67)

P
{
|B̂| = O[n2κ2λmax(Σ)]

}
≥1 − o(n−C2) (D.68)

with C1 and C2 defined in (8) and (9), respectively, then it holds that

P
{
|Î | = O

[
n4κ1λ2

max(Σ∗)
]}

≥ P
{
|Â| = O

[
n2κ1λmax(Σ∗)

]}
≥ 1 − o(n−C1)

and

P
{
|M̂| = O

[
n2κ1λmax(Σ∗) + n2κ2λmax(Σ)

]}

≥P
{
|Â| = O[n2κ1λmax(Σ∗)] and |B̂| = O[n2κ2λmax(Σ)]

}
≥ 1 − o(n−min{C1,C2}).

Combining these two results yields

P
(
|Î | = O{n4κ1λ2

max(Σ∗)} and |M̂| = O{n2κ1λmax(Σ∗) + n2κ2λmax(Σ)}
)

=1 − o
(
n−min{C1,C2}

)
.

It thus remains to prove (D.67) and (D.68). We begin with showing (D.68). The key

step is to show that
p∑

j=1

(ω∗
j )2 = ‖E(xY )‖22 ≤ C̃3λmax(Σ) (D.69)

for some constant C̃3 > 0. If so, conditional on the event E2 =

{
max
1≤j≤p

|ω̂∗
j − ω∗

j | ≤ 2−1c2n
−κ2

}
,

the number of variables in B̂ = {j : |ω̂∗
j | > c2n

−κ2} cannot exceed the number of variables in

{j : |ω∗
j | > 2−1c2n

−κ2}, which is bounded by 4C̃3c
−2
2 n2κ2λmax(Σ). Thus it follows from (9)

that for all n sufficiently large,

P
{
|B̂| ≤ 4C̃3c

−2
2 n2κ2λmax(Σ)

}
≥ P (E2) = 1 − P (Ec

2) ≥ 1 − o(n−C2). (D.70)

Now we further prove (D.69). Let u0 = argmin
u
E
(
Y − xTu

)2
. Then the first order
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equation E[x(Y − xTu0)] = 0 gives E(xY ) = [E(xxT )]u0 = Σu0. Thus

‖E(xY )‖22 = uT
0 Σ

2u0 ≤ λmax(Σ)u0
TΣu0 = λmax(Σ)var

(
xTu0

)
. (D.71)

It follows from the orthogonal decomposition that

var (Y ) = var
(
xTu0

)
+ var

(
Y − xTu0

)
≥ var

(
xTu0

)
.

Since E2(Y 2) ≤ E(Y 4) = O(1), we have var(Y ) ≤ E(Y 2) = O(1). Then the above inequality

ensures that var
(
xTu0

)
≤ C̃3 for some constant C̃3 > 0. This together with (D.71) completes

the proof of (D.69).

We next prove (D.67). Recall that Y ∗ = Y 2 and X∗
k = [X2

k − E(X2
k )]/

√
var(X2

k). Then

from the definition of ωk in Section 2.1, we have ωk = E(X∗
kY

∗). Following similar arguments

as for proving (D.69), it can be shown that

p∑

k=1

ω2
k =

p∑

k=1

E2(X∗
kY

∗) = ‖E(x∗Y ∗)‖22 ≤ C̃4λmax(Σ∗), (D.72)

where C̃4 is some positive constant, x∗ = (X∗
1 , · · · ,X∗

p )T , and Σ∗ = cov(x∗). Then, on the

event E3 =
{

max1≤k≤p |ω̂k − ωk| ≤ 2−1c2n
−κ1

}
, the cardinality of {k : |ω̂k| > c2n

−κ1} cannot

exceed that of {k : |ωk| > 2−1c2n
−κ1}, which is bounded by 4C̃4c

−2
2 n2κ1λmax(Σ∗). Thus, we

have

P
{
|Â| ≤ 4C̃4c

−2
2 n2κ1λmax(Σ∗)

}
≥ P (E3) = 1 − P (Ec

3) ≥ 1 − o(n−C1),

where the last equality follows from (8). This concludes the proof of part c) of Theorem 1

and thus Theorem 1 is proved.

D.5. Proof of Theorem 2

Recall that X̃ = (x̃1, · · · , x̃p̃) is the corresponding n × p̃ augmented design matrix in-

corporating the covariate vectors for Xj ’s and their interactions in columns, where x̃j =

(X1j , · · · ,Xnj)
T for 1 ≤ j ≤ p is the jth covariate vector and x̃j for p+1 ≤ j ≤ p̃ = p(p+1)/2

is x̃k ◦ x̃ℓ with some 1 ≤ k < ℓ ≤ p and ◦ denoting the Hadamard (componentwise) product.

We rescale the design matrix X̃ such that each column has L2-norm n1/2, and denote by
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Z̃ = X̃D−1 the resulting matrix, where D = diag{D11, · · · ,Dp̃p̃} with Dmm = n−1/2‖x̃m‖2
is a diagonal scale matrix.

Define the event E4 = {L1 ≤ min1≤j≤p̃ |Djj| ≤ max1≤j≤p̃ |Djj| ≤ L2}, where L1 and L2

are two positive constants defined in Condition 4. Then by the assumption in Condition 4,

event E4 holds with probability at least 1 − an. In what follows, we will condition on the

event E4.
Note that conditional on E4, we have

‖X̃δ‖2 ∼ ‖Z̃δ‖2, (D.73)

where the notation fn ∼ gn means that the ratio fn/gn is bounded between two positive

constants. Thus, conditional on E4, Condition 4 holds with matrix X̃ replaced with Z̃. More

specifically, with probability at least 1 − an, it holds that

min
‖δ‖2=1, ‖δ‖0<2s

n−1/2‖Z̃δ‖2 ≥ κ̃0, min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

{
n−1/2‖Z̃δ‖2/(‖δ1‖2 ∨ ‖δ̃2‖2)

}
≥ κ̃,

where κ̃0 and κ̃ are two positive constants depending only on κ, κ0, L1, and L2. In addition,

conditional on E4, the desired results in Theorem 2 are equivalent to those with X̃ and θ

replaced by Z̃ and θ∗ = Dθ, respectively. Thus, we only need to work with the design matrix

Z̃ and reparameterized parameter vector θ∗.

By examining the proof of Theorem 1 in Fan and Lv (2014), in order to prove Theorem

2 in our paper, it suffices to show that the following inequality

‖n−1Z̃
T
ε‖∞ > λ0/2 (D.74)

holds with probability at most an + o(p−c4), where λ0 = c̃0{(log p)/nα1α2/(α1+2α2)}1/2 for

some constant c̃0 > 0 and c4 is some arbitrarily large positive constant depending on c̃0.

Then with (D.74), following the proof of Theorem 1 in Fan and Lv (2014), we can obtain

that all results in Theorem 2 hold with probability at least 1 − an − o(p−c4).

It remains to prove (D.74). We first show that ‖n−1X̃
T
ε‖∞ > L1λ0/2 holds with an

overwhelming probability. To this end, note that an application of the Bonferroni inequality
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gives

P (‖n−1X̃
T
ε‖∞ > L1λ0/2) ≤

p̃∑

j=1

P (‖n−1x̃
T
j ε‖∞ > L1λ0/2) (D.75)

for any λ0 > 0. The key idea is to construct an upper bound for P (‖n−1x̃T
j ε‖∞ > L1λ0/2).

We claim that such an upper bound is C̃1 exp{−C̃2n
α1α2/(α1+2α2)λ2

0} for any 0 < L1λ0 < 2,

where C̃1 and C̃2 are some positive constants. To prove this, we consider the following two

cases.

Case 1: 1 ≤ j ≤ p. In this case, x̃j = (X1j , · · · ,Xnj)
T . Thus n−1x̃

T
j ε = n−1

∑n
i=1 Xijεi.

By Lemma 1, we have P (|Xijεi| > t) ≤ 2c1 exp{−c−1
1 tα1α2/(α1+α2)} for all 1 ≤ i ≤ n and

1 ≤ j ≤ p. Note that E(Xijεi) = 0. Thus it follows from Lemma 6 that there exist some

positive constants C̃3 and C̃4 such that

P (|n−1x̃T
j ε| > L1λ0/2) ≤ C̃3 exp{−C̃4n

min{α1α2/(α1+α2),1}λ2
0}

for all 0 < L1λ0 < 2.

Case 2: p + 1 ≤ j ≤ p̃. In this case, x̃j = (X1kX1ℓ, · · · ,XnkXnℓ)
T . Thus n−1x̃

T
j ε =

n−1
∑n

i=1 XikXiℓεi with some 1 ≤ k < ℓ ≤ p if p + 1 ≤ j ≤ p̃. By Lemma 1, we have

P (|XikXiℓεi| > t) ≤ 4c1 exp{−c−1
1 tα1α2/(α1+2α2)} for all 1 ≤ i ≤ n and 1 ≤ k < j ≤ p. Note

that E(XikXiℓεi) = 0. Thus it follows from Lemma 6 and α1α2/(α1 + 2α2) ≤ 1 that there

exist some positive constants C̃5 and C̃6 such that

P (|n−1x̃
T
j ε| > L1λ0/2) ≤ C̃5 exp{−C̃6n

α1α2/(α1+2α2)λ2
0}

for all 0 < L1λ0 < 2.

Under the assumption that α1α2/(α1+2α2) ≤ 1, we have α1α2/(α1+2α2) ≤ min{α1α2/(α1+

α2), 1}. Thus combining Cases 1 and 2 above along with (D.75) leads to

P (‖n−1X̃
T
ε‖∞ > L1λ0/2) ≤

p̃∑

j=1

P (|n−1x̃T
j ε| > L1λ0/2) ≤ C̃1p

2 exp{−C̃2n
α1α2/(α1+2α2)λ2

0}

for all 0 < L1λ0 < 2, where C̃1 = max{C̃3, C̃5} and C̃2 = min{C̃4, C̃6}. Here we have used
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the fact that p̃ = p(p+1)/2 ≤ p2. Set λ0 = c̃0{log p/nα1α2/(α1+2α2)}1/2 with c̃0 some positive

constant. Then 0 < L1λ0 < 2 for all n sufficiently large. Thus, with the above choice of λ0,

it holds that

P (‖n−1X̃
T
ε‖∞ > L1λ0/2) ≤ o(p−c4),

where c4 is some positive constant. Note that P (A) ≤ P (A|B) + P (Bc) and P (A|B) ≤
P (A)/P (B) for any events A and B with P (B) > 0. Thus,

P (‖n−1Z̃
T
ε‖∞ > λ0/2) ≤ P (‖n−1Z̃

T
ε‖∞ > λ0/2|E4) + P (Ec

4)

≤ P (‖n−1X̃
T
ε‖∞ > L1λ0/2|E4) + P (Ec

4)

≤ P (‖n−1X̃
T
ε‖∞ > L1λ0/2)/P (E4) + P (Ec

4)

≤ o(p−c4) + an,

which completes the proof of Theorem 2.

D.6. Proof of Theorem 3

We first prove that the diagonal entries Dmm’s of the scale matrix D are bounded between two

positive constants L1 ≤ L2 with significant probability. Since P (|Xij | > t) ≤ c1 exp(−c−1
1 tα1)

for any t > 0 and all 1 ≤ i ≤ n and 1 ≤ j ≤ p, by Lemma 7 and noting that EX2
ij = 1, there

exist some positive constants C̃1 and C̃2 such that

P (1/2 ≤ n−1/2‖x̃j‖2 ≤
√

7/2) = P{−3/4 ≤ n−1
n∑

i=1

[EX2
ij −X2

ij ] ≤ 3/4}

= 1 − P{|n−1
n∑

i=1

[X2
ij − EX2

ij ]| > 3/4} ≥ 1 − C̃1 exp(−C̃2n
min{α1/2,1}) (D.76)

for all 1 ≤ j ≤ p.

Since var(XikXiℓ) is a diagonal entry of the population covariance matrix Σ̃, it follows

from Condition 6 that var(XikXiℓ) ≥ K > 0 for all 1 ≤ k < ℓ ≤ p. Thus, there exists a

constant 0 < K0 ≤ 1 such that E(X2
ikX

2
iℓ) ≥ var(XikXiℓ) ≥ K > K0 for all 1 ≤ k < ℓ ≤ p.

Meanwhile, it follows from X2
ikX

2
iℓ ≤ (X4

ik + X4
iℓ)/2 and Lemma 2 that E(X2

ikX
2
iℓ) ≤ C̃3,
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where C̃3 ≥ K0 is some positive constant. Note that P (|Xij | > t) ≤ c1 exp(−c−1
1 tα1) for any

t > 0 and all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Thus it follows from Lemma 7 that there exist some

positive constants C̃4 and C̃5 such that for all 1 ≤ k < ℓ ≤ p,

P
(√

K0/2 ≤ n−1/2‖x̃k ◦ x̃ℓ‖2 ≤
√

7C̃3/2
)

≥ P
(√

K0/2 ≤ n−1/2‖x̃k ◦ x̃ℓ‖2 ≤
√

3K0/4 + C̃3

)

≥ 1 − P
{∣∣n−1

n∑

i=1

[X2
ikX

2
iℓ − E(X2

ikX
2
iℓ)]
∣∣ > 3K0/4

}

≥ 1 − C̃4 exp(−C̃5n
min{α1/4,1}). (D.77)

Let L1 = 2−1 min{1,K
1/2
0 } =

√
K0/2 and L2 =

√
7/2 max{1, C̃

1/2
3 }. Then combining

(D.76) with (D.77) yields that with probability at least 1 − C̃1p exp(−C̃2n
min{α1/2,1}) −

C̃4p
2 exp(−C̃5n

min{α1/4,1}), it holds that

 L1 ≤ min
1≤j≤p̃

|Djj| ≤ max
1≤j≤p̃

|Djj| ≤ L2, (D.78)

which shows that Dmm’s are bounded away from zero and infinity with large probability.

We proceed to show that the first two parts of Theorem 3 hold with significant probability.

For any 0 < ǫ < 1, define an event E5 = {‖n−1X̃
T
X̃ − Σ̃‖∞ ≤ ǫ}, where ‖ · ‖∞ stands for

the entrywise matrix infinity norm and X̃ and Σ̃ are defined in Section 3.3. Recall that

p̃ = p(p + 1)/2. Since P (|Xij | > t) ≤ c1 exp(−c−1
1 tα1) for any t > 0 and all 1 ≤ i ≤ n and

1 ≤ j ≤ p, it follows from Lemma 7 that there exist some positive constants C̃6 and C̃7 such

that

P (E5) = 1 − P (|(n−1X̃
T
X̃− Σ̃)jk| > ǫ for some (j, k) with 1 ≤ j, k ≤ p̃)

≥ 1 −
p̃∑

j=1

p̃∑

k=1

P (|(n−1X̃
T
X̃− Σ̃)jk| > ǫ)

≥ 1 − C̃6p̃
2 exp(−C̃7n

min{α1/4,1}ǫ2) (D.79)

for any 0 < ǫ < 1, where Ajk denotes the (j, k)-entry of a matrix A.

Next, we show that conditional on the event E5, the desired inequalities in Theorem 3
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hold. From now on, we condition on the event E5. Note that (n−1/2‖X̃δ‖2)2 = δT (n−1X̃
T
X̃−

Σ̃)δ + δT Σ̃δ. Let δJ be the subvector of δ formed by putting all nonzero components of δ

together. For any δ satisfying ‖δ‖2 = 1 and ‖δ‖0 < 2s, by the Cauchy-Schwarz inequality

we have

|δT (n−1X̃
T
X̃− Σ̃)δ| ≤ ǫ‖δ‖21 = ǫ‖δJ‖21 ≤ ǫ‖δJ‖0‖δJ‖22 = ǫ‖δ‖0‖δ‖22 < 2sǫ. (D.80)

It follows that (n−1/2‖X̃δ‖2)2 > δT Σ̃δ − 2sǫ for any δ satisfying ‖δ‖2 = 1 and ‖δ‖0 < 2s.

Thus we derive

min
‖δ‖2=1,‖δ‖0<2s

(n−1/2‖X̃δ‖2)2 ≥ min
‖δ‖2=1,‖δ‖0<2s

(δT Σ̃δ) − 2sǫ ≥ K − 2sǫ, (D.81)

where the last inequality follows from Condition 6.

Meanwhile, for any δ 6= 0 we have

(
n−1/2‖X̃δ‖2
‖δ1‖2 ∨ ‖δ̃2‖2

)2

=
δT (n−1X̃

T
X̃− Σ̃)δ

‖δ1‖22 ∨ ‖δ̃2‖22
+

δT Σ̃δ

‖δ1‖22 ∨ ‖δ̃2‖22

≥ δT (n−1X̃
T
X̃− Σ̃)δ

‖δ1‖22 ∨ ‖δ̃2‖22
+

δT Σ̃δ

‖δ‖22
.

Under the additional condition ‖δ2‖1 ≤ 7‖δ1‖1, by the first inequality of (D.80) it holds that

∣∣∣∣∣
δT (n−1X̃

T
X̃− Σ̃)δ

‖δ1‖22 ∨ ‖δ̃2‖22

∣∣∣∣∣ ≤
ǫ‖δ‖21
‖δ1‖22

=
ǫ(‖δ1‖1 + ‖δ2‖1)2

‖δ1‖22
≤ 64ǫ‖δ1‖21

‖δ1‖22
≤ 64sǫ,

where the last inequality follows from the Cauchy-Schwarz inequality. This entails that for

any δ 6= 0 with ‖δ2‖1 ≤ 7‖δ1‖1,

(
n−1/2‖X̃δ‖2
‖δ1‖2 ∨ ‖δ̃2‖2

)2

=
n−1δT X̃

T
X̃δ

‖δ1‖22 ∨ ‖δ̃2‖22
≥ δT Σ̃δ

‖δ‖22
− 64sǫ.
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Thus, by Condition 6 we have

min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

(
n−1/2‖X̃δ‖2
‖δ1‖2 ∨ ‖δ̃2‖2

)2

≥ min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

δT Σ̃δ

‖δ‖22
− 64sǫ

≥ K − 64sǫ. (D.82)

Recall that s = O(nξ0) with 0 ≤ ξ0 < min{α1/8, 1/2} by assumption and thus s ≤ C̃8n
ξ0

for some positive constant C̃8. Take ǫ = Kn−ξ0/C̃9 with C̃9 some sufficiently large positive

constant such that ǫ ∈ (0, 1) and K − 64sǫ > 0. In view of (D.78), (D.79), (D.81), and

(D.82), since log p = o(nmin{α1/4,1}−2ξ0) by assumption, we obtain that

an = C̃1p exp(−C̃2n
min{α1/2,1}) + C̃4p

2 exp(−C̃5n
min{α1/4,1})

+ C̃6p̃
2 exp(−C̃7K

2C̃−2
9 nmin{α1/4,1}−2ξ0) = o(1)

with the above choice of ǫ, and that with probability at least 1 − an, the desired results in

the theorem hold with κ0 = K(1 − 2C̃8/C̃9) and κ = K(1 − 64C̃8/C̃9). This concludes the

proof of Theorem 3.

Appendix E: Some technical lemmas and their proofs

Lemma 1. Let W1 and W2 be two random variables such that P (|W1| > t) ≤ C̃1 exp(−C̃2t
α1)

and P (|W2| > t) ≤ C̃3 exp(−C̃4t
α2) for all t > 0, where α1, α2, and C̃i’s are some positive

constants. Then P (|W1W2| > t) ≤ C̃5 exp(−C̃6t
α1α2/(α1+α2)) for all t > 0, with C̃5 = C̃1+C̃3

and C̃6 = min{C̃2, C̃4}.

Proof. For any t > 0, we have

P (|W1W2| > t) ≤ P (|W1| > tα2/(α1+α2)) + P (|W2| > tα1/(α1+α2))

≤ C̃1 exp(−C̃2t
α1α2/(α1+α2)) + C̃3 exp(−C̃4t

α1α2/(α1+α2))

≤ C̃5 exp(−C̃6t
α1α2/(α1+α2))

by setting C̃5 = C̃1 + C̃3 and C̃6 = min{C̃2, C̃4}.
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Lemma 2. Let W be a nonnegative random variable such that P (W > t) ≤ C̃1 exp(−C̃2t
α)

for all t > 0, where α and C̃i’s are some positive constants. Then it holds that E(eC̃3Wα

) ≤
C̃4, E(Wαm) ≤ C̃−m

3 C̃4m! for any integer m ≥ 0 with C̃3 = C̃2/2 and C̃4 = 1 + C̃1, and

E(W k) ≤ C̃5 for any integer k ≥ 1, where constant C̃5 depends on k and α.

Proof. Let F (t) be the cumulative distribution function of W . Then for all t > 0,

1 − F (W ) = P (W > t) ≤ C̃1 exp(−C̃2t
α). Recall that W is a nonnegative random variable.

Thus, for any 0 < T < C̃2, by integration by parts we have

E(eTWα

) = −
∫ ∞

0
eTtαd[1 − F (t)] = 1 +

∫ ∞

0
Tαtα−1eTtα [1 − F (t)] dt

≤ 1 +

∫ ∞

0
Tαtα−1 · C̃1e

−(C̃2−T )tα dt = 1 +
T C̃1

C̃2 − T
.

Then, taking C̃3 = T = C̃2/2 and C̃4 = 1 + C̃1 proves the first desired result.

Note that C̃m
3 E(Wαm)/m! ≤ ∑∞

k=0 C̃
k
3E(Wαk)/k! = E(eC̃3Wα

) for any nonnegative in-

teger m. Thus E(Wαm) ≤ C̃−m
3 C̃4m!, which proves the second desired result.

For any integer k ≥ 1, there exists an integer m ≥ 1 such that k < αm. Then applying

Hölder’s inequality gives

E(W k) ≤
{
E[(W k)αm/k]

}k/(αm) {
E[1αm/(αm−k)]

}(αm−k)/(αm)

= {E(Wαm)}k/(αm) ≤
(
C̃−m
3 C̃4m!

)k/(αm)
.

Thus the kth moment of W is bounded by a constant C̃5, which depends on k and α. This

proves the third desired result.

Lemma 3. Let W be a nonnegative random variable with tail probability P (W > t) ≤
C̃1 exp(−C̃2t

α) for all t > 0, where α and C̃i’s are some positive constants. If constant

α ≥ 1, then E(eC̃3W ) ≤ C̃4 and E(Wm) ≤ C̃−m
3 C̃4m! for any integer m ≥ 0 with C̃3 = C̃2/2

and C̃4 = eC̃2/2 + C̃1e
−C̃2/2.

Proof. Let F (t) be the cumulative distribution function of nonnegative random variable

W . Then 1 − F (t) = P (W > t) ≤ C̃1 exp(−C̃2t
α) for all t ≥ 1. If α ≥ 1, then t ≤ tα

for all t ≥ 1 and thus 1 − F (t) ≤ C̃1 exp(−C̃2t) for all t ≥ 1. Define C̃3 = C̃2/2 and
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C̃4 = eC̃2/2 + C̃1e
−C̃2/2. By integration by parts, we deduce

E(eC̃3W ) = −
∫ ∞

0
eC̃3td[1 − F (t)] = 1 +

∫ ∞

0
C̃3e

C̃3t[1 − F (t)]dt

=1 +

∫ 1

0
C̃3e

C̃3t[1 − F (t)]dt +

∫ ∞

1
C̃3e

C̃3t[1 − F (t)]dt

≤1 +

∫ 1

0
C̃3e

C̃3tdt +

∫ ∞

1
C̃1C̃3e

(C̃3−C̃2)tdt = eC̃2/2 + C̃1e
−C̃2/2 = C̃4,

which proves the first desired result.

Note that C̃m
3 E(Wm)/m! ≤∑∞

k=0 C̃
k
3E(W k)/k! = E(eC̃3W ) for any nonnegative integer

m. Thus E(Wm) ≤ C̃−m
3 C̃4m!, which proves the second desired result.

Lemma 4. For any real numbers b1, b2 ≥ 0 and α > 0, it holds that (b1 + b2)
α ≤ Cα(bα1 + bα2 )

with Cα = 1 if 0 < α ≤ 1 and 2α−1 if α > 1.

Proof. We first consider the case of 0 < α ≤ 1. It is trivial if b1 = 0 or b2 = 0. Assume

that both b1 and b2 are positive. Since 0 < b1/(b1 + b2) < 1, we have [b1/(b1 + b2)]
α ≥

b1/(b1 + b2). Similarly, it holds that [b2/(b1 + b2)]α ≥ b2/(b1 + b2). Combining these two

results yields

(
b1

b1 + b2

)α

+

(
b2

b1 + b2

)α

≥ b1
b1 + b2

+
b2

b1 + b2
= 1,

which implies that (b1 + b2)
α ≤ bα1 + bα2 .

Next, we deal with the case of α > 1. Since xα is a convex function on [0,∞) for a given

α > 1, we have [(b1 + b2)/2]α ≤ (bα1 + bα2 )/2, which ensures that (b1 + b2)
α ≤ 2α−1(bα1 + bα2 ).

Combining the two cases above leads to the desired result.

Lemma 5 (Lemma B.4 in Hao and Zhang (2014)). Let W1, · · · ,Wn be independent random

variables with EWi = 0 and EeT |Wi|
α ≤ A for some constants T,A > 0 and 0 < α ≤ 1. Then

for 0 < ǫ ≤ 1, P (|n−1
∑n

i=1 Wi| > ǫ) ≤ C̃1 exp(−C̃2n
αǫ2) with C̃1, C̃2 > 0 some constants.

Lemma 6. Let W1, · · · ,Wn be independent random variables with tail probability P (|Wi| >
t) ≤ C̃1 exp(−C̃2t

α) for all t > 0, where α and C̃i’s are some positive constants. Then there
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exist some positive constants C̃3 and C̃4 such that

P{|n−1
n∑

i=1

(Wi − EWi)| > ǫ} ≤ C̃3 exp(−C̃4n
min{α,1}ǫ2) (E.1)

for 0 < ǫ ≤ 1.

Proof. Define W̃i = Wi − EWi. Then by the triangle inequality and the property of

expectation, we have

|W̃i| = |Wi − EWi| ≤ |Wi| + |EWi| ≤ |Wi| + E|Wi|. (E.2)

Next, we consider two cases.

Case 1: 0 < α ≤ 1. It follows from Lemma 2 that E(eT |Wi|α) ≤ 1 + C̃1 and E|Wi| ≤ C0

for all 1 ≤ i ≤ n, where T = C̃2/2 and C0 is some positive constant. In view of (E.2) and

by Lemma 4, we have |W̃i|α ≤ (|Wi| + E|Wi|)α ≤ |Wi|α + (E|Wi|)α. This ensures

E(eT |W̃i|α) ≤ eT (E|Wi|)αE(eT |Wi|α) ≤ eTCα
0 (1 + C̃1).

Thus, by Lemma 5, there exist some positive constants C̃5 and C̃6 such that

P (|n−1
n∑

i=1

[Wi − EWi]| > ǫ) = P (|n−1
n∑

i=1

W̃i| > ǫ) ≤ C̃5 exp
(
−C̃6n

αǫ2
)

(E.3)

for any 0 < ǫ ≤ 1.

Case 2: α > 1. In view of (E.2), it follows from Lemma 4 and Jensen’s inequality that

for each integer m ≥ 2,

E(|W̃i|m) ≤ E[(|Wi| + E|Wi|)m] ≤ 2m−1E [|Wi|m + (E|Wi|)m]

=2m−1[E(|Wi|m) + (E|Wi|)m] ≤ 2m−1[E(|Wi|m) + E(|Wi|m)] = 2mE(|Wi|m). (E.4)

Recall that P (|Wi| > t) ≤ C̃1 exp(−C̃2t
α) for all t > 0 and α > 1. By Lemma 3, there exist

some positive constants C̃7 and C̃8 such that E(|Wi|m) ≤ m!C̃m
7 C̃8. This together with (E.4)
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gives

E(|W̃i|m) ≤ m!(2C̃7)m−2(8C̃2
7 C̃8)/2

for all m ≥ 2. Thus an application of Bernstein’s inequality (Lemma 2.2.11 in van der Vaart and Wellner

(1996)) yields

P{|n−1
n∑

i=1

(Wi − EWi)| > ǫ} = P (|n−1
n∑

i=1

W̃i| > ǫ)

≤ 2 exp

(
− nǫ2

16C̃2
7 C̃8 + 4C̃7ǫ

)
≤ 2 exp

(
− nǫ2

16C̃2
7 C̃8 + 4C̃7

)
(E.5)

for any 0 < ǫ < 1. Let C̃3 = max{C̃5, 2} and C̃4 = min{C̃6, (16C̃2
7 C̃8 + 4C̃7)

−1}. Combining

(E.3) and (E.5) completes the proof of Lemma 6.

Lemma 7. Assume that for each 1 ≤ j ≤ p, X1j , · · · ,Xnj are n i.i.d. random variables

satisfying P (|X1j | > t) ≤ C̃1 exp(−C̃2t
α1) for any t > 0, where C̃1, C̃2 and α1 are some

positive constants. Then for any 0 < ǫ < 1, we have

P

{∣∣∣∣∣n
−1

n∑

i=1

[XijXik − E(XijXik)]

∣∣∣∣∣ > ǫ

}
≤ C̃3 exp(−C̃4n

min{α1/2,1}ǫ2), (E.6)

P

{∣∣∣∣∣n
−1

n∑

i=1

[XijXikXiℓ − E(XijXikXiℓ)]

∣∣∣∣∣ > ǫ

}
≤ C̃5 exp(−C̃6n

min{α1/3,1}ǫ2), (E.7)

P

{∣∣∣∣∣n
−1

n∑

i=1

[XikXiℓXik′Xiℓ′ −E(XikXiℓXik′Xiℓ′)]

∣∣∣∣∣ > ǫ

}

≤ C̃7 exp(−C̃8n
min{α1/4,1}ǫ2), (E.8)

where 1 ≤ j, k, ℓ, k′, ℓ′ ≤ p and C̃i’s are some positive constants.

Proof. The proofs for inequalities (E.6)–(E.8) are similar. To save space, we only show

the inequality (E.8) here. Since P (|Xij | > t) ≤ C̃1 exp(−C̃2t
α1) for all t > 0 and all i and j,

it follows from Lemma 1 that XikXiℓXik′Xiℓ′ admits tail probability P (|XikXiℓXik′Xiℓ′ | >
t) ≤ 4C̃1 exp(−C̃2t

α1/4). By Lemma 6, there exist some positive constants C̃3 and C̃4 such
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that

P (|n−1
n∑

i=1

[XikXiℓXik′Xiℓ′ − E(XikXiℓXik′Xiℓ′)]| > ǫ) ≤ C̃3 exp
(
−C̃4n

min{α1/4,1}ǫ2
)

for any 0 < ǫ < 1, which concludes the proof of (E.8).

Lemma 8. Let Aj ’s with j ∈ D ⊂ {1, · · · , p} satisfy maxj∈D |Aj | ≤ L3 for some constant

L3 > 0, and Âj be an estimate of Aj based on a sample of size n for each j ∈ D. Assume

that for any constant C > 0, there exist constants C̃1, C̃2 > 0 such that

P

(
max
j∈D

|Âj −Aj | ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

with f(κ1) some function of κ1. Then for any constant C > 0, there exist constants C̃3, C̃4 >

0 such that

P

(
max
j∈D

|Â2
j −A2

j | ≥ Cn−κ1

)
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
.

Proof. Note that maxj∈D |Â2
j − A2

j | ≤ maxj∈D |Âj(Âj − Aj)| + maxj∈D |(Âj − Aj)Aj |.
Therefore, for any positive constant C,

P (max
j∈D

|Â2
j −A2

j | ≥ Cn−κ1) ≤ P (max
j∈D

|Âj(Âj −Aj)| ≥ Cn−κ1/2)

+ P (max
j∈D

|(Âj −Aj)Aj | ≥ Cn−κ1/2). (E.9)

We first deal with the second term on the right hand side of (E.9). Since maxj∈D |Aj | ≤ L3,

we have

P (max
j∈D

|(Âj −Aj)Aj | ≥ Cn−κ1/2) ≤ P (max
j∈D

|Âj −Aj |L3 ≥ Cn−κ1/2)

=P{max
j∈D

|Âj −Aj | ≥ (2L3)−1Cn−κ1} ≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}
, (E.10)

where C̃1 and C̃2 are two positive constants.
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Next, we consider the first term on the right hand side of (E.9). Note that

P (max
j∈D

|Âj(Âj −Aj)| ≥ Cn−κ1/2)

≤P (max
j∈D

|Âj(Âj −Aj)| ≥ Cn−κ1/2,max
j∈D

|Âj | ≥ L3 + Cn−κ1/2)

+ P (max
j∈D

|Âj(Âj −Aj)| ≥ Cn−κ1/2,max
j∈D

|Âj | < L3 + Cn−κ1/2)

≤P (max
j∈D

|Âj | ≥ L3 + Cn−κ1/2) + P (max
j∈D

|Âj(Âj −Aj)| ≥ Cn−κ1/2,max
j∈D

|Âj | < L3 + C)

≤P (max
j∈D

|Âj | ≥ L3 + Cn−κ1/2) + P (max
j∈D

|(L3 + C)(Âj −Aj)| ≥ Cn−κ1/2). (E.11)

Let us bound the two terms on the right hand side of (E.11) one by one. Since maxj∈D |Aj | ≤
L3, we have

P (max
j∈D

|Âj | ≥ L3 + Cn−κ1/2) ≤ P (max
j∈D

|Âj −Aj| + max
j∈D

|Aj | ≥ L3 + Cn−κ1/2)

≤P (max
j∈D

|Âj −Aj | ≥ 2−1Cn−κ1) ≤ |D|C̃5 exp
{
−C̃6n

f(κ1)
}
, (E.12)

where C̃5 and C̃6 are two positive constants. It also holds that

P (max
j∈D

|(L3 + C)(Âj −Aj)| ≥ Cn−κ1/2) = P{max
j∈D

|Âj −Aj | ≥ (2L3 + 2C)−1Cn−κ1}

≤|D|C̃7 exp
{
−C̃8n

f(κ1)
}
,

where C̃7 and C̃8 are two positive constants. This, together with (E.9)–(E.12), entails

P (max
j∈D

|Â2
j −A2

j | ≥ Cn−κ1) ≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ |D|C̃7 exp
{
−C̃8n

f(κ1)
}
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
,

where C̃3 = C̃1 + C̃5 + C̃7 > 0 and C̃4 = min{C̃2, C̃6, C̃8} > 0.

Lemma 9. Let Âj and B̂j be estimates of Aj and Bj, respectively, based on a sample of size

n for each j ∈ D ⊂ {1, · · · , p}. Assume that for any constant C > 0, there exist constants
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C̃1, · · · , C̃8 > 0 except C̃3, C̃7 ≥ 0 such that

P

(
max
j∈D

|Âj −Aj | ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P

(
max
j∈D

|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃9, · · · , C̃12 > 0 except C̃11 ≥ 0 such that

P

{
max
j∈D

|(Âj − B̂j) − (Aj −Bj)| ≥ Cn−κ1

}
≤ |D|C̃9 exp

{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
.

Proof. Note that maxj∈D |(Âj−B̂j)−(Aj−Bj)| ≤ maxj∈D |Âj−Aj |+maxj∈D |B̂j−Bj|.
Thus, for any positive constant C,

P (max
j∈D

|(Âj − B̂j) − (Aj −Bj)| ≥ Cn−κ1)

≤P (max
j∈D

|Âj −Aj| ≥ Cn−κ1/2) + P (max
j∈D

|B̂j −Bj | ≥ Cn−κ1/2)

≤|D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

≤|D|C̃9 exp
{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
,

where C̃9 = C̃1 + C̃5 > 0, C̃10 = min{C̃2, C̃6} > 0, C̃11 = C̃3 + C̃7 ≥ 0, and C̃12 =

min{C̃4, C̃8} > 0.

Lemma 10. Let Bj ’s with j ∈ D ⊂ {1, · · · , p} satisfy minj∈D Bj ≥ L4 for some constant

L4 > 0, and B̂j be an estimate of Bj based on a sample of size n for each j ∈ D. Assume

that for any constant C > 0, there exist constants C̃1, C̃2 > 0 such that

P

(
max
j∈D

|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}
.
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Then for any constant C > 0, there exist constants C̃3, C̃4 > 0 such that

P

(
max
j∈D

∣∣∣∣
√

B̂j −
√

Bj

∣∣∣∣ ≥ Cn−κ1

)
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
.

Proof. Since minj∈D Bj ≥ L4 > 0, there exists some constant L0 such that 0 < L0 < L4.

Note that, for any positive constant C,

P (max
j∈D

|
√

B̂j −
√

Bj| ≥ Cn−κ1)

≤P (max
j∈D

|
√

B̂j −
√

Bj| ≥ Cn−κ1,min
j∈D

|B̂j | ≤ L4 − L0n
−κ1)

+ P (max
j∈D

|
√

B̂j −
√

Bj| ≥ Cn−κ1,min
j∈D

|B̂j | > L4 − L0n
−κ1)

≤P (min
j∈D

|B̂j | ≤ L4 − L0n
−κ1)

+ P (max
j∈D

|B̂j −Bj|

|
√

B̂j +
√

Bj|
≥ Cn−κ1 ,min

j∈D
|B̂j | > L4 − L0). (E.13)

Consider the first term on the right hand side of (E.13). For any positive constant C, we

have

P (min
j∈D

|B̂j | ≤ L4 − L0n
−κ1) ≤ P (min

j∈D
|Bj | − max

j∈D
|B̂j −Bj| ≤ L4 − L0n

−κ1)

≤P (max
j∈D

|B̂j −Bj | ≥ L0n
−κ1) ≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}
, (E.14)

by noticing that minj∈D Bj ≥ L4, where C̃1 and C̃2 are some positive constants.

Next consider the second term on the right hand side of (E.13). Recall that minj∈D Bj ≥
L4. Then, for any positive constant C,

P (max
j∈D

|B̂j −Bj|

|
√

B̂j +
√

Bj|
≥ Cn−κ1,min

j∈D
|B̂j | > L4 − L0)

≤P{max
j∈D

|B̂j −Bj| ≥ C(
√

L4 − L0 +
√
L4)n−κ1} ≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}
, (E.15)

where C̃5 and C̃6 are some positive constants. Combining (E.13), (E.14), and (E.15) gives

P (max
j∈D

|
√

B̂j −
√

Bj | ≥ Cn−κ1) ≤ |D|C̃3 exp
{
−C̃4n

f(κ1)
}
, (E.16)
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where C̃3 = C̃1 + C̃5 and C̃4 = min{C̃2, C̃6}.

Lemma 11. Let Aj ’s with j ∈ D ⊂ {1, · · · , p} and B satisfy maxj∈D |Aj | ≤ L5 and |B| ≤ L6

for some constants L5, L6 > 0, and Âj and B̂ be estimates of Aj and B, respectively, based

on a sample of size n for each j ∈ D. Assume that for any constant C > 0, there exist

constants C̃1, · · · , C̃8 > 0 except C̃3 ≥ 0 such that

P

(
max
j∈D

|Âj −Aj | ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P
(
|B̂ −B| ≥ Cn−κ1

)
≤ C̃5 exp

{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃9, · · · , C̃12 > 0 such that

P

(
max
j∈D

|ÂjB̂ −AjB| ≥ Cn−κ1

)
≤ |D|C̃9 exp

{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
.

Proof. Note that maxj∈D |ÂjB̂ −AjB| ≤ maxj∈D |Âj(B̂ −B)| + maxj∈D |(Âj − Aj)B|.
Therefore, for any positive constant C,

P (max
j∈D

|ÂjB̂ −AjB| ≥ Cn−κ1) ≤ P (max
j∈D

|Âj(B̂ −B)| ≥ Cn−κ1/2)

+ P (max
j∈D

|(Âj −Aj)B| ≥ Cn−κ1/2). (E.17)

We first deal with the second term on the right hand side of (E.17). Since |B| ≤ L6, we have

P (max
j∈D

|(Âj −Aj)B| ≥ Cn−κ1/2) ≤ P (max
j∈D

|Âj −Aj |L6 ≥ Cn−κ1/2)

= P{max
j∈D

|Âj −Aj | ≥ (2L6)−1Cn−κ1}

≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

(E.18)

with constants C̃1, C̃2, C̃4 > 0 and C̃3 ≥ 0.
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Next, we consider the first term on the right hand side of (E.17). Note that

P (max
j∈D

|Âj(B̂ −B)| ≥ Cn−κ1/2)

≤P (max
j∈D

|Âj(B̂ −B)| ≥ Cn−κ1/2,max
j∈D

|Âj | ≥ L5 + Cn−κ1/2)

+ P (max
j∈D

|Âj(B̂ −B)| ≥ Cn−κ1/2,max
j∈D

|Âj | < L5 + Cn−κ1/2)

≤P (max
j∈D

|Âj | ≥ L5 + Cn−κ1/2)

+ P (max
j∈D

|Âj(B̂ −B)| ≥ Cn−κ1/2,max
j∈D

|Âj | < L5 + C)

≤P (max
j∈D

|Âj | ≥ L5 + Cn−κ1/2) + P{(L5 + C)|B̂ −B| ≥ Cn−κ1/2}. (E.19)

We will bound the two terms on the right hand side of (E.19) separately. Since maxj∈D |Aj | ≤
L5, it holds that

P (max
j∈D

|Âj | ≥ L5 + Cn−κ1/2) ≤ P (max
j∈D

|Âj −Aj | + max
j∈D

|Aj | ≥ L5 + Cn−κ1/2)

≤ P{max
j∈D

|Âj −Aj | ≥ 2−1Cn−κ1}

≤ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}
, (E.20)

where C̃5, C̃6, C̃8 > 0 and C̃7 ≥ 0 are some constants. We also have that

P ((L5 + C)|B̂ −B| ≥ Cn−κ1/2) = P{|B̂ −B| ≥ (2L5 + 2C)−1Cn−κ1}

≤ C̃13 exp
{
−C̃14n

f(κ1)
}

+ C̃15 exp
{
−C̃16n

g(κ1)
}
,

where C̃13, · · · , C̃16 are some positive constants. This, together with (E.17)–(E.20), entails

that

P (max
j∈D

|ÂjB̂ −AjB| ≥ Cn−κ1)

≤|D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

+ C̃13 exp
{
−C̃14n

f(κ1)
}

+ C̃15 exp
{
−C̃16n

g(κ1)
}

≤|D|C̃9 exp
{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
,
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where C̃9 = C̃1 + C̃5 + C̃13 > 0, C̃10 = min{C̃2, C̃6, C̃14} > 0, C̃11 = C̃3 + C̃7 + C̃15 > 0, and

C̃12 = min{C̃4, C̃8, C̃16} > 0.

Lemma 12. Let Aj’s and Bj ’s with j ∈ D ⊂ {1, · · · , p} satisfy maxj∈D |Aj | ≤ L7 and

minj∈D |Bj| ≥ L8 for some constants L7, L8 > 0, and Âj and B̂j be estimates of Aj and

Bj, respectively, based on a sample of size n for each j ∈ D. Assume that for any constant

C > 0, there exist constants C̃1, · · · , C̃6 > 0 such that

P

(
max
j∈D

|Âj −Aj | ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P

(
max
j∈D

|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃7, · · · , C̃10 > 0 such that

P

(
max
j∈D

∣∣∣Âj/B̂j −Aj/Bj

∣∣∣ ≥ Cn−κ1

)
≤ |D|C̃7 exp

{
−C̃8n

f(κ1)
}

+ C̃9 exp
{
−C̃10n

g(κ1)
}
.

Proof. Since minj∈D Bj ≥ L8 > 0, there exists some constant L0 such that 0 < L0 < L8.

Note that, for any positive constant C,

P (max
j∈D

|Âj

B̂j

− Aj

Bj
| ≥ Cn−κ1)

≤P (max
j∈D

|Âj

B̂j

− Aj

Bj
| ≥ Cn−κ1 ,min

j∈D
|B̂j | ≤ L8 − L0n

−κ1)

+ P (max
j∈D

|Âj

B̂j

− Aj

Bj
| ≥ Cn−κ1 ,min

j∈D
|B̂j | > L8 − L0n

−κ1)

≤P (min
j∈D

|B̂j | ≤ L8 − L0n
−κ1) + P (max

j∈D
|Âj

B̂j

− Aj

Bj
| ≥ Cn−κ1,min

j∈D
|B̂j | > L8 − L0). (E.21)

Let us consider the first term on the right hand side of (E.21). Since minj∈D Bj ≥ L8, it
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holds that for any positive constant C,

P (min
j∈D

|B̂j | ≤ L8 − L0n
−k) ≤ P (min

j∈D
|Bj| − max

j∈D
|B̂j −Bj| ≤ L8 − L0n

−κ1)

≤ P (max
j∈D

|B̂j −Bj| ≥ L0n
−κ1) ≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}
, (E.22)

where C̃1 and C̃2 are some positive constants.

The second term on the right hand side of (E.21) can be bounded as

P (max
j∈D

|Âj

B̂j

− Aj

Bj
| ≥ Cn−κ1 , min

j∈D
|B̂j | > L8 − L0)

≤P (max
j∈D

|Âj

B̂j

− Aj

B̂j

| ≥ Cn−κ1/2, min
j∈D

|B̂j | > L8 − L0)

+ P (max
j∈D

|Aj

B̂j

− Aj

Bj
| ≥ Cn−κ1/2, min

j∈D
|B̂j | > L8 − L0)

≤P{max
j∈D

|Âj −Aj | ≥ 2−1(L8 − L0)Cn−κ1}

+ P{max
j∈D

|B̂j −Bj| ≥ (2L7)−1(L8 − L0)L8Cn−κ1}

≤|D|C̃3 exp
{
−C̃4n

f(κ1)
}

+ C̃5 exp
{
−C̃6n

g(κ1)
}

+ |D|C̃11 exp
{
−C̃12n

f(κ1)
}
, (E.23)

where C̃3, · · · , C̃6, C̃11, and C̃12 are some positive constants. Combining (E.21)–(E.23) results

in

P (max
j∈D

|Âj/B̂j −Aj/Bj | ≥ Cn−κ1) ≤ |D|C̃7 exp
{
−C̃8n

f(κ1)
}

+ C̃9 exp
{
−C̃10n

g(κ1)
}
,

where C̃7 = C̃1 + C̃3 + C̃11 > 0, C̃8 = min{C̃2, C̃4, C̃12} > 0, C̃9 = C̃5 > 0, and C̃10 = C̃6 > 0.

This completes the proof of Lemma 12.
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Table 8: The overall and individual signal-to-noise ratios (SNRs) for simulation example
in Section A.1 of Supplementary Material. Case 1: ε1 ∼ N(0, 32), ε2 ∼ N(0, 2.52), ε3 ∼
N(0, 2.52), ε4 ∼ N(0, 22); Case 2: ε1 ∼ N(0, 3.52), ε2 ∼ N(0, 32), ε3 ∼ N(0, 32), ε4 ∼
N(0, 2.52); Case 3: ε1 ∼ N(0, 42), ε2 ∼ N(0, 3.52), ε3 ∼ N(0, 3.52), ε4 ∼ N(0, 32).

Case 1 Case 2 Case 3

Settings 1, 3 Settings 2, 4 Settings 1, 3 Settings 2, 4 Settings 1, 3 Settings 2, 4

M1 X1 0.44 0.44 0.33 0.33 0.25 0.25
X5 0.44 0.44 0.33 0.33 0.25 0.25

X1X5 1 1.00 0.73 0.74 0.56 0.56
Overall 1.89 1.95 1.39 1.43 1.06 1.10

M2 X1 0.64 0.64 0.44 0.44 0.33 0.33
X10 0.64 0.64 0.44 0.44 0.33 0.33
X1X5 1.44 1.45 1 1.00 0.73 0.74

Overall 2.72 2.73 1.89 1.89 1.39 1.39

M3 X10 0.64 0.64 0.44 0.44 0.33 0.33
X15 0.64 0.64 0.44 0.44 0.33 0.33
X1X5 1.44 1.45 1 1.00 0.73 0.74

Overall 2.72 2.77 1.89 1.92 1.39 1.41

M4 X1X5 2.25 2.26 1.44 1.45 1 1.00
X10X15 2.25 2.25 1.44 1.44 1 1.00
Overall 4.5 4.51 2.88 2.89 2 2.00

Table 9: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods over different models and settings for
simulation example in Section A.1 of Supplementary Material.

Method M1 M2 M3 M4

X1 X5 X1X5 All X1 X10 X1X5 All X10 X15 X1X5 All X1X5 X10X15 All

Case 1: ε1 ∼ N(0, 32), ε2 ∼ N(0, 2.52), ε3 ∼ N(0, 2.52), ε4 ∼ N(0, 22)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.15 0.15 1.00 1.00 0.00 0.00 0.01 0.04 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.76 1.00 1.00 0.02 0.02 0.08 0.07 0.01
SIRI∗2 1.00 1.00 1.00 1.00 1.00 0.99 0.60 0.59 0.99 0.99 0.07 0.07 0.26 0.23 0.07
IP 1.00 1.00 0.95 0.95 1.00 1.00 0.83 0.83 1.00 1.00 0.78 0.78 0.72 0.80 0.52

Case 2: ε1 ∼ N(0, 3.52), ε2 ∼ N(0, 32), ε3 ∼ N(0, 32), ε4 ∼ N(0, 2.52)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.14 1.00 1.00 0.00 0.00 0.01 0.04 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.58 1.00 1.00 0.00 0.00 0.06 0.03 0.00
SIRI∗2 1.00 1.00 1.00 1.00 0.99 0.99 0.40 0.39 0.99 0.98 0.03 0.03 0.15 0.17 0.02
IP 1.00 1.00 0.91 0.91 1.00 1.00 0.77 0.77 1.00 1.00 0.68 0.68 0.67 0.73 0.41

Case 3: ε1 ∼ N(0, 42), ε2 ∼ N(0, 3.52), ε3 ∼ N(0, 3.52), ε4 ∼ N(0, 32)
SIS2 1.00 1.00 1.00 1.00 1.00 0.99 0.13 0.13 1.00 1.00 0.00 0.00 0.00 0.04 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 0.99 0.44 0.43 1.00 1.00 0.00 0.00 0.04 0.02 0.00
SIRI∗2 0.99 1.00 0.99 0.99 0.98 0.97 0.37 0.36 0.98 0.96 0.01 0.01 0.11 0.09 0.00
IP 1.00 1.00 0.77 0.77 1.00 0.99 0.71 0.70 0.99 0.99 0.64 0.62 0.58 0.62 0.29
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Table 10: The means and standard errors (in parentheses) of computation time in minutes
of each method based on 100 replications for simulation example in Section A.2 of Supple-
mentary Material.

Method p = 200 p = 300 p = 500

hierNet 46.06 (0.69) 103.89 (1.20) 292.77 (2.47)
IP-hierNet 5.44 (0.14) 5.69 (0.11) 6.05 (0.14)
Ratio of mean 8.46 18.25 48.42

Table 11: The percentages of retaining each important main effect, and all important ones
(All) by all the screening methods over different settings for simulation example M5 in Section
A.3 of Supplementary Material.

Method ε ∼ N(0, 22) ε ∼ t(3)

X1 X5 X10 X15 All X1 X5 X10 X15 All

Setting 1: (n, p, ρ) = (200, 2000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIRI∗2 0.95 0.94 0.93 0.94 0.77 1.00 1.00 0.98 0.99 0.97
IP 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99

Setting 2: (n, p, ρ) = (200, 2000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIRI∗2 0.99 1.00 0.98 0.91 0.88 1.00 1.00 1.00 1.00 1.00
IP 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99

Setting 3: (n, p, ρ) = (300, 5000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIRI∗2 1.00 1.00 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00
IP 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99

Setting 4: (n, p, ρ) = (300, 5000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIRI∗2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IP 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99
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Table 12: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for interaction models M3′ and M4′ in
Section A.4 of Supplementary Material.

Method M3′ M4′

X10 X15 X1X5 All X1X5 X10X15 All

SIS2 1.00 1.00 0.00 0.00 0.01 0.02 0.00
DC-SIS2 1.00 1.00 0.00 0.00 0.41 0.35 0.16
SIRI*2 1.00 1.00 0.05 0.05 0.40 0.46 0.20
IP 1.00 1.00 0.69 0.69 0.54 0.45 0.26
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